稀贵金属资源循环利用项目 环境影响报告书 (全本公示稿)

建设单位: 贵州新铂材料科技有限公司

评价单位: 贵州汇景森环保工程有限公司

编制时间: 二 〇 二 五 年 十 月

编制单位和编制人员情况表

项目编号		9qps9q				
建设项目名称		稀贵金属资源循环利用项	目			
建设项目类别		47-101危险废物(不含医	疗废物)利用及处置			
环境影响评价文	C 件类型	报告书				
一、建设单位	青况					
单位名称(盖章	f)	贵州新铂材料科技有限公	司			
统一社会信用代码		91520690MAE7L4DL9M				
法定代表人(签	(章)	朱建刚 体建入	0.12	3		
主要负责人(签	(字)	丁华 一				
直接负责的主管	(签字)	郑章进 到 章 进				
二、编制单位	情况	(ARTO				
单位名称(盖章	f)	贵州汇景森环保工程有限	公司			
统一社会信用代	八码	91520198MA6GR5YJ55	=			
三、编制人员	情况					
1. 编制主持人		7019[00]				
姓名	职业	资格证书管理号	信用编号	签字		
邢伟	03520	240552000000002	BH071682	丽华		
2 主要编制人	.Д					
姓名	Ì	要编写内容	信用编号	签字		
环境现状调查与评价、环境影响经济 损益分析、排污许可及总量控制、环 境管理与监测计划、环境影响评价结		至与评价、环境影响经济 持方许可及总量控制、环 引计划、环境影响评价结 论	BH071682	刑体		
赵学庆	概述、总则、 境保护指	建设项目工程分析、环 持施及其可行性论证	ВН009069	Som		
李正康		与评价、环境风险评价	BH000035	210		

统一社会信用代码 91520198MA6GR5YJ55

营业执照

(副 本)

扫接二维码登录 "国家企业信用 信息公示系统" 了解更多登记、 备案、许可,这 管信息。

名 称 贵州汇景森环保工程有限公司

型 有限责任公司(自然人独资)

法定代表人 仇建民

经营范围

法律、法规、国务院决定规定帐止的不得经营、基础、法规、国务院决定规定应当许可(审批)的。经事他《美戏·格尼存可《审批》文件经营、法律、法规、国务院决定规定无需许可(事业)的。市场主体自主选择经营。环保工程及工程设计,环保、节能设备的技术开发。4、各面、技术转让、技术服务,工程全过程咨询。环境影响评价及环保验收过不管询、水上保持方案及验收技术咨询。清洁生产技术咨询、装排放与误管理技术咨询、与决验处评估咨询和治理修复、土壤污染防治、污染治理设施运动服务能力保价、社会稳定风险评估咨询、环境检测咨询、地灾、压覆、水资源论证咨询、安全三利时权不咨询、节能评估、污水及大气治理、销售、环保节能设备、机械设备、仅器仅表、计算机软硬件、建筑材料、日用百货。(涉及许可经营项目、应取得相关部门许可后方可经营)

注册资本 伍佰万圆整

成立日期 2018年01月15日

住 所 贵州省贵阳市贵阳高新区长岭街道黔灵 山路357号德福中心A5栋2单元4层5号房

10 16

年 月 日

http://www.gsxt.gov.cn

市场主体应当于每年1月1日 至 6月30日通过 国家企业信用信息公示系统报送公示年度报告

国家企业信用信息公示系统网址:

变更登记换发

国家市场监督管理总局监制

环境影响评价工程师

Environmental Impact Assessment Engineer

本证书由中华人民共和国人为资源 和社会保障部、生态环境部批准颁发, 表明持证人通过国家统一组织的考试, 取得环境影响评价工程师职业资格。

المَّنَّ الْمُعَالِمُ عَلَيْهِ عَلَيْهِ الْمُعَالِمُ عَلَيْهِ عَلِيهِ عَلَيْهِ عَلِيهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلِيهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلَيْهِ عَلِيهِ عَلَيْهِ عَ

名: 邢伟

证件号码:

出生年月:

批准日期: 2024年05月26日

管理号: 035202405520000000002

编制单位承诺书

- 1. 首次提交基本情况信息
- 2. 单位名称、住所或者法定代表人(负责人)变更的
- 3. 出资人、举办单位、业务主管部门或者挂靠单位等变更的
- 4. 未发生第3项所列情形、与《建设项目环境影响报告书(表)编制 监督管理办法》第九条规定的符合性发生变更的
- 5. 编制人员从业单位已变更或者已调离从业单位的
- 6. 编制人员未发生第5项所列情形,全职情况发生变更、不再属于本单位全职人员的
- 7. 补正基本情况信息

承诺单位(公章):贵州汇景森环保工程有限公司

2025年 10 月 14 日

101003516

编制人员承诺书

- 1. 首次提交基本情况信息
- 2. 从业单位变更的
- 3. 调离从业单位的
- 4. 建立诚信档案后取得环境影响评价工程师职业资格证书的
- 5. 被注销后从业单位变更的
- 6. 被注销后调回原从业单位的
- 7. 编制单位终止的
- 8. 补正基本情况信息

编制人员承诺书

本人<u>李正康</u>(身份证件号码<u>5227301</u><u>99</u>)郑重承诺:本人在<u>贵州汇景森环保工程有限公司</u>单位(统一社会信用代码<u>91520198MA6GR5YJ55</u>)全职工作,本次在环境影响评价信用平台提交的下列第 2 项相关情况信息真实准确、完整有效。

- 1. 首次提交基本情况信息
- 2. 从业单位变更的
- 3. 调离从业单位的
- 4. 建立诚信档案后取得环境影响评价工程师职业资格证书的
- 5. 被注销后从业单位变更的
- 6. 被注销后调回原从业单位的
- 7. 编制单位终止的
- 8. 补正基本情况信息

承诺人(签字): **8 1 2 0 2 0 2 0 2 1 1 4 日**

编制人员承诺书

本人_赵学庆 (身份证件号码_5222251' 2) 郑重承诺:本人在_贵州汇景森环保工程有限公司_单位(统一社会信用代码_91520198MA6GR5YJ55_)全职工作,本次在环境影响评价信用平台提交的下列第 1 项相关情况信息真实准确、完整有效。

- 1. 首次提交基本情况信息
- 2. 从业单位变更的
- 3. 调离从业单位的
- 4. 建立诚信档案后取得环境影响评价工程师职业资格证书的
- 5. 被注销后从业单位变更的
- 6. 被注销后调回原从业单位的
- 7. 编制单位终止的
- 8. 补正基本情况信息

承诺人(签字):

2025年10月14日

贵州汇景森环保工程有限公司

承诺函

贵州省生态环境厅:

我单位受贵州新铂材料科技有限公司委托编制的<u>《稀贵金属资源循环利用项目环境影响报告书》</u>已按照国家有关法律法规和技术导则要求编制完成,现按程序将报告书报你厅审批。我单位承诺对所申请报批的报告书内容、数据及提供材料的真实性等负责。该报告书不涉及国家秘密、商业秘密、个人隐私以及涉及国家安全、公共安全、经济安全和社会稳定的内容,可对外进行公开(公示)。

特此承诺!

贵州汇景森环保工程有限公司(盖章)

贵州新铂材料科技有限公司

承诺函

贵州省生态环境厅:

由我单位建设的稀贵金属资源循环利用项目,现已委托贵州汇景森环保有限公司编制完成《稀贵金属资源循环利用项目环境影响报告书》,该编制单位已经按照国家有关法律法规和相关技术导则、规范要求完成了报告书编制工作,现按程序将报告书报你厅审批。我单位承诺对所申请报批的报告书内容、数据及提供材料的真实性等负责。该报告书不涉及国家机密、商业秘密、个人隐私以及国家安全、公共安全、经济安全和社会稳定等内容,可对外进行公开(公示)。

特此承诺。

贵州新铂材料科技有限公司(盖章)

2035年 (9月19日

贵州新铂材料科技有限公司

委托函

贵州省生态环境厅:

兹我单位委托(姓名)赵学庆,(身份证号码) 5226221 12, 联系电话 152 221, 前来贵厅办 理和提交《稀贵金属资源循环利用项目环境影响报告书》申 请报批相关资料手续,请贵厅给予帮助办理为谢。

特此委托!

目 录

相	既述	I
	1 项目由来	I
	2 建设项目特点	,.II
	3 环境影响评价的工作过程	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	4 分析判定相关情况	III
	5 关注的主要环境问题及环境影响	IV
	6 环境影响评价的主要结论	v
1	总则	1
	1.1 评价原则	1
	1.2 编制依据	1
	1.3 环境影响评价因子识别与筛选	
	1.4 环境功能区划与评价标准	10
	1.5 评价工作等级	18
	1.6 评价范围	29
	1.7 环境保护目标	30
	1.8 建设方案的选址合理性分析	34
	1.9 相关政策及规划符合性分析	36
2	建设项目工程分析	57
	2.1 建设项目概况	57
	2.2 污染因素分析	86
	2.3 施工期污染源源强核算	97
	2.4 营运期污染源源强核算	98
3	环境现状调查与评价	153
	3.1 区域自然环境概况	153
	3.2 环境空气质量现状调查与评价	158
	3.3 地表水环境质量现状调查与评价	166
	3.4 地下水环境质量现状调查与评价	172

	3.5 声环境质量现状调查与评价	198
	3.6 土壤环境现状调查与评价	
	3.7 生态环境现状调查与评价	
4	环境影响预测与评价	214
	4.1 大气环境影响预测与评价	214
	4.2 地表水环境影响预测与评价	314
	4.3 地下水环境影响预测与评价	321
	4.4 声环境影响预测与评价	353
	4.5 固体废物影响分析	375
	4.6 土壤环境影响预测与评价	379
	4.7 生态环境影响评价	386
5	环境风险评价	388
	5.1 评价原则与评价内容	388
	5.2 评价工作程序	388
	5.3 风险调查	389
	5.4 风险评价等级及评价范围	393
	5.5 环境风险识别	399
	5.6 风险事故情形分析	402
	5.7 源项分析	406
	5.8 风险预测与评价	411
	5.9 环境风险防范措施及应急要求	433
	5.10 环境风险评价自查表	445
6	环境保护措施及其可行性论证	446
	6.1 施工期环境保护措施	446
	6.2 营运期大气污染防治措施	448
	6.3 营运期水污染防治措施	455
	6.4 营运期地下水染污防治措施	456
	6.5 营运期噪声污染防治措施	463
	6.6 固体废物污染防治措施	464
	6.7 营运期土壤污染防治措施	465

	6.8 营运期生态环境保护措施	466
	6.9 污染防治措施汇总	467
7	环境影响经济损益分析	468
	7.1 环保投资概算	468
	7.2 社会效益分析	469
	7.3 环境经济损益分析	469
	7.4 环境效益指标	471
	7.5 环境经济的静态分析	472
	7.6 经济效益分析结论	473
8	环境管理与监测计划	474
	8.1 环境管理	474
	8.2 监测计划	479
	8.3 与排污许可证制度衔接的要求	482
9	排污许可及总量控制	484
	9.1 排污许可申报	484
	9.2 许可排放量	485
1	0 环境影响评价结论	486
	10.1 项目概况	486
	10.2 符合性分析	486
	10.3 环境质量现状	488
	10.4 污染防治措施	490
	10.5 环境影响预测与评价结论	493
	10.6 环境风险评价结论	496
	10.7 环境影响经济效益分析	496
	10.8 环境管理与环境监测计划	497
	10.9 排污许可	497
	10.10 公众参与结论	497
	10.11 综合结论	498
	10.12 建议	498

插图:

- 图 1.7-1 环境保护目标图
- 图 1.7-2 环境风险保护目标图
- 图 1.9-1 项目与贵州大龙经开区功能布局位置关系图
- 图 1.9-2 项目与贵州大龙经开区土地利用规划位置关系图
- 图 1.9-3 项目与玉屏县环境管控单元位置关系图
- 图 2.1-1 地理位置图
- 图 2.1-3 厂区综合管网布置图
- 图 2.1-8 总平面布置图
- 图 3.1-1 区域水系图
- 图 3.1-2 区域水文地质图
- 图 3.2-1 大气环境及地表水环境监测布点图
- 图 3.4-1 地下水监测布点图
- 图 3.5-1 噪声及土壤监测布点图
- 图 5.3-1 环境风险单元分布图
- 图 5.8-5 事故排放路线图
- 图 5.9-1 区域应急疏散通道、安置场所位置图
- 图 6.4-1 地下水分区防渗图

附件:

- 附件1 环评委托书
- 附件2 备案文件
- 附件3 用地购置合同
- 附件 4 废水委托处理协议
- 附件5 初期雨水池、事故池共用协议
- 附件 6 生态环境分区管控关系的说明
- 附件7 规划环评审查意见
- 附件8 原料成分检测报告
- 附件9 固废浸出实验报告
- 附件 10 引用监测报告
- 附件11 环境质量现状监测报告
- 附件 12 排污许可申请表

附表

附表 1 建设项目环评审批基础信息表

附表 2 环境保护措施一览表

附表 3 环保投资一览表

附表 4 环保设施竣工验收一览表

概述

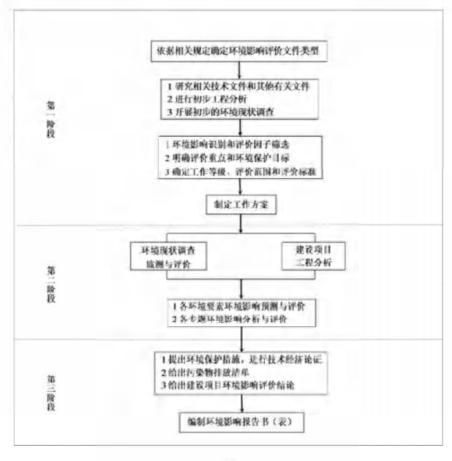
1 项目由来

贵金属涵盖八个元素: 铂、钯、铑、钌、铱、锇、金、银。其中前六种——铂、钯、铑、钌、铱、锇属于铂族金属。鉴于其非凡的独特属性与全球范围内的极度稀缺性,铂族金属在国际上获得了"战略储备金属"的地位,也因此获得"第一高技术金属"的称号。它们的关键应用覆盖了汽车催化转化器、石油精炼与化工催化剂、新能源装置、国防尖端材料、精密电子元器件以及环境污染控制技术等战略前沿领域。中国持续领跑全球铂族金属消费,推动贵金属二次资源回收产业前景向好。核心应用领域数据显示,汽车尾气催化剂以年耗逾120吨铂族金属,成为中国最大的实际消耗来源,故有"可循环铂矿"与"流动贵金属矿山"之称。另一重要领域——石油化工,其年度催化剂更换产生的铂族金属回收量也达到20余吨。

贵州新铂材料科技有限公司(以下简称"建设单位")属于湖南中伟新铂材料科技有限公司全资子公司,湖南中伟新铂材料科技有限公司主要从事金属功能材料的研发、生产、销售与技术服务,公司拟利用高冰镍生产硫酸镍过程产生的赤铁矿渣和贵金属二次资源为原料生产贵金属,实现稀贵金属资源的综合利用,并进一步延伸铂族金属化学材料、催化剂生产应用及回收一体化布局上下游产业链。因此,贵州新铂材料科技有限公司决定在贵州省铜仁市玉屏大龙开发区北部工业园区投资63600万元建设稀贵金属资源循环利用项目。

本项目主要原料为赤铁矿(高冰镍浸出渣)、铂族金属二次资源,主要产品为金(Au)、银(Ag)、铂(Pt)、钯(Pd)、铑(Rh)、铱(Ir)、锇(Os)、钌(Ru)。

项目的实施可以建成规模化处理各种含贵金属二次资源物料的生产平台,提高贵金属二次资源回收利用率,降低失效催化剂处置成本和"三废"的排放量,促进国家对含贵金属二次资源回收行业的规范整合及政策支持,参与国际竞争,对保证国家战略资源的保障和促进地区经济发展作出有力的贡献,具有重大意义。


2 建设项目特点

本项目属于危险废物处置及利用、贵金属回收项目,本项目采用火法富集结合湿法回收工艺对含铂族贵金属的废催化剂和高冰镍浸出渣源回收贵金属,采用的生产工艺为国内先进成熟的生产工艺,项目在对危险废物进行减量化、无害化的过程中回收贵金属,该工艺贵金属回收率高。

3 环境影响评价的工作过程

根据《中华人民共和国环境保护法》、《中华人民共和国环境影响评价法》、《建设项目环境保护管理条例》(国务院 2017 年第 682 号令)、生态环境部第 16 号令《建设项目环境影响评价分类管理名录(2021 年版)》等的相关规定,该项目应进行环境影响评价,并应编制环境影响报告书。

根据《建设项目环境影响评价技术导则 总纲》,本次环评工作分三个阶段:前期准备、调研和工作方案阶段;分析论证和预测评价阶段;环境影响报告书编制阶段。 具体如下图。

贵州新铂材料科技有限公司委托贵州汇景森环保工程有限公司(以下简称评价单位)承担该项目环境影响评价工作(附件1)。在熟悉设计文件,并多次进行现场踏勘、环境状况调查、资料收集以及认真分析工程内容的基础上,结合国家的有关法律法规和政策的要求,编制完成了《稀贵金属资源循环利用项目环境影响报告书》,报请贵州省生态环境厅审批。

4 分析判定相关情况

(1) 产业政策符合性

本工程属于危险废物处置项目,对照《产业结构调整指导目录(2024年版)》,本项目属于第一类 鼓励类项目中"四十二、环境保护与资源节约综合利用 6、危险废弃物处置-危险废物(含医疗废物)无害化处置和高效利用技术设备开发制造、利用处置中心建设和(或)运营"。项目使用设备无限制和淘汰生产工艺、设备,且已取得贵州大龙经济开发区经济发展局(科学技术局)备案(项目编码: 2505-522291-04-01-779012),因此,项目符合国家及地方产业政策。

(2) 与其他相关政策符合性分析

本项目为危险废物处置和贵金属冶炼项目,且处于长江重要支流舞阳河干流;项目位于贵州大龙经济开发区,项目所在厂区距离舞阳河约2.2km。本项目产生的一般固废外售综合利用,危险废物委托有资质的单位处置,不向外环境排放。因此,本项目与《中华人民共和国长江保护法》是相符的。

本项目位于合规化园区内,符合《贵州省推动长江经济带发展负面清单实施细则 (试行)》相关条款要求。

经对比《危险废物污染防治技术政策》《重点行业二噁英污染防治技术政策》 《固体废物再生利用污染防治技术导则》(HJ1091-2020)《强化危险废物监管和利用 处置能力改革实施方案》中的相关条款,本项目与前述技术政策和规范是相符的。

(3) 相关规划符合性分析

本项目属于废催化剂的危险废物处置设施,属于《贵州省"十四五"生态环境保护规划》中的短缺的危险废物利用处置设施,属于《铜仁市"十四五"生态环境保护规划》固体废物污染防治重点工程。因此,符合《贵州省"十四五"生态环境保护规

划》、《铜仁市"十四五"生态环境保护规划》要求。

本项目位于贵州省铜仁市,项目为属于废催化剂的危险废物处置设施,且从中回 收贵金属,本项目处置的含贵金属废催化剂不属于贵州省严重产能过剩的危险废物类 别,不属于贵州省利用处置能力前十的危险废物,属于结构性短缺的危险废物利用处 置设施。因此,符合《贵州省"十四五"危险废物集中处置设施建设规划》要求。

本项目主要是处理贵州中伟资源循环公司产出的赤铁矿(高冰镍浸出渣)、失效 汽车尾气催化剂、废铂/钯催化剂、废均相催化剂等,主要属危险废物处置及综合利用 项目和贵金属冶炼,项目建设与贵州大龙经济开发区产业规划不冲突,同时本项目使 用贵州中伟资源循环公司产出的赤铁矿(高冰镍浸出渣),属于产业端的延伸,与园 区发展循环经济理念一致。所以,本项目符合《贵州大龙经济开发区总体规划(2016-2030年)》产业规划发展要求。

(4) "三线一单"符合性

本项目的建设落实了"生态保护红线、环境质量底线、资源利用上限和环境准入负面清单"的约束要求,体现了从源头防范区域环境污染和加快推进改善环境质量为核心的环保管理要求。因此,本项目建设与《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评[2016]150号)要求保持一致。

本项目位于《省人民政府办公厅关于印发<贵州省生态环境分区管控方案>的通知》中贵州大龙经济开发区重点管控单元(编码为 ZH52062220002)。环评对生态环境分区管控进行查阅后,筛选出与本项目有关的条款,并结合本项目情况进行逐条分析,最终得出,本项目符合《省人民政府办公厅关于印发<贵州省生态环境分区管控方案>的通知》相关管控要求。

综上,本项目建设与"三线一单"是相符的。

5 关注的主要环境问题及环境影响

通过对本项目周边环境特征和本项目特点的分析和梳理, 主要包括以下几方面:

(1) 本项目为危险废物处置及利用并回收贵金属,主要关注项目各处置及回收 工序环节产生的大气污染物酸性气体、重金属等在采取大气污染防治措施后对周边环 境及敏感点的影响程度:

- (2) 建设项目生产废水经预处理后委托中伟新材料股份有限公司处理,论证水 污染控制和水环境影响减缓措施有效性,分析项目依托污水处理设施的环境可行性。
- (3) 建设项目产生的废水为高含盐废水和重金属废水,关注在非正常工况及事故工况下,对区域地下水的影响程度。
 - (4) 建设项目运行过程中使用的环境风险源对周边环境的影响程度。
 - (5) 建设项目运行过程中的环境管理和固体废物处理处置情况的问题。
 - (6) 同时本项目特别关注评价范围内公众对项目建设提出的环保意见和建议。

6 环境影响评价的主要结论

本工程建设符合国家产业政策及相关规范性文件要求,生产工艺成熟,技术可靠,生产过程有完善的污染防治措施,其在正常工况下外排污染物能够达到国家规定的排放标准。对评价区的大气环境、水环境、声环境、土壤环境及生态环境质量的影响可以接受。公众均支持本项目的建设。本工程在建设和运行过程中,在严格执行"三同时"制度、"环境影响评价"制度、落实报告书中提出的各项污染防治措施及风险防控措施,从环境影响角度分析,本工程建设是可行的。

1 总则

1.1 评价原则

突出环境影响评价的源头预防作用,坚持保护和改善环境质量。

(1) 依法评价

贯彻执行我国环境保护相关法律法规、标准、政策和规划等,优化项目建设,服 务环境管理。

(2) 科学评价

规范环境影响评价方法,科学分析项目建设对环境质量的影响。

(3) 突出重点

根据建设项目的工程内容及其特点,明确与环境要素间的作用效应关系,充分利用符合时效的数据资料及成果,对建设项目主要环境影响予以重点分析和评价。

1.2 编制依据

1.2.1 法律法规

- (1) 《中华人民共和国环境保护法》,2014年4月24日修订;
- (2) 《中华人民共和国环境影响评价法》,2018年12月29日修正;
- (3) 《中华人民共和国大气污染防治法》,2018年10月26日修正;
- (4) 《中华人民共和国水污染防治法》,2017年6月27日修正;
- (5) 《中华人民共和国噪声污染防治法》,2022年6月5日起施行;
- (6) 《中华人民共和国固体废物污染环境防治法》,2020年4月29日修订;
- (7) 《中华人民共和国土壤污染防治法》,2019年1月1日起施行;
- (8) 《中华人民共和国水法》,2016年7月2日修正;
- (9) 《中华人民共和国清洁生产促进法》,2012年7月1日修正:
- (10) 《中华人民共和国循环经济促进法》, 2018年10月26日修改;
- (11) 《中华人民共和国节约能源法》, 2018年10月26日修正;
- (12) 《中华人民共和国城乡规划法》, 2019年4月23日修正;
- (13) 《中华人民共和国野生动物保护法》, 2022年12月30日修订;

- (14) 《中华人民共和国可再生能源法》,2009年12月26日修改;
- (15) 《中华人民共和国水土保持法》, 2010年12月25日修订;
- (16) 《中华人民共和国森林法》, 2019年12月28日修订:
- (17) 《中华人民共和国长江保护法》,2021年3月1日起施行;
- (18) 《中华人民共和国安全生产法》, 2021年6月10日修改;
- (19) 《中华人民共和国土地管理法》, 2019年8月26日修正。

1.2.2 行政法规及国务院规范性文件

- (1) 《建设项目环境保护管理条例》(国务院 682 号令), 2017年7月16日修订;
- (2) 《地下水管理条例》(国务院令第748号),2021年12月1日施行;
- (3) 《排污许可管理条例》(国务院令第736号),2021年3月1日施行;
- (4) 《中华人民共和国森林法实施条例》(国务院令第278号),2018年3月19日修订;
- (5) 《中华人民共和国水土保持法实施条例》(国务院令第120号),2011年1月8日;
- (6) 《中华人民共和国土地管理法实施条例》(国务院令第743号),2021年9月1日;
- (7) 《中华人民共和国野生植物保护条例》(国务院令第 204 号), 2017 年 10 月 7 日修订;
 - (8) 《中华人民共和国水生野生动物保护实施条例》,2013年12月7日修订:
 - (9) 《中华人民共和国陆生野生动物保护实施条例》,2016年2月6日修订:
 - (10) 《危险化学品安全管理条例》(国务院令第645号), 2013年12月7日修订;
- (11) 《中华人民共和国环境保护税法实施条例》(国务院令第 693 号),2018年1月1日;
 - (12) 《中华人民共和国水污染防治法实施细则》(国务院令第284号);
 - (13) 《国务院关于支持贵州在新时代西部大开发上闯新路的意见》(国发202212号):
 - (14) 《国务院关于印发全国主体功能区规划的通知》(国发[2010]46);
- (15) 《国务院关于印发大气污染防治行动计划的通知》(国发[2013]37号);
- (16) 《国务院关于印发水污染防治行动计划的通知》(国发[2015]17号);
- (17) 《国务院关于印发土壤污染防治行动计划的通知》(国发〔2016〕31 号):
 - (18) 《关于印发"十四五"土壤、地下水和农村生态环境保护规划的通知》(环土壤

[2021]120 号);

- (19) 《国务院办公厅转发环境保护部等部门关于推进大气污染联防联控工作改善区域 空气质量指导意见的通知》(国办发(2010)33 号),2010 年 5 月 21 日;
- (20) 《国务院办公厅关于加快构建废弃物循环利用体系的意见》(国办发〔2024〕7号),2024年2月6日;
- (21) 《国务院关于印发"十四五"节能减排综合工作方案的通知》(国发 [2021]33号);
 - (22) 《全国危险废物和医疗废物处置设施建设规划》 (国函[2003]128 号)。

1.2.3 部门规章及规范性文件

- (1) 《产业结构调整指导目录(2024年本))》(发展改革委令第7号), 2024年2月1日:
- (2) 《建设项目环境影响评价分类管理名录》(中华人民共和国环境保护部令第16号,2020年11月30日:
- (3) 《国家危险废物名录(2025 年版)》(部令第 15 号), 2025 年 1 月 1 日起施行;
- (4) 《建设项目环境影响评价政府信息公开指南(试行)》(国家环保部 [2013]103 号文, 2014 年 1 月 1 日):
- (5) 环境保护部办公厅《关于切实加强环境影响评价监督管理工作的通知》 (环办[2013]104号),环境保护部办公厅,2013年11月15日;
- (6) 《关于进一步加强环境影响评价管理防范环境风险的通知》(环发[2012]77号),环境保护部,2012年7月3日;
- (7) 《关于加强生态保护红线管理的通知(试行)》(自然资发[2022]142号),2022年8月16日;
 - (8) 《建设项目环境影响评价文件分级审批规定》(环保部令第5号);
 - (9) 《危险废物转移管理办法》(部令第23号),2022年1月1日施行:
 - (10) 《建设项目竣工环境保护验收暂行办法》(国环规环评[2017]4号);
- (11) 《关于印发<全国生态功能区划(修编版)>的公告》(环境保护部、中国科学院公告 2015 年第 61 号), 2015 年 11 月 13 日;

- (12) 《关于印发<建设项目环境保护事中事后监督管理办法(试行)>的通知》 (环发[2015]163号),2015年12月10日;
- (13) 《关于改善环境质量为核心加强环境影响评价管理的通知》(环环评 [2016]150号),2016年10月26日;
- (14) 《建设项目危险废物环境影响评价指南》(环境保护部公告 2017 年第 43 号), 2017 年 8 月 29 日;
 - (15) 《环境影响评价公众参与办法》(生态环境部令第4号),2019年1月1日;
- (16) 《关于做好环境影响评价制度与排污许可制衔接相关工作的通知》(环办环评 [2017]84号),2017年11月15日;
 - (17) 《长江经济带发展负面清单指南(试行,2022年版)》(长江办[2022]7号);
- (18) 《关于印发<排污许可管理暂行规定>的通知》(环水体[2016]186 号),2016 年 12 月 23 日;
- (19) 《关于进一步加强重金属污染防控的意见》(环固体[2022]17号),2022年3月3日:
- (20) , 《危险废物污染防治技术政策》国家环保总局、 国家经贸委、 科技部, 2001 年 12 月 17 日:
 - (21) 《固定污染源排污许可分类管理名录(2019年版)》,2019年7月11日;
 - (22) 《长江经济带发展负面清单指南(试行, 2022年版)》, 2022年1月19日;
- (23) 《排污许可管理办法》(中华人民共和国生态环境部令 32 号), 2024 年 7 月 1 日施行。

1.2.4 地方性法规及规范性文件

- (1) 《贵州省生态环境保护条例》,2019年8月1日起施行;
- (2) 《贵州省大气污染防治条例》, 2018年11月29日修订:
 - (3) 《贵州省水污染防治条例》, 2018年11月29日修正;
 - (4) 《贵州省环境噪声污染防治条例》,2018年1月1日起施行;
 - (5) 《贵州省固体废物污染环境防治条例》,2024年9月25日修订;
 - (6) 《贵州省水土保持条例》, 2018年11月29日修订:
 - (7) 《贵州省土地管理条例》, 2022年12月1日修订;

- (8) 《贵州省生态文明建设促进条例》, 2018年11月29日修订:
- (9) 《省人民政府关于印发贵州省水污染防治行动计划工作方案的通知》(黔府发(2015)39号,2015年12月30日);
 - (10) 《省人民政府关于发布贵州省生态保护红线的通知》(黔府发〔2018〕16号);
- (11) 《省人民政府办公厅关于印发<贵州省生态环境分区管控方案>的通知》 (黔府办函〔2024〕67号),2024年12月28日;
- (12) 《贵州省生态保护红线监管办法(试行)》(黔自然资发(2023)4号),2023年5月9日;
 - (13) 《省政府印发我省大气污染防治行动计划实施方案》(黔府发[2014]13号);
- (14) 《省人民政府关于印发<贵州省土壤污染防治工作方案>的通知》(黔府发 (2016) 31 号), 2016 年 12 月 26 日;
- (15) 《贵州省生态环境厅关于印发<贵州省省级生态环境部门审批环境影响评价文件的建设项目目录(2024年本)>的通知》,黔环综合(2024)56号,2024年12月20日:
- (16) 中共贵州省委区域协调发展领导小组办公室关于印发《贵州省推动长江经济带发展负面清单实施细则(试行,2022年版)(修订)》的通知,黔区办[2025]1号:
- (17) 《关于印发<贵州省生态功能区划>的通知》(黔环发[2005]6号), 2005年8月16日;
- (18) 《贵州省人民政府<关于贵州省水功能区划(2025版)的批复>》(黔府函[2025]255号);
- (19) 《省人民政府关于印发贵州省"十四五"节能减排综合工作方案的通知》 (黔府发[2022]14号), 2022年8月29日;
- (20) 《贵州省污染物排放申报登记及污染物排放许可证管理办法(2017年修正本)》(贵州省人民政府令第31号),2017年7月28日。

1.2.5 技术导则

- (1) 《建设项目环境影响评价技术导则 总纲》(HJ 2.1-2016);
- (2) 《环境影响评价技术导则 大气环境》(HJ2.2-2018);

- (3) 《环境影响评价技术导则 地表水环境》(HJ2.3-2018);
- (4) 《环境影响评价技术导则 声环境》(HJ2.4-2021);
- (5) 《环境影响评价技术导则 地下水环境》(HJ601-2016);
- (6) 《环境影响评价技术导则 生态影响》(HJ19-2022);
- (7) 《环境影响评价技术导则 土壤环境》 (HJ964-2018)
- (8) 《建设项目环境风险评价技术导则》(HJ169-2018);
- (9) 《环境噪声与振动控制工程技术导则》(HJ2034-2013):
- (10) 《固体废物处理处置工程技术导则》(HJ2035-2013);
- (11) 《危险废物识别标志设置技术规范》(HJ1276-2022);
- (12) 《危险废物管理计划和管理台账制定技术导则》(HJ1259-2022);
- (13) 《污染源源强核算技术指南 准则》(HJ884-2018);
- (14) 《污染源源强核算技术指南 锅炉》(HJ991-2018)。

1.2.6 技术规范及标准

- (1) 《大气污染物无组织排放监测技术导则》(HJ/T55-2000):
- (2) 《制定地方大气污染物排放标准的技术方法》(GB/T13201-91);
- (3) 《固定污染源烟气(SO₂、NOx、颗粒物)排放连续监测技术规范》 (HJ75-2017):
 - (4) 《贵州省环境影响评价文件编制技术要点》(试行):
 - (5) 《排放源统计调查产排污核算方法和系数手册》(公告 2021 年第 24 号):
 - (6) 《危险废物收集贮存运输技术规范》(HJ2025-2012);
 - (7) 《危险废物贮存污染控制标准》(GB18597-2023);
 - (8) 《危险废物鉴别标准 通则》(GB 5085.7-2019);
 - (9) 《危险废物鉴别技术规范》(HJ 298-2019);
- (10) 《固体废物鉴别标准 通则》(GB34330-2017):
 - (11) 《危险废物处置工程技术导则》(HJ2042-2014);
- (12) 《固体废物再生利用污染防治技术导则》(HJ1091-2020);
 - (13) 《一般固体废物分类与代码》(GB/T39198-2020):
 - (14) 《危险废物识别标志设置技术规范》(HJ1276-2022);

- (15) 《危险废物集中焚烧处置工程建设技术规范》(HJ/T176-2005);
- (16) 《排污许可证申请与核发技术规范 总纲》(HJ942-2018);
 - (17) 《排污许可证申请与核发技术规范 无机化学工业》(HJ1035-2019);
 - (18) 《排污许可证申请与核发技术规范 工业噪声》(HJ 1301-2023);
- (19) 《排污许可证申请与核发技术规范工业固体废物(试行)》(HJ1200-2021):
 - (20) 《排污许可证申请与核发技术规范 危险废物焚烧》(HJ1038-2019);
- (21) 《排污许可证申请与核发技术规范 工业固体废物和危险废物治理》 (HJ1033-2019);
 - (22) 《排污许可证申请与核发技术规范 工业炉窑》(HJ1121-2020);
 - (23) 《排污单位自行监测技术指南 总则》(HJ819-2017);
 - (24) 《排污单位自行监测技术指南 无机化学》(HJ 1138-2020);
 - (25) 《排污单位自行监测技术指南 固体废物焚烧》(HJ 1205-2021);
- (26) 《排污单位自行监测技术指南 工业固体废物和危险废物治理》(HJ1250-2022)
- (27) 《排污单位环境管理台账及排污许可证执行报告技术规范总则(试行)》 (HJ944-2018)。

1.2.7 相关规划

- (1) 《全国主体功能区划》(国务院国发[2010]46号);
- (2) 《全国危险废物和医疗废物处置设施建设规划》(环发〔2004〕16号), 2004年1月19日;
 - (3) 《贵州省"十四五"生态环境保护规划》,2022年6月;
 - (4) 《贵州省主体功能区规划》, 2013年5月27日:
 - (5) 《贵州省水功能区划(2025年版)》, 2025年9月26日;
 - (6) 《贵州省生态功能区划(修编)》,2016年5月;
 - (7) 《贵州省"十四五"危险废物集中处置设施建设规划》, 2022年6月;
 - (8) 《铜仁市"十四五"生态环境保护规划》, 2022年12月;
 - (9) 《铜仁市水功能区划(2017版)》,2017年12月;

- (10) 《玉屏侗族自治县水功能区划报告(报批稿)》,2018年4月;
- (11) 《贵州大龙经济开发区声环境功能区划分方案》贵州中检豫黔监测有限责任公司,2018年5月;
- (12) 《贵州大龙经济开发区总体规划(2011-2030)》,广州市城市规划勘察设计院,2011年5月。

1.2.8 与项目相关的文件与资料

- (1) 环评委托书;
- (2) 《贵州大龙经济开发区总体规划(2011-2030)环境影响报告书》,贵州省环境科学研究设计院,2011年5月;
- (3) 《贵州大龙经济开发区总体规划(2011-2030)环境影响报告书的审查意见, 黔环函 [2011]210号, 2011年6月20日;
- (4) 《贵州大龙经济开发区总体规划(2011-2030)环境影响跟踪评价报告书》 中国电建集团贵阳勘测设计研究院有限公司,2018.6:
- (5) 《贵州新铂材料科技有限公司稀贵金属资源循环利用项目可行性研究报告》贵州新铂材料科技有限公司,2025年5月:
 - (6) 《贵州省企业投资项目备案证明》(2505-522291-04-01-779012);
 - (7) 建设单位提供的其他资料:项目设计资料、监测报告等。

1.3 环境影响评价因子识别与筛选

1.3.1 环境影响识别

根据项目的排污特点及所处环境特征,环境影响因素的识别见表 1.3-1。

	影响受体			自然环境			生态	环境
影响因素		环境空气	地表水	地下水	土壤环境	声环境	陆生生物	水生生物
	施工废水		-S1D	-S1D	-S1D		-S01	-S01
施工期	施工扬尘	-S1D					-LID	
	施工噪声					-SID	-S1D	
	渣土垃圾	-S1D	-S1I	-S1I	-S1D			
	废水排放		-L1D	-801	-S0D		-S0I	-L1D
	废气排放	-L2D					-LID	-L1D
营运期	噪声排放					-L1D		
	固体废物	-L2D	-L1D	-LID	-L1D		-LID	
	事故风险	-S3D	-S2D	-S2D	-S2D	-S3D	-S3D	-S3D

表 1.3-1 环境影响因素识别表

注: "+和-"分别表示有利、不利影响; "L和S"分别表示长期短期影响; "0至3"分别表示无影响、轻微影响、

中等影响、重大影响;"D和I"分别表示直接、间接影响。

1.3.2 评价因子

根据工程特点、当地环境特征,依据环境影响因素识别结果,按照《环境影响评价技术导则》中评价工作等级划分办法,确定本项目环境影响评价因子详见表1.3-2。

表 1.3-2 评价因子一览表

环境要素	现状评价因子	影响评价因子
大气环境	PM ₁₆ 、PM ₂₅ 、NO ₂ 、SO ₂ 、CO、O ₃ 、NO _x 、硫酸雾、硫化氢、氯化氢、氯气、氨气、非甲烷总烃、TVOC、氟化物、镍、钴、铜、铅、砷、铬、锡及其化合物、汞及其化合物、镉、硒及其化合物、五氧化二磷、甲醛、二噁英	PM ₁₀ 、PM ₂₅ 、NO ₂ 、SO ₂ 、 CO、硫酸雾、硫化氢、氯 化氢、氯气、氨气、非甲 烷总烃、五氧化二磷、氟 化物、镍、锰、甲醛、 砷、铅、二噁英
地表水环 境	pH 值、COD、BOD5、NH3-N、SS、DO、石油类、TP、挥发酚、氟化物、氰化物、钴、镍、铜、镉、硫酸盐、砷、铅、铁、锌、锰、汞、六价铬、硫化物、氯化物、粪大肠菌群	/
地下水	pH 值、耗氧量、溶解性总固体、总硬度、氨氮、硫化物、硫酸盐、氮化物、挥发性酚类(以苯酚计)、氰化物、氟化物、硝酸盐(以 N 计)、亚硝酸盐(以 N 计)、总大肠菌群、菌落总数、铁、锰、铜、锌、砷、汞、六价铬、铅、镉、锂、镍、钴、钼、银、硒、K ⁺ 、Na ⁺ 、Ca ²⁺ 、Mg ²⁺ 、CO ₃ ² 、HCO ³ 、Cl ⁻ 、SO ₄ ²	镍、砷、硫酸盐、氨氮
声环境	LAeq(dB)	厂界噪声 Leq 值
土壤环境	农用地: 二噁英、锰、钴、锂、石油烃、氟化物、镉、汞、砷、铜、铅、铬、锌、镍、pH等: 建设用地: 砷、镉、铬 (六价)、铜、铅、汞、镍、硒、锡、四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,2-四氯乙烷、1,1,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯、硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]芭、苯并[b]荧蒽、苯并[k]荧蒽、	铅、砷、镍、镉、铬、二噁英
生态环境	详见表 1.3-3	
固体废物	-)	一般固废和危险废物的产 生,利用和处置
风险	1	SO2储罐、甲醇储罐等

表 1.3-3 生态影响评价因子筛选表

时期	受影响对象	评价因子	工程内容	影响方式	影响性质	影响程度
	物种	分布范围、种群数量、种群结 构、行为等	生产车间	无	无	无
	生境	生境面积、质量、连通性	生产车间	无	无	定 无 无 无 无 无 无 无 无 无 无 无 无
施	生物群落	物种组成、群落结构等	上程內容 影响方式 影响性质 度 中群结 生产车间 无 无 无 遺性 生产车间 无 无 无 等 生产车间 无 无 无 物量、 生产车间 无 无 无 势度等 生产车间 无 无 无 等 生产车间 五 无 无 等 生产车间 无 无 无 于为等 生产车间 无 无 无 无 无 无 无 无 无 无 无 无 无			
工期	生态系统	植被覆盖度、生产力、生物量、 生态系统功能等	生产车间	无	无	无
	生物多样性	物种丰富度、均匀度、优势度等	生产车间	无	无	无
	自然景观	景观多样性、完整性等	生产车间	间接	短期、可逆	弱
	自然遗迹	遗迹多样性、完整性等	生产车间	无	无	无
运	物种	种群数量、种群结构、行为等	生产车间	无	无	无
营	生境	生境面积、质量、连通性	生产车间	无	无	无

期	生物群落	物种组成、群落结构等	生产车间	无	无	无
	生态系统	植被覆盖度、生产力、生物量、 生态系统功能等	生产车间	间接	长期、不可逆	弱
	生物多样性	物种丰富度、均匀度、优势度等	生产车间	无	无	无
	自然景观	景观多样性、完整性等	生产车间	间接	长期、不可逆	弱
	自然遗迹	遗迹多样性、完整性等	生产车间	无	无	无

1.4 环境功能区划与评价标准

1.4.1 环境功能区划

(1) 环境空气

本项目所在区域环境空气质量评价标准限值为《环境空气质量标准》(GB3095-2012)二级标准,区域环境空气质量功能区为二类环境功能区。

(2) 地表水

根据《贵州省水功能区划(2025年本)》、《铜仁市水功能区划(2017版)》和《玉屏侗族自治县水功能区划报告(报批稿)》(2018年4月),车坝河玉屏保留区(玉屏县马公塘~玉屏县白岩塘)水质目标为II类,车坝河(玉屏县白岩塘~躌阳河汇口)未划定水质类别,后锁小溪未划定类别;舞水湘黔缓冲区(玉屏县打鼓磉~湖南省新晃鱼市水电站大坝坝址)水质目标为II~III类。对于未划定水功能区划的河流河段根据《关于加强水环境功能区水质目标管理有关问题的通知》(环办函 436号,2003年8月28日)中"凡没有划定水环境功能区的河流湖库,各地环保部门在测算水环境容量、排污许可证发放、老污染源管理和审批新、改、扩建项目时,河流按照《地表水环境质量标准》(GB3838-2002)III类水质标准、湖库按照II类水质标准执行。"因此,车坝河(玉屏县白岩塘~躌阳河汇口)和后锁小溪均按照III类水质标准执行。综上所述,本项目所涉及的躌水(躌阳河)湘黔缓冲区(玉屏县打鼓磉~湖南省新晃鱼市水电站大坝坝址)河段、车坝河(玉屏县白岩塘~躌阳河汇口)及后锁小溪均执行《地表水环境质量标准》(GB3838-2002)III类标准。

(3) 地下水

目前该地区尚未进行地下水环境功能区划分,按地下水水质属性及使用功能,水质目标为III类,项目所处区域地下水执行《地下水质量标准》(GB/T14848-2017)III 类标准限值。

(4) 声环境

项目位于贵州大龙经济开发区,根据《贵州大龙经济开发区声环境功能区划分方案》,工业聚集区执行《声环境质量标准》(GB3096-2008)中3类声环境功能区标准,区内现有居住区按2类环境功能区标准。

1.4.2 环境质量标准

1.4.2.1 环境空气质量标准

环境空气质量执行《环境空气质量标准》(GB3095-2012)及其2018年修改单二级标准,对于《环境空气质量标准》(GB3095-2012)中未规定的项目参照《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录D表D.1中其他污染物空气质量浓度参考限值执行,非甲烷总烃、镍及其化合物执行《大气污染物综合排放标准详解》中的标准值。二噁英参照日本环境厅环境标准的年平均值。降尘执行《环境空气质量降尘》(DB52/1699-2022),具体标准限值见表1.4-1。

环境 标准 功能 标准值 项目 取值时间 要素 名称 区划 单位 数值 1 小时平均 500 SO₂ 24 小时平均 150 $\mu g/m^3$ 年平均 60 24 小时平均 300 TSP $\mu g/m^3$ 年平均 200 24 小时平均 150 PM₁₀ $\mu g/m^3$ 70 年平均 24 小时平均 75 PM25 µg/m3 年平均 35 1 小时平均 10 《环境空气质量标准》 CO mg/m3 (GB3095-2012) 及 2018 二级 24 小时平均 4 年修改单 I小时平均 200 O₃ mg/m3 8 小时平均 160 1小时平均 200 环境 24 小时平均 NO₂ $\mu g/m^3$ 80 空气 年平均 40 1 小时平均 250 NOx 24 小时平均 $\mu g/m^3$ 100 年平均 50 1 小时平均 20 氟化物 $\mu g/m^3$ 24 小时平均 7 镉 年平均 0.005 汞 年平均 0.05 《环境空气质量标准》 季平均 1 铅 (GB3095-2012) 及 2018 二级 $\mu g/m^3$ 年平均 0.5 年修改单 砷 年平均 0.006 年平均 0.000025 六价铬 《环境影响评价技术导则 1 小时平均 300 附录 硫酸 $\mu g/m^3$ 大气环境》(HJ2.2-2018) D 24 小时平均 100

表 1.4-1 环境空气质量标准

环境	标准	功能	75 E	Her filte mile first	标准	值
要素	名称	区划	项目	取值时间	单位	数值
			TICI.	1 小时平均		50
			HCI	24 小时平均	7 1	15
			NH ₃	1 小时平均		200
			H ₂ S	1 小时平均		10
			デ 荷 ル 一 7条	1 小时平均]	150
			五氧化二磷	日均值		50
			氯气	1 小时平均]	100
			厂原	日均值		30
			甲醛	1 小时平均		50
			锰及其化合物	日均值		10
	大气污染物综合排放标准	1	非甲烷总烃	1 小时平均	mg/m³	2.00
	详解	1	镍及其化合物	一次值	mg/m³	0.03
	日本环境厅环境标准平均 值	1	二噁英	年平均值	Pg-TEQ/m³	0.6
	《环境空气质量降尘》	* .	 攻 小月	月均	482 20.4	6.0
	(DB52/1699-2022)	衣工	/ 二噁英 年平 表 1	年平均月值	t/km ² ·30d	6.0

1.4.2.2 地表水环境质量标准

地表水执行《地表水环境质量标准》(GB3838-2002)III类标准,标准值见表 1.4-2。

环境	标准	项目	标》	住 值
要素	名称		单位	Ⅲ类
		pH 值(无量纲)	6	-9
		DO	mg/L	≥5
		COD	mg/L	≤20
		BOD ₅	mg/L	≤4
		硫化物	mg/L	≤0.2
		氨氮	mg/L	≤1.0
		石油类	mg/L	≤0.05
		挥发酚	mg/L	≤0.005
		氟化物	mg/L	1.0
		Pb	mg/L	≤0.05
	7 16 ± 1, 77 10 05 19.1-	Cd	mg/L	≤0.005
地表水	《地表水环境质量标	Hg	mg/L	≤0.0001
环境	准》	As	mg/L	≤0.05
	(GB3838-2002)	Сµ	mg/L	≤1.0
		氰化物	mg/L	≤0.2
		总磷(以 P 计)	mg/L	≤0,2
		粪大肠菌群	个/L	≤10000
		高锰酸盐指数	mg/L	≤6
		*铁	mg/L	≤0.3
		*锰	mg/L	≤0.1
		*硝酸盐	mg/L	10
		六价铬	mg/L	≤0.05
		锌	mg/L	≤1.0
		SS	mg/L	1

表 1.4-2 地表水环境质量标准

注: *GB3838-2002《地表水环境质量标准》表 2,集中式生活饮用水地表水源地补充项目标准限制。

1.4.2.3 地下水质量标准

地下水执行《地下水质量标准》(GB/T14848-2017)III类标准,标准值见表 1.4-3。

表 1.4-3 地下水质量标准

环境	标准	功能	项目	标准值		
要素	名称	区划	- 月	单位	Ⅲ类	
			pH 值(无量纲)	6.5~8.5		
			浑浊度	NTM ^a	≤3	
			总硬度(以CaCO3计)	mg/L	≤450	
			溶解性总固体	mg/L	≤1000	
			氯化物	mg/L	≤250	
			氰化物	mg/L	≤0.05	
			硫酸盐	mg/L	≤250	
			铁	mg/L	≤0.3	
			猛	mg/L	≤0.10	
			铜	mg/L	≤1.00	
			锌	mg/L	≤1.00	
	《地下水质量标准》 (GB/T14848-2017)	III类	铝	mg/L	≤0.20	
			砷	mg/L	≤0.01	
			镉	mg/L	≤0.00:	
也下水			挥发性酚类 (以苯酚计)	mg/L	≤0.00	
	(05/11/0/0/2017)		阴离子表面活性剂	mg/L	≤0.3	
			耗氧量 (COD _{Mn} 法,以O ₂ 计)	mg/L	≤3.0	
			氨氮 (以N计)	mg/L	≤0.5	
			硫化物	mg/L	≤0.02	
			纳	mg/L	≤200	
			总大肠菌群	MPN ⁶ /100mL 或 CFM ^c /100mL	≤3.0	
			菌落总数	CFM ^c /mL	≤100	
			亚硝酸盐 (以N计)	mg/L	≤1.00	
			硝酸盐 (以N计)	mg/L	≤20.0	
			氟化物	mg/L	≤1.0	
			汞	mg/L	≤0.00	
			Pb	mg/L	≤0.01	
			六价铬	mg/L	≤0.05	

注: *地下水质量非常规指标;

1.4.2.4 声环境质量标准

声环境执行《声环境质量标准》(GB3096-2008)2类、3类标准,见表 1.4-4。

表 1.4-4 声环境质量标准

互採無来	仁地女孙	ाव चा अस्तान	项目	标准值(dB(A))
环境要素	标准名称	功能区划		昼	夜
声环境	声环境质量标准	2 类	Leq	60	50
	GB3096-2008	3 类	Leq	65	55

1.4.2.5 土壤环境质量标准

建设用地执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018),农用地执行《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB15618-2018)。标准值见表 1.4-5 及表 1.4-6。

表 1.4-5 《土壤环境质量 农用地土壤污染风险管控标准(试行)》(摘录)

序号	污染物项目		风险筛选值 (mg/kg)					
			pH≤5.5	5.5 <ph≤6.5< td=""><td>6.5<ph≤7.5< td=""><td>pH>7.5</td></ph≤7.5<></td></ph≤6.5<>	6.5 <ph≤7.5< td=""><td>pH>7.5</td></ph≤7.5<>	pH>7.5		
1	镉	水田	0.3	0.4	0.6	0.8		
	tivi	其他	0.3	0.3	0.3	0.6		
2	汞	水田	0.5	0.5	0.6	1.0		
	7K	其他	1.3	1.8	2.4	3.4		
3	砷	水田	30	20	25	20		
	2hh	其他	40	40	30	25		
4	铅	水田	80	100	140	240		
		其他	70	90	120	170		
	铬	水田	250	250	300	350		
5		其他	150	150	200	250		
	铜	果园	150	150	200	200		
6		其他	50	50	100	100		
7	镍		60	70	100	190		
8	4	辛	200	200	250	300		
rèr III.	污染物项目®		风险筛选值(mg/kg)					
序号	万架视	沙 贝	pH≤5.5	5.5 <ph≤6.5< td=""><td>6.5<ph≤7.5< td=""><td>pH>7.5</td></ph≤7.5<></td></ph≤6.5<>	6.5 <ph≤7.5< td=""><td>pH>7.5</td></ph≤7.5<>	pH>7.5		
序号	污染	物项目		风险作				
1	4	嗣	1.5	2.0	3.0	4.0		
2	ž	汞	2.0	2.5	4.0	6.0		
3	3	神	200	150	120	100		
4	1	ili	400	500	700	1000		
5	铬		800	850	1000	1300		

表 1.4-6 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)(摘录)

序号	4A SMLTS EI	GB36600-2018 第二类用地 (mg/kg)		
17-5	检测项目	风险筛选值	风险管控值	
1	总砷	60	140	
2	辆	65	172	
3	铜	18000	36000	
4	铅	800	2500	
5	镍	900	2000	
6	汞	38	82	
7	六价铬	5.7	78	
8	四氯化碳	2.8	36	
9	氯仿	0.9	10	
10	氯甲烷	37	120	
11	1,1-二氯乙烷	9	100	
12	1,2-二氯乙烷	5	21	
13	1,1-二氯乙烯	66	200	
14	順-1,2-二氯乙烯	596	2000	
15	反-1,2-二氯乙烯	54	163	
16	二氯甲烷	616	2000	
17	1,2-二氯丙烷	5	47	
18	1,1,1,2-四氯乙烷	10	100	
19	1,1,2,2-四氯乙烷	6.8	50	
20	四氯乙烯	53	183	
21	1,1,1-三氯乙烷	840	840	
22	1,1,2-三氯乙烷	2.8	15	
23	三氯乙烯	2.8	20	
24	1,2,3-三氯丙烷	0.5	5	
25	氯乙烯	0.43	4.3	
26	苯	4	40	
27	氯苯	270	1000	

序号	to salve H	GB36600-2018 第二类用地(mg/kg)		
17-5	检测项目	风险筛选值	风险管控值	
28	1,2-二氯苯	560	560	
29	1,4-二氯苯	20	200	
30	乙苯	28	280	
31	苯乙烯	1290	1290	
32	甲苯	1200	1200	
33	间二甲苯+对二甲苯	570	570	
34	邻二甲苯	640	640	
35	硝基苯	76	760	
36	苯胺	260	663	
37	2-氯酚	2256	4500	
38	苯并[a]蒽	15	151	
39	苯并[a]芘	1,5	15	
40	苯并[b]荧蒽	15	151	
41	苯并[k]荧蒽	151	1500	
42	苗	1293	12900	
43	二苯并[a,h]蒽	1,5	15	
44	茚并[1,2,3-cd]芘	15	151	
45	萘	70	700	
46	二噁英 (毒性当量值)	4×10 ⁻⁵	4×10-4	

注:具体地块土壤中污染物检测含量超过筛选值,但等于或低于土壤环境背景值(见标准 3.6)水平的,不纳入污染地块管理。土壤环境背景值可参见标准附录 A。

1.4.3 污染物排放标准

1.4.3.1 大气污染物排放标准

本项目施工期扬尘执行《大气污染物综合排放标准》(GB16297-1996)无组织排放监控浓度限值和《施工场地扬尘排放标准》(DB52/1700-2022)。

	级(类) 别	污染 因子	标准限值			无组织排放监控浓度值	
标准			浓度 (mg/m³)	排气筒高度(m)	速率 (kg/h)	监控点	浓度 (mg/m³)
《大气污染物综合排放标 准》(GB16297-1996)表2	二级	颗粒物	120	15	3.5	周界外浓 度最高点	1,0
《施工场地扬尘排放标准》			施工区域围栏安全范围内,优先设置于车辆出入口 或主要施工活动区域				0.15

表 1.4-8 施工期大气污染物排放标准一览表

本项目涉及的行业类别主要为 N7724 危险废物治理业、C322 贵金属冶炼,其中,危险废物焚烧炉、回转炉炉内废气执行《危险废物焚烧污染控制标准》(GB18484-2020);回转炉炉膛废气,球磨、破碎、混料、矿热电炉、干燥、高压水雾化等工段产生的废气执行《大气污染物综合排放标准》(GB16297-1996)二级排放标准;浸出工序执行《无机化学工业污染物排放标准》(GB 31573-2015)及其修改单表 5 标准限值;中频炉、蒸硒回转窑废气排放参照执行《无机化学工业污染物排放标准》(GB 31573-2015)及其修改单表 5 及《工业炉窑大气污染物排放标准》(GB 9078-1996)最严标准执行,以上工序有合并排放排气筒的,以最严标准值执行。精炼生产线属于

C322 贵金属冶炼,原则应执行《大气污染物综合排放标准》(GB16297-1996)二级排放标准,但鉴于该生产线大多属于无机化工工序,且中间产品在贵金属单质及无机化合物、无机酸之间反复转换,从严考虑,参照执行《无机化学工业污染物排放标准》(GB 31573-2015)及其修改单表 5 标准限值。贵金属单质煅烧及熔铸执行《大气污染物综合排放标准》(GB16297-1996)及《工业炉窑大气污染物排放标准》(GB 9078-1996)较严值执行。企业厂内非甲烷总烃无组织排放监控点浓度执行《挥发性有机物无组织排放控制标准》(GB37822-2019)附录 A 标准限值。各标准限值见表 1.4-8。

表	1.4-8	危险废物焚烧大气污染物排放标准一览表
---	-------	--------------------

标准	级(类)别	污染因子	标准限值 (mg/m³)	取值时间
		颗粒物	30	1 小时均值
		林贝朴红书 勿	20	24 小时均值或日均值
		CO	100	1 小时均值
		CO	80	24 小时均值或日均值
		NO.	300	1 小时均值
		NOx	250	24 小时均值或日均值
		60	100	1 小时均值
		SO ₂	80	24 小时均值或日均值
《危险废物焚烧污染控制标准》 GB18484-2020)		uci	60	1 小时均值
	# 2	HCl	50	24 小时均值或日均值
	表 3	THE	4.0	1 小时均值
		HF	2.0	24 小时均值或日均值
		汞及其化合物	0.05	测定均值
		铊及其化合物	0.05	测定均值
	1 0	镉及其化合物	0.05	测定均值
		铅及其化合物	0.5	测定均值
		砷及其化合物	0.5	测定均值
		铬及其化合物	0.5	测定均值
		Sn+Sb+Cu+Mn+Ni+Co	2.0	测定均值
		二噁英	0.5ngTEQ/Nm ³	测定均值

表 1.4-9 大气污染物排放标准一览表

	级	污染	杨	准限值		无组织排放	监控浓度值
标准	(类) 别	因子	浓度 (mg/m³)	排气简高 度(m)	速率 (kg/h)	监控点	浓度 (mg/m³)
		颗粒物	30	/	1		1
		NOx	200	1	1	1 1	1
/王朝// 學工小坛		SO ₂	100	- /	1	A.J. th 田	1
染物排放标准》 (GB 31573- 2015)		氨气	20	/	1		0.3
	表 3	硫酸雾	20	1	1		0,3
		HC1	10	1	1	2 2 4 4 5 1 5 1 5 1 5 1 5 1	0.05
		H ₂ S	10	1	1	111.	0.03
		氯气	5	1	1		0.1
		氟化物	3	1	1		002
				20	4.3		0,40
2015) 《大气污染物综合 排放标准》 (GB16297-1996)		SO ₂ 二级 NOx	550	30	15		
				40	25		
	- 415		Ox 240	30	4.4		0.12
	\$2X		240	40	7.5	度最高点	
		颗粒物	120	30	23		
				40	39] [
		非甲烷	120	30	53		4.0

	级	污染	杨	准限值		无组织排放	监控浓度值
标准	(类) 别	万朵 因子	浓度 (mg/m³)	排气筒高 度(m)	速率 (kg/h)	监控点	浓度 (mg/m³)
		总烃		40	100		
		镍及其		30	0.88		
		化合物	4.3	40	1.5		0.04
				30	2.2		0.3
		甲醛	25	40	3.8		0.2
				25	0.52		
		氯气	65	30	0.87		0.40
				40	2.9		
				20	2.6		
		硫酸雾	45	30	8.8		1.2
				40	15		
		氟化物	9.0	30	0.59		0.02
		MA FUTO	2.0	40	1.0		0.02
		A 11. A	244	20	0.43		
		氯化氢	100	30	1.4		0,20
		60 27 46		40	2.6		
		铅及其	0.7	30	0.027		0.006
		化合物	1871	40	0.047		- 17.55
		汞及其	0.012	30	0.0078		0.0012
		化合物	13,000	40	0.015		
		镉及其	0.85	30	0.29		0.04
		化合物	0.02	40	0.5		0.01
		铍及其	0.012	30	0.0062		0.0008
		化合物	0.012	40	0.011		0.0000
		锡及其	8.5	30	1.8		0.24
		化合物	0.0	40	3.0		0.24
		烟尘	200	1	1		5
	二级	級 類及其 化合物 铅	6	,	,		,
《工业炉窑大气污染物排放标准》 (GB 9078-1996)			6	/	1	日本ムル	1
			10	1	1	最高允许	1
		汞	1.0	1	1	水度	/
		铍及其 化合物	0.01	1	1		1
		14 11 12		15	0.17		
		五氧化		20	0.17		100.0
《贵州省环境污染		二磷	15	30	1.02	75 60 40 10	0.135
《贵州省环境污染 物排放标准》	# 0	- 554		40	1.79	无组织排	
(DB52/864-	表 2			15	0.10	放监控浓	
2022)		锰及其	5.0	20	0.20	度限值	0.16
		化合物	5,0	30	0.61		0.15
				40	1.07		
《挥发性有机物无			监	控点处 1h 平均	浓度值		10
组织排放控制标准》(GB37822- 2019)	表 A.1	非甲烷 总烃	监	控点处任意一次	浓度值		30

1.4.3.2 水污染物排放标准

生活污水满足《污水综合排放标准》(GB8978-1996)排入市政管网。生产废水委托中伟新材料股份有限公司处理执行《无机化学工业污染物排放标准》(GB 31573-2015)车间或设施排放口标准,标准值见表 1.4-10。

类型 级(类)别 控制项目 单位 标准 标准值 总锰 总钴 1 总镍 0.5 总钡 2 总锡 2 《无机化学工业污 总锑 0.3 生产 车间或设施排放口 染物排放标准》 总砷 0.3 mg/L 废水 (GB 31573-2015) 总汞 0.005 总镉 0.05 总铅 0.5 六价铬 0.1 总银 0.5 总铬 0.5 无量纲 pH 6~9 SS 400 《污水综合排放标 BOD₅ 300 生活 准》(GB8978-COD 500 三级 污水 mg/L 1996) 氨氮 1 石油类 30 总磷

表 1.4-10 废水排放标准一览表

1.4.3.3 噪声排放标准

施工期执行《建筑施工场界环境噪声排放标准》(GB12532-2011);营运期厂界噪声排放执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。标准值见表1.4-11。

类型	标准	级(类)别	污染因子	标准值
ner See	工业企业厂界环境噪声排放标准(GB12348-2008)	3 类	噪声	昼 65dB(A)、夜 55dB(A)
噪声	《建筑施工场界环境噪声排放标准》(GB 12523	3-2011)	噪声	昼 70 dB(A)、夜 55dB(A)

表 1.4-11 噪声排放标准一览表

1.4.3.4 固体废物

固体废物执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)、《贵州省一般工业固体废物贮存、处置场污染控制标准》(DB52/865-2013);危险废物贮存执行《危险废物贮存污染控制标准》(GB18597-2023)。

1.5 评价工作等级

1.5.1 大气环境影响评价工作等级

《环境影响评价技术导则 大气环境》(HJ2.2-2018)将大气环境影响评价工作分为一、二、三级,大气环境影响评价分级判据见表 1.5-1。

表 1.5-1 评价工作等级判据表

评价工作等级	评价工作分级判据
-	P _{max} ≥10%
=	1% <p<sub>max<10%</p<sub>
三	P _{max} < 1%

根据工程分析结果,选用《环境影响评价技术导则 大气环境》(HJ2.2-2018)中推荐模式中的估算模式,选择正常排放的主要污染物及排放参数,分别计算主要污染物的下风向最大落地浓度 P_{max} 的占标率及地面浓度达标准限值 10%所对应的最远距离 D_{10%},依据表 1.5-1 判据进行大气评价等级判定。

依据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中最大地面浓度占标率的计算公式: $P_i = C_i \times 100\%/C_{oi}$

式中: P---第i个污染物最大地面空气质量浓度占标率, %:

 C_i ——采用估算模式计算出的第 i 个污染物的最大 1h 地面浓度, mg/m^3 ;

 C_{or} —第i个污染物环境空气质量标准, mg/m^3 。

表 1.5-2 估算模式参数表

3	参数	取值
3		
城市/农村选项	城市/农村	农村
规印/私们起火	人口数 (城市选项时)	1
最高环境	竞温度时/℃	39.8
最低环境	竞温度时/℃	-4.3
土地和	可用类型	针叶林
区域沿	显度条件	潮湿
是否考虑地形	考虑地形	■是□否
定百号忘地形	地形数据分辨率/m	90
	考虑岸线熏烟	□是 ■否
是否考虑岸线熏烟	岸线距离/km	1
	岸线方向/°	/

注: ①、根据图 1.5-1 可知,项目 3km 范围内一半以上为林地,因此,选择农村;

②、土地利用类型取项目周边 3km 范围内占地面积最大的土地利用类型确定,根据图 1.5-1 可知,本项目 3km 范围内主要为灌木林地和乔木林地;

③、潮湿气候划分根据中国干湿地区划分图进行确定,本项目为湿润区,参数选择潮湿气候;

①、根据《环境影响评价技术导则 大气》(HJ2.2-2018): 当建设项目处于大型水体(海或湖)岸边 3km 范围内时,应首先采用附录 A 估算模型判定是否会发生熏烟现象。本项目 3km 范围内无大型水体,不考虑熏烟现象。

表 1.5-3 3km 范围土地利用现状统计表

用	地类型	面积 (hm²)	占总面积的比例(%)
++-1:4-	灌木林地	1565.92	39.50
林地	乔木林地	695.54	17.54
ete III lili	水田	366.87	9.25
农用地	早地	258.45	6.52
建	设用地	984.61	24.84
	水域	93.08	2.35
	合计	3964.47	100.00

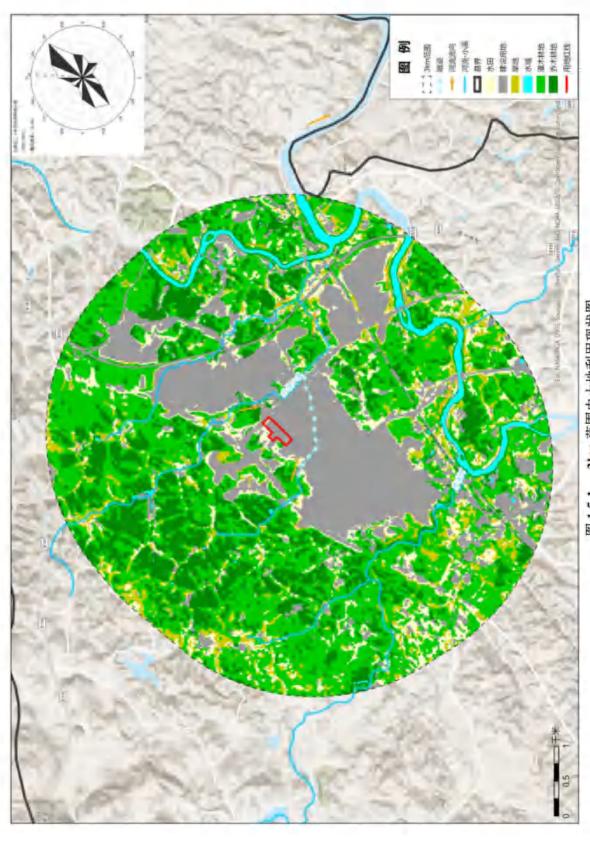


图 1.5-1 3km 范围内土地利用现状图

稀贵金属资源指环利用项目环境影响报告书表 1.5-4 点源排放源强及参数一览表

	排气简底部中心坐	銀中心条			烟气流	相气温											1. She 3 S. 24c-	40.00							
排气筒编	45/m	m,	排气筒	排气简出口	景	班	年排放小	排放								7	75 米·拉纬 加地 中水泉和	B-P-/Kg/n							
pp.	×	Y	高度/m	内4径/m	(w))	(3 ₀)	时数小	TST	SO	NO2	PMio	PM _{2.5}	CIS	非甲烷总统	HF	庭酸雾	НСІ	P ₂ O ₅	NH,	避田	H ₂ S	03	黄	題	二層英 (ugTEQ/h)
DA001	51.04	13.76	32	1.4	17.25	09	7920	正常	0.757	1.315	0.349	0.244			0.021		0.022	0.00016				0	0.00007	0.00025	
DA002	-48.35	-12.36	15	0.7	16.61	09	7920	正常			0.732	0.513				0.095					0.004			Ī	
DA003	-19.15	-42.75	32	1.0	17.69	40	7920	正常			100.0	0.0007		6.04											
DA004	-37.93	20.72	35	0.3	22.33	190	7920	正常	0.775	1.022	0.114	0.080		900'0	0.002		0.237	10.0				0.342			1.907
DA005	-27.96	25	32	0.2	17.69	120	7920	正常	0.024	0.261	610.0	0.013													
DA006	-48.85	-43.39	.25	1.4	18.05	55	7920	正常		0.00018	0.0001	0.00007	150.0	0.029	0.00003	0.001	0.184		990.0		0.002				
DA007	-129.5	-135.2	32	0.5	16.99	09	7920	正常						0.148			0.046		0.14	0.0005	0.007				
DA008	-59.51	-90.87	32	0.3	11.80	180	7920	正常			8000000	9000000													
DA009	-139,57	-146,12	25	8'0	17,97	09	7920	正常		0.0063			9000				0.022								
DA010	-88.75	-62.7	15	8.0	16.59	09	7920	出海											0.01						
DA011	92.1	106.2	15	0.5	16.99	25	7920	日常											90.0		0.0012				
DA012	-17.91	34.81	15	1.0	16.28	25	7920	正常		0.00014	0.0022	0.00015			0.00005	0.000002	0.001		0.0002						
DA013	-138.38	-71.88	15	0.15	11.01	25	7920	正常						0.0022											

本 1.5-5 国際計収解算及参数 現代 活動製作が認識化が	TANK TALLER	(m) 有效函度(m) SO ₂ NO ₂ PM ₁₀ PM ₂ s HF P ₂ O ₃ 硫酸等 HCI 非甲烷总烃 镍 储	0.005 0.299 0.209 0.0053 0.00004	11 0,000033
3.00	ļ	_	0.00004	
		HE	0.0053	
		PM _{2.5}	0.209	
			-	
		NO2	0.005	
		SO2	0.006	
		有效高度(m)	14.4	11
紅形所強	ALCOHOLD BY	変度(m)	56	18.6
		长度(m)	106	32.7
	Alm hits die offer	课款商及(m)	381	397
Section .	274.444	٨	-7.82	89.18
起占格	Market L.	×	-55.41	-42.87
	A-1 34 365 40 58.	の光彩や本	富集车间	対機区

图 1.5-2 AERSCREEN 筛选计算与评价等级估算参数截图

根据 AERSCREEN 模式计算,由表 1.5-6 可知,DA011 中 NH₃ 的预测结果占标率最大,浓度值为 105.24 μ g/m³,占标率为 52.6200%,D10%为 525.0;DA004 中 NO₂ 的 D10%最远,浓度值为 48.3254 μ g/m³,占标率为 24.1627%,D10%为 2625.0m。按导则规定评价等级定为一级。

小数	校立数: 4	~	~ 查看折线图				
	污染源	评价因子	评价标准(μg/m³)	C _{max} (µg/m³)	P _{max} (%)	D ₁₀₉₆ (m)	
1	DA004	502	500	36.6460	7.3292	1	
2	DA004	NO2	200	48.3254	24.1627	2625.0	
3	DA004	PM10	450	5.3905	1.1979	1	
4	DA004	PM2.5	225	3.7828	1.6813	1	
5	DA004	HF	20	0.0946	0.4729	1	
6	DA004	五氧化二磷	150	0.4729	0.3152	1	
7	DA004	NMHC	2000	0.2837	0.0142	1	
8	DA004	CO	10000	16.1715	0.1617	1	
9	DA004	二噁英类	0.0000036	0.0000	2.5048	1	
0	DA001	502	500	33.0330	6.6066	1	
11	DA001	NO2	200	57.3823	28.6911	2400.0	
12	DA001	PM10	450	15,2292	3,3843	1	
13	DA001	PM2.5	225	10.6474	4.7322	1	
14	DA001	HF	20	0.9164	4.5819	1	
15	DA001	五氧化二磷	150	0.0070	0.0047	1	

DA011中NH3的预测结果占标率最大浓度值为105.24µg/m3,标准值为200µg/m3,占标率为52.6200%,D10%为525.0. DA004中NO2的D10%最近浓度值为48.3254µg/m3,标准值为200µg/m3,占标率为24.1627%,D10%为2625.0m. 判定该污染源的评价等级为一级 D10%为2625.0m. 本项目是建设项目,评级等级为一级评价评价范围以厂址为中心,厂界外延2625m的距离,边长分别为5660m和5661m,面积32.0413km2. 评价范围涉及的行政区有:贵州省-明仁市-玉屏侗族自治县.

AERSCREEN 估算模式计算结果截图 图 1.5-3

表 1.5-6 Pmax 和 D_{10%}预测和计算结果一览表

污染源名称	评价因子	评价标准(µg/m³)	Cmax(µg/m³)	Pmax(%)	D10%(m)
DA001	SO2	500	33.033	6.6066	1
DA001	NO2	200	57.3823	28.6911	2400
DA001	PM10	450	15.2292	3.3843	1
DA001	PM2.5	225	10.6474	4.7322	1
DA001	HF	20	0.9164	4.5819	1
DA001	五氧化二磷	150	0.007	0.0047	1
DA001	Ni	30	0.0031	0.0102	/
DA001	锰及其化合物	30	0.0109	0.0364	1
DA002	PM10	450	113.92	25.3156	375
DA002	PM2.5	225	79.8374	35.4833	1150
DA002	硫酸	300	14.7847	4.9282	1
DA002	H2S	10	0.6225	6.2251	1
DA003	PM10	450	0.9588	0.2131	1
DA003	PM2.5	225	0.6712	0.2983	1
DA003	NMHC	2000	38.352	1.9176	1
DA004	SO2	500	36.646	7.3292	1
DA004	NO2	200	48.3254	24.1627	2625
DA004	PM10	450	5.3905	1.1979	1
DA004	PM2.5	225	3.7828	1.6813	1
DA004	HF	20	0.0946	0.4729	1
DA004	五氧化二磷	150	0.4729	0.3152	1
DA004	NMHC	2000	0.2837	0.0142	1
DA004	CO	10000	16.1715	0.1617	-/
DA004	二噁英类	3.60E-06	0	2.5048	1

污染源名称	评价因子	评价标准(μg/m³)	Cmax(µg/m³)	Pmax(%)	D10%(m)
DA005	SO2	500	6.1371	1.2274	1
DA005	NO2	200	66.741	33.3705	550
DA005	PM10	450	4.8585	1.0797	1
DA005	PM2.5	225	3.3243	1.4775	1
DA006	NO2	200	0.0089	0.0044	1
DA006	PM10	450	0.0049	0.0011	1
DA006	PM2.5	225	0.0035	0.0015	1
DA006	HF	20	0.0015	0.0074	1
DA006	硫酸	300	0.0494	0.0165	1
DA006	NMHC	2000	1.4314	0.0716	1
DA006	氯	100	2.5172	2.5172	1
DA006	NH3	200	3.2576	1,6288	1
DA006	H2S	10	0.0987	0.9872	1
DA007	NMHC	2000	4.5799	0.229	1
DA007	NH3	200	4.3323	2,1662	/
DA007	甲醛	50	0.0155	0.0309	/
DA007	H2S	10	0.2166	2,1662	/
DA008	PM10	450	0.0163	0.0036	1
DA008	PM2.5	225	0.0122	0.0054	1
DA009	NO2	200	0.1465	0.0733	1
DA009	氯	100	0.1395	0.1395	1
DA010	NH3	200	1,2546	0.6273	/
DA011	NH3	200	105.24	52.62	525
DA011	H2S	10	2.1048	21.048	300
DA012	NO2	200	0.1357	0.0679	/
DA012	PM10	450	2.1331	0.474	/
DA012	PM2.5	225	0.1454	0.0646	-/
DA012	HF	20	0.0485	0.2424	/
DA012	硫酸	300	0.0019	0.0006	1
DA012	NH3	200	0.1939	0.097	1
DA013	NMHC	2000	31.191	1.5595	1
富集车间	SO ₂	500	0.6042	0.1208	/
富集车间	NO ₂	200	0.5035	0.2518	1
富集车间	PM ₁₀	450	30,1098	6.6911	1
富集车间	PM _{2.5}	225	21.0466	9.3541	1
富集车间	HF	20	0.5337	2,6686	1
富集车间	五氧化二磷	150	0.004	0.0027	1
富集车间	NMHC	2000		1011111111	,
		+	0.6042	0,0302	1
富集车间	Ni Ni	30	0.0017	0.0057	F
富集车间	锰及其化合物	30	0.0063	0.0211	/
富集车间	HCL	50	0.5035	1.007	-1
罐区	硫酸	300	0.0357	0.0119	-/
罐区	HCL	50	12,9876	25.9753	125

1.5.2 地表水环境影响评价工作等级

本工程为水污染影响型建设项目。正常情况下,本工程生产废水经预处理后委托中伟新材料股份有限公司处理。生活污水达到《污水综合排放标准》(GB8978-1996) 三级排放标准后排入大龙经开区工业污水厂。本项目不直接对外环境排放污废水。

综上所述,根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018),地表水环境影响评价工作等级为三级 B。

STILL ARE LITE		判定依据
评价等级	排放方式	废水排放量 Q/(m³/d)
一级	直接排放	<i>Q</i> ≥20000 或 <i>W</i> ≥600000
二级	直接排放	其他
三级 A	直接排放	Q<200 或 W<6000
三级B	间接排放	

表 1.5-7 水环境影响评价工作分级

- 注 1: 水污染物当量数等于该污染物的年排放量除以该污染物的污染当量值(见导则附录 A), 计算排放污染物的污染物当量数,应区分第一类水污染物和其他类水污染物,统计第一类污染物当量数总和,然后与其他类污染物按照污染物当量数从大到小排序,取最大当量数作为建设项目评价等级确定的依据。
- 注 2: 废水排放量按行业排放标准中规定的废水种类统计,没有相关行业排放标准要求的通过工程分析合理确定,应统计含热量大的冷却水的排放量,可不统计间接冷却水、循环水以及其他含污染物极少的清净下水的排放量。
- 注 3: 厂区存在堆积物(露天堆放的原料、燃料、废渣等以及垃圾堆放场)、降尘污染的,应将初期雨污水纳入废水排放量,相应的主要污染物纳入水污染当量计算。
- 注 4: 建设项目直接排放第一类污染物的,其评价等级为一级;建设项目直接排放的污染物为受纳水体超标因子的,评价等级不低于二级。
- 注 5: 直接排放受纳水体影响范围涉及饮用水水源保护区、饮用水取水口、重点保护与珍稀水生生物的栖息地、重要水生生物的自然产卵场等保护目标时,评价等级不低于二级。
- 注 6: 建设项目向河流、湖库排放温排水引起受纳水体水温变化超过水环境质量标准要求,且评价范围有水温敏感目标时,评价等级为一级。
- 注 7: 建设项目利用海水作为调节温度介质,排水量 \geq 500 万 m^3/d ,评价等级为 \sim 级;排水量<500 万 m^3/d ,评价等级为 \sim 级。
- 注8: 仅涉及清净下水排放的,如其排放水质满足受纳水体水环境质量标准要求的,评价等级为三级 A。
- 注 9: 依托现有排放口,且对外环境未新增排放污染物的直接排放建设项目,评价等级参照间接排放,定为三级 B。
- 注 10: 建设项目生产工艺中有废水产生,但作为回水利用,不排放到外环境的,按三级 B。

1.5.3 地下水环境影响评价工作等级

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)划分地下水评价工作等级依据见表 1.5-8、表 1.5-9。

敏感程度	地下水环境敏感特征					
敏感	集中式饮用水水源(包括已建成的在用、备用、应急水源、在建和规划的饮用水水源)准保护区;除集中式饮用水水源以外的国家或地方政府设定的与地下水环境相关的其他保护区,如热水、矿泉水、温泉等特殊地下水资源保护区					
较敏感	集中式饮用水水源(包括已建成的在用、备用、应急水源地、在建和规划的饮用水水源)准保护区以外的补给径流区;未划定准保护区的集中式饮用水水源,其保护区以外的补给径流区;分散式饮用水水源地;特殊地下水资源(如矿泉水、温泉等)保护区以外的分布区等其他未列入上述敏感分级的环境敏感区					
不敏感	上述地区之外的其他地区。					

表 1.5-8 地下水环境敏感程度分级表

往: a"环境敏感区"是指《建设项目环境影响评价分类管理名录》中所界定的涉及地下水的环境敏感区,b"集中式饮用水水源"进入输水管网送入用户的且具有一定供水规模(供水人口一般不小于1000人)的现有、备用和规划的地下水饮用水水源。

根据《环境影响评价技术导则 地下水环境》(HJ610-2016),项目场地下游未分布有集中式饮用水水源的准保护区及其径流补给区、特殊地下水资源地(矿泉水、温

泉)等属于地下水环境敏感区和地下水环境较敏感区的区域。项目下游分布的泉井点有抚上抚下分散式饮用水源地、辽家湾分散式饮用水源地,因此,根据地下水导则判定为较敏感。

项目类别 环境敏感程度	I类项目	II类项目	III类项目
敏感	_	-	=======================================
较敏感	_	3	Ξ.
不敏感	= =	Ξ	三三

表 1.5-9 地下水评价工作等级分级表

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)附录 A 中 U 城镇基础设施及房地产 151、危险废物(含医疗废物)集中处置及综合利用。本项目行业类别为 N7724 危险废物治理业,应确定本项目地下水环境影响评价项目类别为 I类项目,项目地下水敏感程度为较敏感。根据 HJ610-2016 的分级原则,本项目地下水评价工作等级为一级。

1.5.4 声环境影响评价工作等级

声环境评价等级确定见表 1.5-10。

表 1.5-10 声环境评价等级确定

项目位于《声环境质量标准》(GB3096-2021)中的3类区,声评价范围内存在2类区,项目建成后评价范围内声环境敏感目标噪声级增量小于3dB(A),根据《环境影响评价技术导则 声环境》(HJ2.4-2021)的相关规定,本次声环境影响评价工作等级定为二级评价。

1.5.5 生态影响评价工作等级

本工程占地 63280m²,购置贵州中伟资源循环公司现有已建设地块。厂区用地范围内均不涉及国家公园、自然保护区、世界自然遗产、重要生境、自然公园、生态保护红线及基本农田等生态敏感区;本项目属于污染型建设项目。根据《环境影响评价技术导则 生态影响》(HJ19-2022)6.1.8 规定:"符合生态环境分区管控要求且位于

原厂界(或永久用地)范围内的污染影响类改扩建项目,位于已批准规划环评的产业园区内且符合规划环评要求、不涉及生态敏感区的污染影响类建设项目,可不确定评价等级,直接进行生态影响简单分析"。本项目符合生态环境分区管控要求,位于已批复规划环评的贵州大龙经开区内,因此,本次评价不确定生态影响评价等级。

序号	确定依据	本项目判定	评价 等级
a)	涉及国家公园、自然保护区、世界自然遗产、重要生境时,评价 等级为一级	不涉及国家公园、自然保护 区、世界自然遗产、重要生境	
b)	涉及自然公园时, 评价等级为二级	不涉及	
c)	涉及生态保护红线时,评价等级不低于二级	不涉及	
d)	根据 HJ2.3 判断属于水文要素影响型且地表水评价等级不低于二 级的建设项目,生态影响评价等级不低于二级	本项目不属于水文要素影响型 项目	
e)	根据 HJ610、HJ964 判断地下水水位或土壤影响范围内分布有天 然林、公益林、湿地等生态保护目标的建设项目,生态影响评价 等级不低于二级	土壤影响范围不涉及天然林及 生态公益林等	
f)	当工程占地规模大于 20km²时(包括永久和临时占用陆域和水域),评价等级不低于二级;改扩建项目的占地范围以新增占地(包括陆域和水域)确定	变更工程新增占地 101881m², 小于 20km²	生态简单分析
g)	除本条 a) 、b) 、c) 、d) 、e) 、f) 以外的情况,评价等级为 三级	属于此情形	31.4/1
h)	当评价等级判定同时符合上述多种情况时,应采用其中最高的评价等级	Y	
其他	井下开采引发的地表沉陷可能导致矿区局部区域土地利用类型明 显改变,评价工作等级上调一级	不涉及	
污染》	符合生态环境分区管控要求且位于原厂界(或永久用地)范围内的 影响类改扩建项目,位于已批准规划环评的产业园区内且符合规划 要求、不涉及生态敏感区的污染影响类建设项目,可不确定评价等 级,直接进行生态影响简单分析	本项目位于己批复规划环评的 贵州大龙经开区内,且符合规 划环评,不涉及生态敏感区的 项目	

表 1.5-11 生态评价等级判定表

1.5.6 环境风险评价工作等级

依据《建设项目环境风险评价技术导则》(HJ169-2018)中关于风险评价等级的判定依据,具体判定依据如下:环境风险评价工作等级划分为一级、二级、三级。根据建设项目涉及的物质及工艺系统危险性和所在地的环境敏感性确定环境风险潜势,按照表1确定评价工作等级。风险潜势为IV及以上,进行一级评价;风险潜势为III,进行二级评价;风险潜势为III,进行二级评价;风险潜势为III,

环境风险潜势	IV, IV+	III	П	1
评价工作等级	-	=	3	简单分析 a
a.是相对于详细评价	工作内容而言,	在描述危险物质、环境	影响途径、环境危害	害后果、风险防范措
施等方面给出定性的	的说明。			

表 1.5-12 项目环境风险评价分级判定

本项目行业及生产工艺(M)的分级为 M1;危险物质及工艺系统危险性(P)的分级为 P1;大气、地表水、地下水敏感程度为 E2、E1、E1;根据计算,本项目 Q 值

>100, 因此, 根据《建设项目环境风险评价技术导则》(HJ169-2018), 本项目大气 环境环境风险潜势为IV, 地表水环境风险潜势为IV+, 地下水环境风险潜势为IV+, 对 照表 1.5-12 评价工作等级划分,本项目环境风险评价等级确定为大气环境风险评价等 级为一级, 地表水环境风险评价等级为一级, 地下水环境风险评价等级为一级, 综合 风险评价等级为一级。具体判定过程详见"5 环境风险评价"。

1.5.7 土壤环境影响评价工作等级

注: "一"表示可不开展土壤环境影响评价工作。

本项目属于污染型建设项目,全厂占地面积为6.33hm²<50hm²,根据《环境影响 评价技术导则 土壤环境》(HJ964-2018),项目占地类型为中型:周边土地利用现状 主要为旱地、水田、农村宅基地、工业用地等,根据表 1.5-13 判定,土壤环境敏感程 度为敏感。根据《环境影响评价技术导则 土壤环境》(HJ964-2018), 附录 A, 本项 目属于环境和公共设施管理业中的"危险废物利用及处置",属于附录 A 中的I类项目类 别。

敏感程度	判断依据								
敏感	建设项目周边存在耕地、园地、牧草地、饮用水源地或居民区、学校、医院、疗养院、养老院等土壤环境敏感目标的。								
较敏感	建设项目周边存在其他土壤环境敏感目标的。								
不敏感	其他情况								

表 1.5-13 污染影响型敏感程度分级表

占地规模 1类 11类 田类 评价工作等级 大 4 大 44 大 1/1 4 小 1 敏感程度 一级 一级 - 475 敏感 -级 -103 一级 - 40 - 475 较敏感 ·级 垒 级 三级 一级 级 三级 三级 不敏感 二级 - 438 = 4% = 215 三级 -级

表 1.5-14 污染影响型评价工作等级划分表

综上, 本项目永久占地规模为中型, 土壤环境敏感程度为敏感, 项目类别为I类, 根据表 1.5-14 判定, 本项目土壤环境工作评价等级为三级。

1.6 评价范围

根据建设项目的评价工作等级、污染物排放特点及当地气象条件、自然环境状况 确定评价范围见表 1.6-1。

表 1.6-1 评价范围一览表

环境要素	评价范围
大气环境	以厂址为中心,厂界外延 2625m 的距离,边长分别为 5700m 和 5700m,面积 32.49km²
地表水环境	①依托污水处理设施环境可行性分析;②环境风险影响范围;后锁小溪事故排放口上游500m至车坝河汇口约1.8km河段,后锁小溪与车坝河汇口至车坝河与舞阳河汇口约0.7km河段,车坝河与舞阳河汇口至下游2.5km,共计约5km河段
地下水	北起陈金坳高地一带,向东以车坝河为界,南接舞阳河,西至廖溪河为一相对独立的水文地质单元,总面积约 67.7km²。
声环境	厂区边界向外延伸 200m
土壤环境	厂区占地范围及厂界外扩 1km 范围内
生态环境	定性分析
环境风险	大气风险评价范围以用地红线外扩 5km 范围内。地表水风险评价范围同地表水环境评价范围 为后锁小溪事故排放口上游 500m 至车坝河汇口约 1.8km 河段,后锁小溪与车坝河汇口至车 坝河与舞阳河汇口约 0.7km 河段,车坝河与舞阳河汇口至下游 2.5km,共计约 5km 河段。地下水风险评价范围与地下水评价范围一致。

1.7 环境保护目标

本项目主要环境保护目标见表 1.7-1~1.7-3 和图 1.7-1~图 1.7-2。

表 1.7-1 环境空气保护目标表

序		시스	标	4.74.77	保护	内容	环境功 能区	相对厂 址方位	相对厂界 距离/m
号	名称	x	Y	保护对象	户数	人口			
1	白家庄	-1088.23	-62.21	居民点	23	81	二类区	WNW	700
2	白猫冲	-1661.46	1243,72	居民点	16	56	二类区	NW	1689
3	白岩塘	2397.7	1345,33	居民点	18	63	二类区	ENE	2357
4	蔡溪村	-570.49	1381,34	居民点	12	42	二类区	NNW	949
5	菜园	-1030.94	-2656.54	居民点	52	182	二类区	SSW	2541
6	蔡溪屯	504.04	488.57	居民点	13	46	二类区	NE	411
7	洞脑上	1103.89	889.14	居民点	21	74	二类区	NE	1130
8	凡溪屯	-2482.3	-582.83	居民点	15	48	二类区	W	2323
9	分洲	1558.53	-1678.26	居民点	15	53	二类区	SE	2154
10	赶纸山	-1771.6	547.25	居民点	24	84	二类区	WNW	1699
11	高弓滩	2275.01	-160.17	居民点	16	56	二类区	SE	2041
12	观音滩	157.16	-2653.35	居民点	12	42	二类区	S	2414
13	后锁	785.19	-491.07	居民点	12	42	二类区	SE	366
14	湖南田	658,97	-2207.05	居民点	23	81	二类区	SSE	1919
15	荒田	-2749.02	1272,49	居民点	12	38	二类区	WNW	2755
16	蒋家塆	-30.94	-2040.89	居民点	15	53	二类区	S	1759
17	井垮	-2351.86	1365.85	居民点	17	55	二类区	NW	2283
18	腊岩	-2216.36	-2493.51	居民点	21	67	二类区	SW	3073
19	辽家湾	1585.74	39.3	居民点	24	84	二类区	SE	1289
20	榴树井	1997.61	1063,52	居民点	3	.11	二类区	ENE	2000
21	陆家塆	497.5	78.58	居民点	21	74	二类区	ENE	160
22	麻音塘	-735,43	-2738.86	居民点	35	123	二类区	SSW	2446
23	鲇鱼塘村	1642.52	-2621.56	居民点	16	56	二类区	SE	2850
24	彭家	113.96	838.53	居民点	26	91	二类区	NNE	460
25	三脚岩	-1876.39	183.22	居民点	18	63	二类区	WNW	1696
26	三寨村	-1889.26	-614.6	居民点	28	98	二类区	W	1755
27	杉木林	1276,21	-765.01	居民点	12	42	二类区	ESE	1283

序		坐	标		保护内容		TT ME Th	相对厂	相对厂界
号	V ±0"	X	Y	保护对象	户数	人口	环境功 能区	址方位	距离/m
28	上廖溪	-2097.25	-1242.9	居民点	23	81	二类区	WSW	2201
29	胜利村	1594.69	604.41	居民点	42	147	二类区	ENE	1287
30	田家	1842.28	-2502,95	居民点	18	63	二类区	SE	2906
31	跳破	1874.17	-486.35	居民点	19	67	二类区	SE	1546
32	下廖溪	-928.29	-2425.44	居民点	32	112	二类区	SSW	2138
33	斜滩	1949.6	-1972.57	居民点	18	63	二类区	SE	2566
34	岩坎上	1183.42	-331.24	居民点	14	49	二类区	SE	1020
35	堰塘塆	-1966.34	738.95	居民点	6	21	二类区	WNW	1953
36	羊庄	-531.03	-2332,02	居民点	45	158	二类区	S	1984
37	杨柳冲	2103.67	1516.13	居民点	20	.70	二类区	NE	2108
38	中寨	-2120.85	-2705.6	居民点	23	74	二类区	SW	2965
39	竹山溪	-1353.53	1892.82	居民点	21	74	二类区	NNW	1855
40	张家	-1243.24	2600.28	居民点	12	38	二类区	NNW	2662
41	猫猫冲	-1043.18	2741.24	居民点	.5	16	二类区	NNW	2507
42	磨沟	2587.07	810.26	居民点	56	179	二类区	ENE	2033
43	田新岩	2809.34	2313.98	居民点	8	26	二类区	NE	3340
44	土湾	-1640.39	2551.29	居民点	13	42	二类区	NNW	2825
45	岩下	138.21	2356.37	居民点	23	74	二类区	N	1845

注: 以项目厂界中心为 (0,0), 相对距离为距离拟建项目厂界的最近距离。

表 1.7-2 其他环境保护目标表 (地表水、地下水、声环境及土壤环境)

环境 要素	名称	相对厂址方 位	相对距 离/m	功能	保护要求
	后锁小溪	E	233	排洪	
	车坝河(玉屏县白岩 塘~躌阳河汇口)	E	2155	农业、工业	
地表 水环 境	舞阳河(玉屏县打鼓 磉~湖南省新晃鱼市水 电站大坝坝址)	s	2120	农业、工业	《地表水环境质量标准》 (GB3838-2002)Ⅲ类
	舞阳河特有鱼类国家 级水产种质资源保护 区(核心区)	S	2150	特有鱼类保护	
	S2 泉	E	2310	通过泵抽供 800 人饮用	
	S3 泉	SE	1947	通过泵抽供 50 人饮用	
	S4 泉	Е	1504	通过泵抽供 400 人饮用	
	S5 泉	SE	1048	未利用	
	S6 泉	S	1890	通过泵抽管引供 50 人饮用	
	S7 泉	S	1972	无人饮用	
	S8 泉	S	2503	无人饮用	
	S9 泉	W	2131	通过泵抽供 200 人饮用	
	S10 泉	W	2156	通过泵抽管引供 50 人饮用	
	S11 泉	W	2091	无人饮用	
地下	ZK1 机井	E	2323	通过泵抽供葡萄园灌溉及 供 100 人饮用	《地下水质量标准》
水	ZK4 机井	SE	807	无人饮用	(GB/T14848-2017) III类
	ZK5 机井	SE	1153	已废弃, 无人饮用	
	ZK6 机并	SE	1587	已废弃, 无人饮用	
	ZK7 机井	SE	3101	泵抽供 10 人饮用	
	ZK8 机井	SE	3184	管引供10人饮用	
	ZK9 机并	S	2409	无人饮用,已废弃	
	ZK38 机井	S	1236	供1户5人饮用(管引)	
	ZK39 机井	SE	2276	未利用	
	ZK40 机井	SE	2271	泵抽供30人饮用	
	ZK41 机井	SE	2347	泵抽供 8 人饮用	
	下伏岩追屯组岩溶裂 隙含水层	/	1	1	

环境 要素	名称	相对厂址方 位	相对距 离/m	功能	保护要求
声环境	陆家湾	Е	160~200	村民点, 4户, 13人	《声环境质量标准》 (GB3096-2008) 2 类
土壤环境	建设用地土壤	项目占地范围及占地范 围外 1000m 区域		农村宅基地、工业用地	《土壤环境质量 建设用地 土壤污染风险管控标准(试 行)》(GB36600-2018)
	耕地土壤	项目占地范围 图外 1000	1000 1000 1000 1000	水田、早地	《土壤环境质量 农用地土 壤污染风险管控标准(试 行)》(GB15618-2018)
生态 环境	周边植被、农田作物		厂区及其周边	1	

表 1.7-3 环境风险保护目标表

类别	环境敏感特征					
	序号	敏感目标名称	相对方位	最近距离/m	属性	人口数
	1	恶滩	NE	4308	居民点	91
	2	陡滩	NNE	4377	居民点	46
	3	大央坪	N	4219	居民点	53
	4	马公塘	NNE	3954	居民点	46
	5	串相圭	N	5183	居民点	4
	6	下寨	NNE	3463	居民点	130
	7	上寨	NNE	3290	居民点	42
	8	前龙村	N	2425	居民点	53
	9	燕家	N	3152	居民点	46
	10	清塘	NE	3990	居民点	49
	11	桐木坳	NE	3884	居民点	98
	12	跳岩	Е	1277	居民点	116
	13	田新岩	NE	3340	居民点	26
	14	白粉墙	NE	3823	居民点	35
	15	田冲村	NE	3869	居民点	182
	16	杨大园	NE	4319	居民点	112
	17	杨柳冲	NE	2108	居民点	70
	18	白岩塘	ENE	2457	居民点	63
	19	榴树井	ENE	2000	居民点	11
环境空	20	磨沟	ENE	2033	居民点	280
4年	21	胜利村	ENE	1287	居民点	147
	22	磨沟冲	E	3113	居民点	91
	23	高弓滩	SE	2041	居民点	56
	24	大古磉	E	2640	居民点	67
	25	龙王溪	NNW	4266	居民点	11
	26	岩下	N	1845	居民点	74
	27	猫猫冲	NNW	2507	居民点	49
	28	土湾	NNW	2825	居民点	42
	29	木老田	NW	3111	居民点	67
	30	湾地	NNW	3022	居民点	4
	31	铁厂	NW	3780	居民点	81
	32	张家	NNW	2662	居民点	38
	33	竹山溪	NNW	1855	居民点	74
	34	白猫冲	NW	1689	居民点	56
	35	井塆	NW	2283	居民点	49
	36	龙眼村	WNW	2629	居民点	126
	37	赶纸山	WNW	1699	居民点	84
	38	堰塘塆	WNW	1953	居民点	21
	39	水竹林	NW	3587	居民点	11
	40	蔡溪村	NNW	949	居民点	42
	41	蔡溪屯	NE	411	居民点	46
	42	深塆	WNW	3285	居民点	91

别	- 12	And who Lab		敏感特征	Here 6	144
-	43	舒家塆	WNW	3633	居民点	158
-	44	洞脑上	NE	1130	居民点	74
-	45	彭家	NNE	460	居民点	91
-	46	后锁	SE	366	居民点	42
-	47	岩坎上	SE	1020	居民点	49
-	48	杉木林	ESE	1283	居民点	42
-	49	跳破	SE	1546	居民点	67
-	50	辽家湾	Е	1289	居民点	84
-	51	零散居民点	SSE	756	居民点	80
-	.52	白家庄	WNW	700	居民点	81
-	53	三脚岩	WNW	1696	居民点	63
-	54	凡溪屯	W	2323	居民点	53
-	55	三寨村	W	1755	居民点	98
-	56	上廖溪	WSW	2201	居民点	81
	.57	下廖溪	SSW	2138	居民点	112
	58	羊庄	S	1984	居民点	158
	59	蒋家塆	S	1759	居民点	53
	60	湖南田	SSE	1919	居民点	81
	61	观音滩	S	2414	居民点	42
	62	肖家	S	1917	居民点	46
	63	胡家	S	2267	居民点	158
	64	下龙眼	WNW	2490	居民点	60
	65	赵家溪	W	3019	居民点	116
	66	甘龙村	W	3224	居民点	175
	67	王家	W	3902	居民点	32
	68	道场坪	W	3778	居民点	147
	69	木弄村	W	3283	居民点	186
	70	岩岔	W	3140	居民点	46
	71	郑家塆	W	4103	居民点	11
	72	下木弄	W	2940	居民点	119
	73	对溪屯	WSW	3394	居民点	28
	74	对门寨	WSW	3025	居民点	42
	75	分洲	SE	2154	居民点	53
	76	中寨	SW	2965	居民点	74
	77	腊岩	SW	3073	居民点	53
	78	马家头	WSW	2907	居民点	147
	79	荒田	WNW	2755	居民点	32
	80	牛塘冲	NW	3121	居民点	25
	81	前光村	NW	4208	居民点	146
	82	松树林	WSW	3976	居民点	109
	83	后龙	WSW	3861	居民点	126
	84	腾龙社区	WSW	3856	居民点	1250
	85	架枧村	S	2462	居民点	620
	86	崇滩	S	3292	居民点	112
	87	干龙	S	3986	居民点	60
-	88	大龙社区第三居委会	S	4593	居民点	5500
	89	鲢鱼塘村	SSE	3288	居民点	3256
	90	田家	SE	2906	居民点	103
-	91	德龙小学	SSE	3512	学校	850
-	92	清水塘村	SE	3794	居民点	2215
-	93	徳龙社区	SSE	3148	居民点	1580
-	94	斜滩	SE	2566	居民点	103
	95	岩湾	SE	2526	居民点	51
-	96	铜鼓	SE	2900	居民点	55
-	96	湾头	SE	3520	居民点	48
-	98	钱家寨			居民点	132
-	98	大湾	SE SE	4521 3220	居民点	36

类别			环块	竟敏感特征		
	100	下垅	Е	3854	居民点	46
	101	陆家塆	ENE	160	居民点	123
		厂址周边	5km 范围内人	口数小计		22460
			ė.	受纳水体		
	序号	受纳水体名称	排放点力	k域环境功能	24h P	n流经范围/km
	1	后锁小溪			2.8km (流速 0.056m/s)
	2	车坝河	1		0.38km	(流速 0.08m/s)
	3	舞阳河	《地表水》	不境质量标准》	6.048km	(流速 0.07m/s)
地表水	4	舞阳河特有鱼类国家 级水产种质资源保护 区(核心区)	(GB383	8-2002)III类	0.8km	(流速 0.07m/s)
		内陆水体排放点下游 10k	m(近岸海域-	一个潮周期最大水平路	离两倍)范围	内敏感目标
	序号	敏感目标名称	环境敏感特 征	水质目标	与可能事	拉排放点距离/m
	τ	舞阳河特有鱼类国家 级水产种质资源保护 区	特有鱼类保 护	Ш类		2.28km
	序号	敏感目标名称	环境敏感特 征	水质目标	包气带 防污性 能	与下游厂界距离/n
	1	S2 泉	较敏感		D1	2310
	2	S3 泉	较敏感		D1	1947
	3	S4 泉	较敏感		D1	1504
	4	S5 泉	不敏感		D1	1048
	.5	S6 泉	较敏感		D1	1890
	6	S7 泉	不敏感		D1	1972
	7	S8 泉	不敏感		D1	2503
	8	S9 泉	较敏感		D1	2131
lab To de	9	S10 泉	较敏感	and the territories with	. D1	2156
地下水	10	SI1 泉	不敏感	《地下水环境质量标	D1	2091
	11	ZK1 机井	较敏感	准》 (CD/T14949 2017)	D1	2323
	12	ZK4 机井	不敏感	(GB/T14848-2017)	D1	807
	13	ZK5 机井	不敏感	III类标准	D1	1153
	14	ZK6 机井	不敏感		D1	1587
	1.5	ZK7 机井	较敏感		D1	3101
	16	ZK8 机井	较敏感		D1	3184
	17	ZK9 机井	不敏感		DI	2409
	18	ZK38 机井	较敏感		D1	1236
	19	ZK39 机井	未利用		D1	2276
	20	ZK40 机井	较敏感		D1	2271
	21	ZK41 机井	较敏感		D1	2347

1.8 建设方案的选址合理性分析

本项目位于贵州大龙经济开发区北部工业园,在现有厂区的内进行新建及改建。

根据环境质量现状监测结果,本项目选址所在区域为环境空气质量达标区域;后锁小溪、车坝(玉屏县白岩塘~海阳河汇口段)、舞阳河(玉屏县打鼓磉~湖南省新晃鱼市水电站大坝坝址)水环境质量可达到《地表水环境质量标准》(GB3838-2002)III类标准。地下水水质可满足《地下水质量标准》(GB/T14848-2017)III类标准;声环境质量可达到《声环境质量标准》(GB3096-2008)2类和3类标准;土壤环境质量能

满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)及 《土壤环境质量 农用地土壤污染风险管控标准(试行)》筛选值标准。

本项目生活污水达标排入市政污水管网后进入大龙经开区工业污水厂,生产废水 经预处理后委托中伟新材料股份有限公司处理,不直接对外环境排放污水;事故状况 下,为防止厂区废水事故排放,厂区设置事故应急三级防控系统。厂区罐区设置有围 堰及应急事故池,可满足事故状态时各类污废水的储存。因此,可保证事故状况下, 污水不对外排放。

根据本次评价预测,项目建成后,正常情况下,本项目排放的 SO₂、NO₂、PM₁₀、PM₂₅、CO 的叠加周边拟建在建污染源及环境质量现状后的保证率日平均浓度及年平均浓度的最大浓度均能满足《环境空气质量标准》(GB3095-2012)二级标准限值要求,氟化物叠加周边拟建在建污染源及环境质量现状后的短期平均浓度的最大浓度能满足《环境空气质量标准》(GB3095-2012)二级标准限值要求,五氧化二磷、氨气、氯气、硫化氢、甲醛、HCI、硫酸雾、锰及其化合物叠加周边拟建在建污染源及环境质量现状后满足《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 标准限值要求,镍及其化合物、NMHC 叠加周边拟建在建污染源及环境质量现状后满足《大气污染物综合排放标准详解》非甲烷总烃一次值 2.0mg/m³。

在本项目防渗措施正常的状况下,项目运营不会对地下水环境造成污染影响。在 非正常工况下,污水处理站调节池发生渗漏,调节池中的废水渗漏进入地下水,镍、 砷、硒、硫酸盐及氨氮均会对区域地下水产生较大影响。因此,评价要求做好污水池 的防渗、定期检修工作,加强对其日常检修维护和监测工作,有效降低对地下水污染 的风险。

项目建成运营后,在采取降噪措施减少项目的噪声排放后,各厂界贡献值昼间和 夜间均能够达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准,周 边居民点昼间和夜间能够达到《声环境质量标准》(GB3096-2008)2 类标准。因此,厂界噪声对周边居民点影响较小。

生产过程所产生的固体废物,均可妥善处理,对周围环境不会产生较大影响。危险废物新建危废暂存间定期暂存间后可自行处置的自行处置,不可自行处置的委托有资质的单位处置。

因此,项目建成投运以后,周边环境质量均能达到相应标准,不会导致评价区环

境质量超过现有环境功能区限值,环境影响可接受。

综上, 只要做好污废水及废气的风险事故防范措施, 从环境保护角度, 项目的选址是合理可行的。

1.9 相关政策及规划符合性分析

1.9.1 与《产业结构调整指导目录(2024年版)》的相符性分析

本工程属于危险废物处置项目,对照《产业结构调整指导目录(2024年版)》,本项目属于第一类 鼓励类项目中"四十二、环境保护与资源节约综合利用 6、危险废弃物处置-危险废物(含医疗废物)无害化处置和高效利用技术设备开发制造、利用处置中心建设和(或)运营"。项目使用设备无限制和淘汰生产工艺、设备,且已取得贵州大龙经济开发区经济发展局(科学技术局)备案(项目编码: 2505-522291-04-01-779012),因此,项目符合国家及地方产业政策。

1.9.2 与其他相关政策符合性分析

1.9.2.1 与《中华人民共和国长江保护法》的符合性分析

根据《中华人民共和国长江保护法》"第二十六条 国家对长江流域河湖岸线实施特殊管制。国家长江流域协调机制统筹协调国务院自然资源、水行政、生态环境、住房和城乡建设、农业农村、交通运输、林业和草原等部门和长江流域省级人民政府划定河湖岸线保护范围,制定河湖岸线保护规划,严格控制岸线开发建设,促进岸线合理高效利用。禁止在长江干支流岸线一公里范围内新建、扩建化工园区和化工项目。禁止在长江干流岸线三公里范围内和重要支流岸线一公里范围内新建、改建、扩建尾矿库;但是以提升安全、生态环境保护水平为目的的改建除外。";"第四十九条禁止在长江流域河湖管理范围内倾倒、填埋、堆放、弃置、处理固体废物。长江流域县级以上地方人民政府应当加强对固体废物非法转移和倾倒的联防联控。"。

本项目为危险废物处置和贵金属冶炼项目,且处于长江重要支流舞阳河干流;项目位于贵州大龙经济开发区,项目所在厂区距离舞阳河约2.2km。本项目产生的一般固废外售综合利用,危险废物委托有资质的单位处置,不向外环境排放。因此,本项目与《中华人民共和国长江保护法》是相符的。

1.9.2.2 与《中华人民共和国固体废物污染环境防治法》的符合性分析

根据表 1.9-1 对比分析,本项目符合《中华人民共和国固体废物污染环境防治法》 相关条款要求。

表19-1 《中华人民共和国固体废物污染环境防治法》符合性分析表

序号	条款	本项目	符合性
1	第十七条 建设产生, 贮存, 利用、处置固体废物的项目, 应当依法进行环境影响评价, 并遵守国家有关建设项目环境 保护管理的规定。	拟建项目符合环境保护管理规 定要求,已开展本次环境影响评 价	符合
2	第十八条 建设项目的环境影响评价文件确定需要配套建设的固体废物污染环境防治设施,应当第十八条 与主体工程同时设计、同时施工。同时投入使用。建设项目的初步设计,应当按照环境保护设计规范的要求,将固体废物污染环境防治内容纳入环境影响评价文件,落实防治固体废物污染环境和破坏生态的措施以及固体废物污染环境防治设施投资概算。建设单位应当依照有关法律法规的规定,对配套建设的固体废物污染环境防治设施进行验收,编制验收报告,并向社会公开。	建设单位将严格落实环境保护三同时制度	符合
3	第十九条 收集、贮存、运输、利用、处置固体废物的单位 和其他生产经营者,应当加强对相关设施、设备和场所的管 理和维护,保证其正常运行和使用。	拟建项目加强设施、设备和场所 的管理和维护,保证其正常运行 和使用。	符合
4	第二十条 产生、收集、贮存、运输、利用、处置固体废物的单位和其他生产经营者。应当采取防肠散、防流失、防渗漏或者其他防止污染环境的措施。不得擅自倾倒、堆放、丢弃、遗撤固体废物。禁止任何单位或者个人向江河、湖泊、运河、渠道、水库及其最高水位线以下的滩地和岸坡以及法律法规规定的其他地点倾倒、堆放、贮存固体废物。	企业采取了固废防钖散、防流 失、防渗漏或者其他防止污染环 境的措施,未擅自倾倒、堆放、 丢弃、遗撒固体废物,没有向江 河、湖泊、运河、渠道、水库及 其最高水位线以下的滩地和岸坡 以及法律法规规定的其他地点倾 倒、堆放、贮存固体废物的违法 行为	符合
5	第二十一条 在生态保护红线区域、永久基本农田集中区域 和其他需要特别保护的区域内,禁止建设工业固体废物、危 险废物集中贮存、利用、处置的设施、场所和生活垃圾填埋 场。	项目建设用地不涉及占用基本农 田和其他需要特别保护的区域 内,没有建设填埋场	符合
6	第三十六条 产生工业固体废物的单位应当建立健全工业固体废物产生、收集、贮存、运输、利用、处置全过程的污染环境防治责任制度,建立工业固体废物管理台账,如实记录产生工业固体废物的种类、数量、流向、贮存、利用、处置等信息,实现工业固体废物可追溯、可查询,并采取防治工业固体废物污染环境的措施。禁止向生活垃圾收集设施中投放工业固体废物。	建设单位建立健全各项固体废物 全过程控制的污染防治措施,建 立了固体废物管理台账,没有向	符合
7	第四十条 产生工业固体废物的单位应当根据经济、技术条件对工业固体废物加以利用;对暂时不利用或者不能利用的,应当按照国务院生态环境等主管部门的规定建设贮存设施、场所,安全分类存放,或者采取无害化处置措施。贮存工业固体废物应当采取符合国家环境保护标准的防护措施。建设工业固体废物贮存、处置的设施、场所、应当符合国家环境保护标准。	生活垃圾收集设施中投放工业固体废物的追法行为;按照国家环境保护标准要求建设固废暂存场所	符合
8	第四十九条 产生生活垃圾的单位、家庭和个人应当依法履行生活垃圾源头减量和分类投放义务,承担生活垃圾产生者责任。 任何单位和个人都应当依法在指定的地点分类投放生活垃圾。禁止随意倾倒、抛撒、堆放或者焚烧生活垃圾。机关、事业单位等应当在生活垃圾分类工作中起示范带头作用。已经分类投放的生活垃圾,应当按照规定分类收集、分类运输、分类处理	分类收集的生活垃圾,按照规定 分类收集,由园区环卫部门统一 清运处置	符合

序号	条款	本项目	符合性
9	第七十八条 产生危险废物的单位,应当按照国家有关规定制定危险废物管理计划;建立危险废物管理台账,如实记录有关信息,并通过国家危险废物信息管理系统向所在地生态环境主管部门申报危险废物的种类、产生量、流向、贮存、处置等有关资料。前款所称危险废物管理计划应当包括减少危险废物产生量和降低危险废物危害性的措施以及危险废物贮存、利用、处置措施。危险废物管理计划应当报产生危险废物的单位所在地生态环境主管部门备案。产生危险废物的单位已经取得排污许可证的,执行排污许可管理制度的规定。	拟建项目按照规定设置危险废物 暂存场所、危险废物台账,并经 过危险废物管理系统进行申报; 按照规定进行危险废物管理计划 备案;项目投产前申领排污许可 证,并将危险废物纳入排污许可 制度管理	符合
10	第七十九条 产生危险废物的单位,应当按照国家有关规定 和环境保护标准要求贮存,利用。处置危险废物,不得擅自 倾倒、堆放。	严格执行国家相关规定和标准要 求	符合
п	第八十条 从事收集、贮存、利用、处置危险废物经营活动 的单位、应当按照国家有关规定申请取得许可证。许可证的 具体管理办法由国务院制定。禁止无许可证或者未按照许可 证规定从事危险废物收集、贮存、利用、处置的经营活动。 禁止将危险废物提供或者委托给无许可证的单位或者其他生 产经营者从事收集、贮存、利用、处置活动。	投产前申领排污许可证、危险废 物经营许可证	符合
12	第八十一条 收集、贮存危险废物,应当按照危险废物特性 分类进行。禁止混合收集、贮存、运输、处置性质不相容而 未经安全性处置的危险废物。贮存危险废物应当采取符合国 家环境保护标准的防护措施。禁止将危险废物混入非危险废 物中贮存。从事收集、贮存、利用、处置危险废物经营活动 的单位,贮存危险废物不得超过一年,确需延长期限的,应 当报经颁发许可证的生态环境主管部门批准;法律、行政法 规另有规定的除外。	按照规定要求收集、贮存危险废物、贮存期限满足规范要求	符合
13	第八十二条转移危险废物的,应当按照国家有关规定填写、运行危险废物电子或者纸质转移联单。跨省、自治区、直辖市转移危险废物的,应当向危险废物移出地省、自治区、直辖市人民政府生态环境主管部门应当及时商经接受地省、自治区、直辖市人民政府生态环境主管部门同意后,在规定期限内批准转移该危险废物,并将批准信息通报相关省、自治区、直辖市人民政府生态环境主管部门和交通运输主管部门。未经批准的,不得转移。危险废物转移管理应当全程管控、提高效率,具体办法由国务院生态环境主管部门会同国务院交通运输主管部门和公安部门制定。	按照规定执行危险废物转移联单 制度	符合
14	第八十五条 产生、收集、贮存、运输、利用、处置危险废物的单位,应当依法制定意外事故的防范措施和应急预案,并向所在地生态环境主管部门和其他负有固体废物污染环境防治监督管理职责的部门备案;生态环境主管部门和其他负有固体废物污染环境防治监督管理职责的部门应当进行检查	项日投产前制定危险废物专项应 急预案并备案	符合

1.9.2.3 与《贵州省推动长江经济带发展负面清单实施细则(试行,2022 年版)(修 订)》符合性分析

根据表 1.9-2, 本项目符合《贵州省推动长江经济带发展负面清单实施细则(试行, 2022 年版)(修订)》相关条款要求。

表19-2 《贵州省推动长江经济带发展负面清单实施细则(试行,2022年版)(修订)》符合性分析表

序号	条款	本项目	符合性
£	禁止建设不符合全国和我省港口布局规划以及港口总体规划 的码头项目。	本项目不涉及	符合
2	禁止在自然保护区核心区、缓冲区的岸线和河段范围内投	本项目不处于自然保护区核心	符合

序号	条款	本项目	符合性
	资建设旅游和生产经营项目。禁止在风景名胜区核心景区的 岸线和河段范围内投资建设与风景名胜资源保护无关的项 目,防洪、供水、生态修复、河道治理项目应依法依规办理 审批手续	区、风景名胜区	
3	禁止在饮用水水源一级保护区的岸线和河段范围内新建:改建、扩建与供水设施和保护水源无关的项目。以及网箱养殖、畜禽养殖、旅游等可能污染饮用水水体的投资建设项目。禁止在饮用水水源二级保护区的岸线和河段范围内新建、改建、扩建排放污染物的投资建设项目	本项目不涉及饮用水源保护区	符合
4	禁止在水产种质资源保护区的岸线和河段范围内新建围湖造 田等投资建设项目。禁止在国家湿地公园的岸线和河段范围 内挖沙、采矿,以及任何不符合湿地公园管控要求的投资建 设项目。	本项目不涉及水产种质资源保护 区,不涉及国家湿地公园	符合
5	禁止违法利用、占用长江流域河湖岸线。禁止在《长江岸线保护和开发利用总体规划》划定的岸线保护区和保留区内投资建设除事关公共安全及公众利益的防洪护岸、河道治理、供水、生态环境保护、航道整治、国家重要基础设施以外的项目。禁止在《全国重要江河湖泊水功能区划》划定的河段及湖泊保护区保留区内投资建设不利于水资源及自然生态保护的项目	本项目不在《长江岸线保护和开发利用总体规划》划定的岸线保护区内或保留区内,项目不在《全国重要江河湖泊水功能区划》划定的保护区或保留区内	符合
6	禁止未经许可在长江支流及湖泊新设、改设或扩大排污 口	本项目污水排入市政污水管网, 不在河流中设置排污口	符合
7	禁止在赤水河、乌江和《率先全面禁捕的长江流域水生生物 保护区名录》中涉及贵州省的水生动植物自然保护区和水产 种质资源保护区开展生产性捕捞	本项目不涉及	符合
8	禁止在长江流域水土流失严重、生态脆弱的区域开展可能造成水土流失的生产建设活动。确因国家发展战略和国计民生需要建设的,应当经科学论证,并依法办理审批手续。	本项目不处于水土流失严重,生 态脆弱的区域	符合
9	禁止在河湖管理范围内倾倒、填埋、堆放、弃置、处理固体 废物。	本项目固废均得到合理处置,不 外排	符合
10	禁止在开放水域养殖、投放外来物种或者其他非本地物种种 质资源。	本项目不涉及	符合
11	禁止在长江支流、重要湖泊岸线一公里范围内新建、扩建化 工园区和化工项目。禁止在长江重要支流岸线一公里范围内 新建、改建、扩建尾矿库、治炼渣库和磷石膏库,以提升安 全生态环境保护水平为目的的改建除外。	本项目为危险废物处置,含有化工生产工艺,但项目厂区距离舞 阳河 2.2km	符合
12:	禁止在合规园区外新建、扩建钢铁、石化、化工、焦化、建 材、有色、制浆造纸等高污染项目。高污染项目界定严格按 照生态环境部发布的《环境保护综合名录》有关规定执行。	本项目位于合规的贵州人龙经开区,属于危险废物处置,不属于 两高行业	符合
13	禁止新建、扩建不符合国家石化,现代煤化工等产业布局规 划的项目。	本项目不属于石化、现代煤化工	符合
14	禁止新建、扩建法律法规和相关政策明令禁止的落后产能项 目。禁止新建、扩建不符合国家产能置换要求的严重过剩产 能行业的项目。禁止新建、扩建不符合产业政策、"生态环 境分区管控"等要求的高耗能高排放项目。	本项目符合国家产业政策,符合 生态环境分区管控要求	符合

1.9.2.4 项目与《危险废物污染防治技术政策》 符合性分析

根据对比表 1.9-3 分析,本项目符合《危险废物污染防治技术政策》相关条款要求。

表 1.9-3 《危险废物污染防治技术政策》符合性分析表

农 15-5 《尼西波初行来的旧汉小政术》刊 6 压力机农				
要素	相关规定	本项目	符合性	
危险废 物的资	5.1 已产生的危险废物应首先考虑回收利用,减少后续处理处置的负荷。回收利用过程应达到国家和地方有关规定的要求, 避免二次污染。	本项目处置过程中产生的 危险废物均回收利用。	符合	

源化	5.2 生产过程中产生的危险废物,应积极推行生产系统内的回收利用。生产系统内无法回收利用的危险废物,通过系统外的危险废物交换、物质转化、再加工、能量转化等措施实现回收利用。	本项目生产过程中产生的 危险废物均回收利用。其 余危险废物委托有资质的 单位处置	符合
	5.3 各级政府应通过设立专项基金、政府补贴等经济政策和其他政策措施鼓励企业对已经产生的危险废物进行回收利用,实现危险废物的资源化	不涉及	1
	5.4 国家鼓励危险废物回收利用技术的研究与开发。逐步提高 危险废物回收利用技术和装备水平。积极推广技术成熟、经济 可行的危险废物回收利用技术。	建设单位采用成熟的贵金 属回收技术,并积极研发 及光推技术成熟、经济可 行的危险废物回收利用技 术	符合
	6.1 对已产生的危险废物,若暂时不能回收利用或进行处理处置的,其产生单位须建设专门的危险废物贮存设施进行贮存, 并设立危险废物标志,或委托具有专门危险废物贮存设施的单位进行贮存,贮存期限不得超过国家规定。贮存危险废物的单位需拥有相应的许可证。禁止将危险废物以任何形式转移给无许可证的单位,或转移到非危险废物贮存设施中。危险废物贮存设施应有相应的配套设施并按有关规定进行管理。	本项目设置有专门的危险 废物暂存库, 贮存期限产 格按照国家规定执行。	符合
危险废 物的贮 存	6.2 危险废物的贮存设施应满足以下要求; 6.2.1 应建有堵截泄漏的裙脚,地面与裙脚要用坚固防渗的材料建造。应有隔离设施、报警装置和防风、防晒、防雨设施; 6.2.2 基础防渗层为粘土层的,其厚度应在 1 米以上,渗透系数应小于 1.0×10 ⁻⁷ 厘米/秒;基础防渗层也可用厚度在 2 毫米以上的高密度聚乙烯或其他人工防渗材料组成,渗透系数应小于 1.01×10 ⁻¹⁰ 厘米/秒; 6.2.3 须有泄漏液体收集装置及气体导出口和气体净化装置; 6.2.4 用于存放液体、半固体危险废物的地方,还须有耐腐蚀的硬化地面,地面无裂隙; 6.2.5 不相容的危险废物堆放区必须有隔离间隔断; 6.2.6 衬层上需建有渗滤液收集消除系统、径流疏导系统、雨水收集池。 6.2.7 贮存易燃易爆的危险废物的场所应配备消防设备、贮存剧毒危险废物的场所必须有专人 24 小时看管。	本项目危险废物贮存设施 将严格按照州关政策、规 范及技术导则进行建设	符合
危险废	7.1 危险废物焚烧可实现危险废物的减量化和无害化,并可回收利用其余热。焚烧处置适用于不宜回收利用其有用组分、具有一定热值的危险废物。易爆废物不宜进行焚烧处置。焚烧设施的建设、运营和污染控制管理应遵循《危险废物焚烧污染控制标准》及其他有关规定。	本项目危险废物焚烧设施 配套的余热锅炉, 焚烧残 渣用于回收贵金属, 焚烧 设施的建设。运营和污染 控制管理遵循《危险废物 焚烧污染控制标准》及其 他有关规定	符合
	7.2 危险废物焚烧处置应满足以下要求: 7.2.1 危险废物焚烧处置前必须进行前处理或特殊处理,达到进炉的要求,危险废物在炉内燃烧均匀、完全; 7.2.2 焚烧炉温度应达到 1100C 以上,烟气停留时间应在 2.0 秒以上,燃烧效率大于 99.9%,焚毁去除率大于 99.99%,焚烧残渣的热灼减率小于 5%(医院临床废物和含多氯联苯废物除外); 7.2.3 焚烧设施必须有前处理系统、尾气净化系统、报警系统和应急处理装置。 7.2.4 危险废物焚烧产生的残渣、烟气处理过程中产生的长灰,须按危险废物进行安全填埋处置。	本项目需焚烧处置的危险 废物为碳基铂/钯催化剂和 有机均碾催化剂,均要 引力。 水,可满足燃烧均匀、完 全。炉内温度在1100℃以上,烟气停留时间在2s以上,烟气停留时间在2s以上,焚烧残渣用于贵金属 回收;项目焚烧、报警系统和应急处置装置。	符合
	7.3 危险废物的焚烧宜采用以旋转窑炉为基础的焚烧技术,可 根据危险废物种类和特征选用其他不同炉型,鼓励改造并采用 生产水泥的旋转窑炉附烧或专烧危险废物。	本项目把失效汽车尾气催 化剂、铝基铂/钯催化剂采 用回转窑焙烧,碳基铂/钯 催化剂及有机均相催化剂 采用箱式热解焚烧炉	符合
	7.4 鼓励危险废物焚烧余热利用。对规模较大的危险废物焚烧 设施,可实施热电联产。	本项目危险废物焚烧设施 配套的余热锅炉	符合
	7.5 医院临床废物、含多氯联苯废物等一些传染性的、或毒性	本项目把铂/钯催化剂采用	符合

大、或含持久性有机污染成分的特殊危险废物宜在专门焚烧设	回转焚烧炉,均相催化剂
施中焚烧。	采用箱式热解炉,根据危
	险废物的性质采取了专用
	的焚烧设施

1.9.2.5 项目与《重点行业二噁英污染防治技术政策》的符合性

重点行业二噁英污染防治技术政策所涉及的重点行业包括:铁矿石烧结、电弧炉炼钢、再生有色金属(铜、铝、铅、锌)生产、废弃物焚烧、制浆造纸、遗体火化和特定有机氯化工产品生产等。本项目涉及废催化剂焚烧,属于《重点行业二噁英污染防治技术政策》中废弃物焚烧。

根据对比表 1.9-4 分析,本项目基本符合《重点行业二噁英污染防治技术政策》相关条款要求。

表 1.9-4 《危险废物集中焚烧处置工程建设技术规范》(HJ/T176-2005)符合性分析表

要素	相关规定	本项目情况	符合性
源头削	废弃物焚烧应采用成熟、先进的焚烧工艺技术。危险废物入炉焚烧前应根据其成分、热值 等参数进行合理搭配,保证入炉危险废物的均 质性。	综合焚烧生产线采用回转窑和热解炉焚烧技术。根据原料成分及热值进行预处 理及入窑配料,以保证废物的均质性、 热值,提高焚烧安全性等	符合
	企业应建立健全日常运行管理制度并严格执 行,确保生产和污染治理设施稳定运行;应定 期监测二噁英的浓度,并按相关规定公开工况 参数及有关二噁英的环境信息,接受社会公众 监督。	建设单位将设置环保管理机构,负责组织、落实、监督本工程的环境保护工作;本报告在环境监测计划中要求项目建成后定期开展烟气及二噁英的监测	符合
过程	废弃物焚烧应保持焚烧系统连续稳定运行,减少因非正常工况运行而生成的二噁英。生活垃圾焚烧和医疗废物焚烧炉烟气出口的温度应不低 850℃,危险废物焚烧炉二燃室的温度应不低于 1100℃,烟气停留时间应在 2.0 秒以上,焚烧炉出口烟气的氧气含量不少于 6%(干烟气),并控制助燃空气的风量和注入位置,保证足够的炉内湍流程度。	本工程焚烧系统连续稳定运行,并设置 辅助燃烧器来确保焚烧炉二燃室出口烟 气温度达到 1100℃以上并停留 2s 以 上。并控制助燃空气的风量和注入位 置,保证足够的炉内湍流程度	符合
未端治理	废弃物焚烧烟气净化设施产生的含二噁英飞 灰、特定有机氯化工产品生产过程中产生的含 二噁英废物应按照国家相关规定进行无害化处 置。	项目飞灰含贵金属,收集后送电炉熔炼	符合
	二噁英阻滞、催化分解技术及其装备	无	1
鼓励何	二噁英与常规污染物(氦氧化物、二氧化硫、 颗粒物、重金属等)的高效协同减排技术	无	1
发的新 技术	飞灰等含二噁英固体废物无害化处置技术、二 次污染控制技术	无	1
	快速、低成本、高灵敏度的二噁英检测技术其 装备	无	1

1.9.2.6 项目与《固体废物再生利用污染防治技术导则》(HJ1091-2020)的符合性分析

根据对比表 1.9-5 分析,本项目符合《固体废物再生利用污染防治技术导则》 (HJ1091-2020)相关条款要求。

表 1.9-5 《固体废物再生利用污染防治技术导则》(HJ1091-2020)符合性分析表

要素	相关规定	符合性分析	符合性
	固体废物再生利用应遵循环境安全优先的原则, 保证固体废物再生利用全过程的环境安全与人体 健康	项目处置的全过程均遵循环境安全优先的原则,对进厂的失效汽车尾气催化剂、废铂催化剂(颗粒铝基载体)、废钯催化剂(颗粒铝基载体)、废钯催化剂(颗粒铝基载体)、废铂钯催化剂等进行处理,回收贵金属二次资源。对生产过程中产生的废气边标排放;对废水收集后统一处理,对于生产过程中产生的固废,不能自行处置,固废100%妥善处置;对设备运行噪声采用各种降噪措施,使厂界噪声达标	符合
	进行固体废物再生利用技术选择时,应在固体废物再生利用技术生命周期评价结果的基础上,结合相关法规及行业的产业政策要求。	项目选址位于贵州大龙经济开发区北部工业园,购置现有企业用地及厂房进行改建,符合园区规划及产业政策,不属于禁止产业	符合
	固体废物再生利用建设项目的选址应符合区域性 环境保护规划和当地的城乡总体规划。	项目建设符合经开区总体规划、符合环境 保护规划中环境保护的要求。	符合
	固体废物再生利用建设项目的设计、施工、验收和运行应遵守国家现行的相关法规的规定,同时建立完善的环境管理制度,包括环境影响评价、环境管理计划、环境保护责任、排污许可、监测、信息公开、环境应急预案和环境保护档案管理等制度。	本项目将按照要求进行设计、施工并遵守 国家的法律法规,建立完善的环境管理制 度。	符合
总体要求	应对固体废物再生利用各技术环节的环境污染因子进行识别,采取有效污染控制措施,配备污染物监测设备设施,避免污染物的无组织排放,防止发生二次污染,妥善处置产生的废物。	项目处置的全过程均遵循环境安全优先的原则,对进厂的失效汽车尾气催化剂、废铂催化剂(颗粒铝基载体)、废钯催化剂(颗粒铝基载体)、废钯催化剂(其他载体)、含铑均相催化剂等进行处理,回收贵金属二次资源。对生产过程中产生的废气设标排放;对废水收集后统一处理:对于生产行处置,对废水收集后,分类收集有后可发托处置,因废 100%妥善处置;对设备运行处置,因废 100%妥善处置;对误率方向委托处置,因废 100%妥善处置;对误率方达标,使厂界噪措施,使厂界噪声达标	符合
	固体废物再生利用过程产生的各种污染物的排放 应满足国家和地方的污染物排放(控制)标准与 排污许可要求	项目对生产过程中产生的废气设置有对应的废气治理设施,保证各废气达标排放;对废水收集后统一处理达标再委托中伟新材料公司进一步处理;对于生产过程中产生的固废,分类收集暂存后可自行处置的自行处置,不能自行处置的委托处置,固废100%妥善处置;对设备运行噪声采用各种降噪措施,使厂界噪声达标	符合
	固体废物再生利用产物作为产品的,应符合GB34330 中要求的国家、地方制定或行业通行的产品质量标准,与国家相关污染控制标准或技术规范要求,包括该产物生产过程中排放到环境中的特征污染物含量标准和该产物中特征污染物的含量标准。当没有国家污染控制标准或技术规范时,应以再生利用的固体废物中的特征污染物为评价对象,综合考虑其在固体废物再生利用过程中的迁移转化行为以及再生利用产物的用	本项目回收贵金属金、银、铂、钯、铑、铱。产品符合《金锭》(GB/T 4134-2021)、《银锭》(GB/T4135-2016)、《海绵铂》(GB/T1419-2015)、《海绵钯》(GB/T1420-2015)、《铬粉》(GB/T1421-2018)、《铱粉》(GB/T 1422-2018)等标准要求。针对生产过程中排放到环境中的废气、废水已设置了相应的污染治理设施、确保达标排放,并按照	符合

	途,进行环境风险定性评价,依据评价结果来识别该产物中的有害成分。根据定性评价结果开展产物的环境风险定量评价。环境风险定量评价的主要步骤应包括:确定环境保护目标、建立评价场景、构建污染物释放模型、构建污染物在环境介质中的迁移转化模型、影响评估等。对于无法明确产品用途时,应根据最不利暴露条件开展环境风险评价。	要求提出了后续监测、监管、监控要求。	
	进行再生利用作业前,应明确固体废物的理化特性,并采取相应的安全防护措施,以防止固体废物在清洗、破碎、中和反应等过程中引起有毒有害物质的释放。	项目以失效汽车尾气催化剂、 废铂催化剂 (颗粒铝基载体)、 废钯催化剂 (颗粒铝 基载体)、 废铂钯催化剂 (其他载体)。 含铑均租催化剂原料回收贵金属,公司对 每批次进厂的危险废物均进行分析,进厂 危险废物理化特性明确,在生产过程中的 有毒有害物质 (有机废气)采取了相应的 处理措施,原料进厂后暂存将按照安全相 关要求设置相应的安全防护措施。	符合
	具有物理化学危险特性的固体废物,应首先进行 稳定化处理。	进厂的特处理的危险废物不具有物理化学 危险特性	符合
	应根据固体废物的特性设置必要的防扬撒、防渗漏,防腐蚀设施,配备废气处理、废水处理、噪声控制等污染防治设施,按要求对主要环境影响指标进行在线监测。	项目原料暂存于仓库内,对仓库实施防 滚;项目生产过程中产生的各类废气经处 理后均能达标排放:产生的废水经处理后 委托申伟新材料公司进一步处理:对生产 过程中产生的噪声,采取降噪措施,使厂 界噪声排放达标;项目固废合理处置,处 置率 100%,本次评价已按照要求针对废 气、废水等提出了监测要求。	符合
主要	产生粉尘和有毒有害气体的作业区应采取除尘和 有毒有害气体收集措施。扬尘点应设置吸尘罩和 收尘设备,有毒有害气体逸散区应设置吸附(吸 收)转化装置,保证作业区粉尘、有害气体浓度 满足 GBZ2.1 的要求。	项目危险废物在投料、卸料等区域均采取 了收集处理措施	符合
工单污防技艺	应采取大气污染控制措施,大气污染物排放应满足特定行业排放(控制)标准的要求。没有特定行业污染排放(控制)标准的,应满足 GB16297的要求,特征污染物排放(控制)应满足环境影响评价要求。	项目生产过程中产生的热解焚烧炉废气、 回转窑废气、电弧炉熔炼废气、精炼生产 线废气均设置对应的废气治理设施, 使废 气达标排放; 外排废气污染物均能满足相 关标准限值要求。	符合
要求	应采取必要的措施防止恶臭物质扩散,周界恶臭污染物浓度应符合 GB14554 的要求。	项目生产运营过程中不涉及恶臭污染物的 产生与排放。	符合
	产生的冷凝液、浓缩液、渗滤液等废液应进行有效收集后集中处理。处理后产生的废水应优先考虑循环利用;排放时应满足特定行业排放(控制)标准的要求;没有特定行业污染排放(控制)标准的,应满足 GB8978 的要求,特征污染物排放(控制)应满足环境影响评价要求。	项目生产废水集中收集进入污水预处理站 预处理达到《无机化学工业污染物排放标准》(GB 31573-2015)车间或设施排放口标准后委托中伟新材料公司进一步处理; 生活污水外排至园区水处理厂进一步处理;初期雨水收集处理后,分批次送项目生产废水处理站处理。	符合
	应防止噪声污染。设备运转时厂界噪声应符合 GB12348 的要求,作业车间噪声应符合 GBZ2.2 的要求	噪声主要来自于各工序的机械噪声,生产设备均置于车间厂房内。选用技术先进低噪声的设备、生产厂房密闭通气式,关键部位加胶垫以减小震动,厂界噪声达到GB12348标准的要求。	符合
	产生的污泥、底渣、废油类等固体废物应按照其 管理属性分别处置。不能自行综合利用或处置 的,应交给有相应资质和处理能力的企业进行综 合利用或处置。	生产过程中产生的周废,分类收集暂存后 可自行处置的自行处置,不能自行处置的 委托有相应资质和处理能力的企业进行综 合利用或处置;生活垃圾交由环卫部门处 置。	符合
	危险废物的贮存,包装、处置等应符合GB18597、HJ2042等危险废物专用标准的要求。	已提出按照 GB18597、 HJ2042 等危险废物专用标准的要求进行危废的贮存、处置、运输等	符合

监测	個体废物再生利用企业应定期对固体废物再生利用产品进行采样监测,监测频次应满足以下要求: (1)当首次再生利用某种危险废物时,针对再生利用产品中的特征污染物监测频次不低及险的特征污染物上,连续一周监测结果均不超出量量,在该危险废物来源及投加量免产的销提下,频次可减为每周1次;连续两个月监测结果均不成为每周1次;连续两个月监测结果均不成为每周1次;连续两个月监测结界为每天1次,依次重复。物时,针对再生利用产品中的特征对染物上,则监测频次重新调整为每天1次,依次重复。物时,针对再生利用产品中的特征对决场压力,能测结果的有结果时,连续二周监测结果均不低上,更加,发生实际,则监测结果的不超出环境风险评价结果时,超过产了或为每年1次;若在此期间监测结果出现是个可减为每年1次;若在此期间监测结果出现是不可减为每年1次;若在此期间监测结果出现是不可减为每年1次;若在此期间监测结果出现是不可减为每年1次;若在此期间监测结果出现是不可减为每年1次;若在此期间监测结果出现是不可减为每年1次;若在此期间监测结果出现是不可减为每年1次;若在此期间监测结果出明超过之,则监测频次重新调整为不低于每周3次,依次重复。	已按照要求提出了后续监测、监管、监控要求。	符合
	固体废物再生利用企业应在固体废物再生利用过程中,按照相关要求,定期对场所和设施周边的大气、土壤、地表水和地下水等进行采样监测,以判断固体废物再生利用过程是否对大气、土壤、地表水和地下水造成二次污染。	己按照要求提出了后续监测、监管、监控要求。	符合

1.9.2.7 项目与《强化危险废物监管和利用处置能力改革实施方案》的符合性分析

国务院办公厅于 2021 年 5 月发布了《强化危险废物监管和利用处置能力改革实施方案》,本次评价将对其进行符合性分析,详见表 1.9-6。根据对比分析,项目符合《强化危险废物监管和利用处置能力改革实施方案》中相关的防治要求。

表 1.9-6 《强化危险废物监管和利用处置能力改革实施方案》符合性分析表

要素	相关规定	符合性分析	符合性
完危废监体机	各地区各部门按分工落实危险废物监管职责。国 家统筹制定危险废物治理方针政策,地方各级人 民政府对本地区危险废物治理负总责。发展改 革、工业和信息化、生态环境,应急管理、公 安、交通运输、卫生健康、住房城乡建设、海关 等有关部门要落实在危险废物利用处置、污染环境防治、安全生产、运输安全以及卫生防疫等力 面的监管职责。强化部门间协调沟通,形成工作 合力	建设单位按环保要求执行,积极配合地方生态环境部门和发展改革,工业和信息化,生态环境、应急管理、公安、交通运输、卫生健康、住房城乡建设、海关等有关部门的监督管理。	符合
	建立危险废物环境风险区域联防联控机制。2022 年底前,京津冀、长三角、珠三角和成渝地区等 区域建立完善合作机制,加强危险废物管理信息 共享与联动执法,实现危险废物集中处置设施建 设和运营管理优势互补。	建设单位将按照有关规定执行	符合
	落实企业主体责任。危险废物产生、收集、贮存、运输、利用、处置企业(以下统称危险废物相关企业)的主要负责人(法定代表人、实际控制人)是危险废物污染环境防治和安全生产第一责任人,严格落实危险废物污染环境防治和安全生产法律法规制度。	建设单位作为本项目危险废物产生、收集、利用、处置的第一责任人,后续生产阶段严格按照要求进行管理,同时严格执行安全生产的法律法规和标准规范。	符合
	固体废物再生利用建设项目的设计、施工、验收 和运行应遵守国家现行的相关法规的规定,同时	本项目将按照要求进行设计、施工并遵守 国家的法律法规,建立完善的环境管理制	符合

	建立完善的环境管理制度,包括环境影响评价、 环境管理计划、环境保护责任、排污许可、监 测,信息公开、环境应急预案和环境保护档案管 理等制度。	度,	
	完善危险废物环境管理信息化体系。依托生态环境保护信息化工程,完善国家危险废物环境管理信息系统,实现危险废物产生情况在线申报、管理计划在线备案、转移联单在线运行、利用处置情况在线报告和全过程在线监控。开展危险废物收集、运输、利用、处置网上交易平台建设和第三方支付试点。鼓励有条件的地区惟行视频监控、电子标签等集成智能监控手段,实现对危险废物全过程跟踪管理,并与相关行政机关、司法机关实现互通共享	按照前述要求进行监管	符合
2017b	完善危险废物鉴别制度。动态修订《国家危险废物名录》,对环境风险小的危险废物类别实行特定环节豁免管理,建立危险废物排除管理清单。 2021 年底前制定出台危险废物鉴别管理办法,规 范危险废物鉴别程序和鉴别单位管理要求	建设单位将严格按照生态环境部办公厅于 2021 年 9 月 3 日发布的《关于加强危险废物鉴别工作的通知》(环办固体函 [2021]419号)的要求定期对项目产生的固体废物进行鉴别,同时按照《通知》要求 进行危险废物管理	符合
强危废源管护	严格环境准入。新改扩建项目要依法开展环境影响评价,严格危险废物污染环境防治设施"三同时"管理。依法依规对已批复的重点行业涉危险废物建设项目环境影响评价文件开展复核。依法落实工业危险废物排污许可制度。推进危险废物规范化环境管理。	建设单位已委托进行环境影响评价	符合
	推动源头减量化。支持研发、推广减少工业危险 废物产生量和降低工业危险废物危害性的生产工 艺和设备,促进从源头上减少危险废物产生量、 降低危害性。	本工程对进场的含铂族贵金属的危险废物 进行资源的二次利用, 回收贵金属金、 银、铂。钯、铑、铱,项目所产生的危险 废物均得到有效处置, 不向外环境排放。	符合
	推动收集转运贮存专业化。深入推进生活垃圾分类,建立有害垃圾收集转运体系。(住房城乡建设部牵头,相关部门参与)支持危险废物专业收集转运和利用处置单位建设区域性收集网点和贮存设施,开展小微企业、科研机构、学校等产生的危险废物有偿收集转运服务。开展工业园区危险废物集中收集贮存试点。鼓励在有条件的高校集中区域开展实验室危险废物分类收集和预处理示范项目建设。	项目设置了符合要求的危废贮存点, 危险 废物运输均交由有专业运输资质的公司进 行运输, 保证了危险废物运输过程中的安 全。	符合
强危废收转等程管化险物集运过监管	推进转移运输便捷化。建立危险废物和医疗废物运输车辆备案制度,完善"点对点"的常备通行路线,实现危险废物和医疗废物运输车辆规范有序、安全便捷通行。(公安部、生态环境部、交通运输部、国家卫生健康委等按职责分工负责)根据企业环境信用记录和环境风险可控程度等,以"白名单"方式简化危险废物跨省转移审批程序。维护危险废物跨区域转移公平竞争市场秩序,各地不得设置不合理行政壁垒。	本项目进厂的危险废物运输均交由有专业 运输资质的公司进行运输,保证了危险废 物运输过程中的安全。	符合
	严厉打击涉危险废物违法犯罪行为。强化危险废物环境执法、将其作为生态环境保护综合执法重要内容。严厉打击非法排放、倾倒、收集、贮存、转移、利用、处置危险废物等环境违法犯罪行为,实施生态环境损害赔偿制度、强化行政执法与刑事司法、检察公益诉讼的协调联动。(最高人民法院、最高人民检察院、公安部、生态环境部等按职责分工负责)对自查自纠并及时妥善处置历史遗留危险废物的企业,依法从轻处罚	项目生产过程中产生的固废,分类收集暂存后可自行处置的自行处置,不能自行处置的委托有相应资质和处理能力的企业进行综合利用或处置,可得到有效处置,每批次危险废物均有台账可供查验,无非法放、倾倒、收集、贮存、转移、利用、处置危险废物等环境违法犯罪行为。	符合

1.9.3 相关规划符合性分析

1.9.3.1 与《贵州省主体功能区规划》符合性分析

根据《贵州省主体功能区规划》(黔府发〔2013〕12号),我省以县级行政区为基本单元的省级重点开发区域为钟山—水城—盘县区域、兴义—兴仁区域和碧江—万山—松桃区域,共包括六盘水市、铜仁市、黔西南州的8个县级行政单元。本项目位于铜仁市玉屏县大龙镇,属于省级重点开发区域中的其他重点开发城镇。

1.9.3.2 与《贵州省"十四五"生态环境保护规划》符合性分析

根据《贵州省"十四五"生态环境保护规划》第十四节 深入打好固体废物污染防治 攻坚战:

加强危险废物环境监管。开展危险废物污染治理攻坚专项行动。推进危险废物处理处置行业结构调整,优化产业化规模化布局,推动危险废物处置产能与本省需要相匹配。推行优势企业兼并重组,实行收集处理一体化,逐步淘汰工艺落后、规模小、能耗和环境风险安全隐患较大的企业。推行危险废物经营单位环境污染强制责任保险。探索"简化审批、快批快复"机制,建立实施危险废物跨省转移"白名单"及危险废物环境风险联防联控合作机制。落实重点危险废物集中处置设施、场所退役费用预提和管理办法,探索建立危险废物转入生态保护补偿制度。开展危险废物集中收集贮存试点,优先支持铅蓄电池、矿物油等生产企业依托销售网点回收其产品使用过程产生的危险废物。强化生活垃圾焚烧飞灰规范化处置、废弃电器电子产品拆解处理企业环境监管。推进危险废物处理全过程溯源监管,严厉打击违法收集、贮存、运输、利用、处置危险废物的环境违法犯罪行为。

强化危险废物处置和风险防范。加快补齐危险废物收集、利用、处置能力短板。 推进危险废物利用处置企业能力和水平提升,支持大型企业内部共享危险废物利用、 处置设施。鼓励符合相关规定要求的园区配套建设危险废物集中贮存、预处理和处置 设施。加强医疗废物分类管理,完善医疗废物收集转运处置体系,建立医疗废物协同 应急处置设施清单,完善医疗废物处置物资储备体系,保障重大疫情医疗废物应急处 置能力。鼓励配备符合条件的医疗废物移动处置设施和预处理设施,为偏远基层提供 就地处置服务。有序推进水泥窑、冶炼窑炉协同处置危险废物、生活垃圾,统筹推进 生活垃圾焚烧炉协同应急处置医疗废物。2022年6月底前,实现各县(市、区)都建成医疗废物收集转运处置体系。到 2025年,工业危险废物处置利用率保持在90%以上。

专栏 6 固体废物污染防治攻坚工程(三)危险废物医疗废物收集处理设施补短板工程。支持建设<u>废催化剂</u>、电镀污泥、含钡废物、生活垃圾焚烧飞灰、废酸、有机磷化合物、无机氰化物砷碱渣、铝灰等结构性短缺的危险废物利用处置设施。推进贵州省危险废物暨贵阳市医疗废物处理处置中心扩能改造工程。

本项目属于废催化剂的危险废物处置设施,属于《贵州省"十四五"生态环境保护规划》中的短缺的危险废物利用处置设施,符合《贵州省"十四五"生态环境保护规划》。

1.9.3.3 与《铜仁市"十四五"生态环境保护规划》符合性分析

根据《铜仁市"十四五"生态环境保护规划》第八章推动固废污染治理 第二节 加强固体废物收集处置能力。专栏 13 固体废物污染防治重点工程, 1.危险废物:实施一批危险废物综合处置利用项目,包括废催化剂、含硒含汞废物处置项目,依托重点企业建设危险废物综合利用项目。重点在松桃县、石阡县建设医疗废物集中处置项目。

本项目属于废催化剂处置项目,属于固体废物污染防治重点工程。因此,符合 《铜仁市"十四五"生态环境保护规划》要求。

1.9.3.4 与《贵州省"十四五"危险废物集中处置设施建设规划》 的符合性分析

根据《贵州省"十四五"危险废物集中处置设施建设规划》中指出"新改扩建涉危险废物项目严格遵循'省域内能力总体匹配'原则。鼓励新改扩建的利用处置设施采用国内外先进成熟的工艺和设备,支持良性市场竞争,促进工艺升级,提升利用处置企业的危险废物规范化环境管理水平"。"化解能力过剩。严格控制危险废物利用处置规模总量,推进利用处置能力与省内产废情况总体匹配。除结构性短缺的利用处置设施外,对已满足我省需求、产能过剩、不符合规划的,原则上不再新增规模。《危险废物经营许可证》有效期届满换证的,严格核准下一个经营周期的经营能力。按照综合利用、焚烧处置、协同处置、填埋处置梯次推进原则,合理核定设施利用处置危险废物的类别。控制可焚烧减量的危险废物直接填埋。"

本项目为新建项目,采用高冰镍浸出渣及含贵金属二次资源回收贵金属,项目采用的处置及生产工艺属于国内先进的生产工艺,焚烧装置尾气采用"二燃室+热能利用设施+烟气净化设施",废水经预处理后委外采用 MVR 蒸发结晶处置。根据《贵州省危险废物利用处置能力建设的引导性公告》"据统计,贵州省十四五以来危险废物产生量整体上呈平稳缓慢增长趋势。2024年,我省危险废物产生总量为107.49万吨。危险废物产生量排名前五的类别为 HW47 含钡废物、HW18 焚烧处置残渣、HW48 有色金属治炼废物、HW33 无机氰化物废物、HW11 精(蒸)馏残渣,产生量90.63 万吨,占产生总量的84.3%;截至公告发布日,利用处置能力前十的类别依次为 HW31 含铅废物、HW48 有色金属采选和治炼废物、HW49 其他废物、HW08 废矿物油与含矿物油废物、HW18 焚烧处置残渣、HW33 无机氰化物废物、HW23 含锌废物、HW13 有机树脂类废物、HW11 精(蒸)馏残渣、HW35 无机氰化物废物、HW23 含锌废物、HW13 有机树脂类废物、HW11 精(蒸)馏残渣、HW01 医疗废物,约占总能力的78%""根据《贵州省"十四五"危险废物集中处置设施建设规划》,对已满足我省需求、尤其是铝灰、大修渣、废机油、煤焦油、废铅蓄电池等类别危险废物产能严重过剩的,建议不再新增建设项目。";根据《贵州省"十四五"生态环境保护规划》,废催化剂利用处置属于结构性短缺的危险废物利用处置设施。

因此,本项目处置的含贵金属废催化剂不属于贵州省严重产能过剩的危险废物类别,不属于贵州省利用处置能力前十的危险废物,属于结构性短缺的危险废物利用处置设施。

综上所述,本项目与《贵州省"十四五"危险废物集中处置设施建设规划》是相符的。

1.9.3.5 与贵州大龙经济开发区总体规划及其规划环评符合性分析

贵州大龙经济开发区地处大龙镇,是贵州省循环经济工业基地之一,贵州大龙经济开发区规划范围东至大龙镇清水塘村、田坪镇田冲村,南至大龙镇大龙堡村,西至大龙镇一心村,北至大龙镇前龙村,规划面积15.79平方公里,规划建设用地面积14.67平方公里。2011年6月贵州省环保厅以黔环函[2011]210号《关于贵州大龙经济开发区总体规划(2011-2030)环境影响报告书的审查意见》对大龙经济开发区总体规划进行了技术审查。2018年6月贵州大龙经济开发区已完成《贵州大龙经济开发区总体规划(2011-2030)环境影响跟踪评价报告书》的编制及审查。

(1) 与规划的符合性分析

贵州大龙经济开发区是贵州省重要的能源化工基地,以发展电气一体化、新材料、精细化工及先进制造产业为主导的省级经济开发区,黔东工业集聚区产业引擎,黔东地区宜居创业的工业新城。经开区产业定位以能源产业、新材料产业、精细化工产业、装备制造产业。产业聚集区分为新能源产业集聚区、新材料产业集聚区、精细化工产业集聚区、装备制造产业集聚区。

新材料产业发展以锰、钡、钾为核心,以精深加工为主的新型材料产业。新材料产业集聚区以开发区自备电厂建设为依托,创新电力能源直供模式,发展以煤电锰、煤电铝、煤电纺、电气化一体化为主导的产业集聚区。

本项目处于贵州大龙经济开发区总体规划新材料产业集聚区。本项目不属于新材料产业区的负面入驻清单企业,与园区产业布局空间规划不冲突。

本项目主要是处理贵州中伟资源循环公司产出的赤铁矿(高冰镍浸出渣)、失效汽车尾气催化剂、废铂/钯催化剂、废均相催化剂等,主要属危险废物处置及综合利用项目和贵金属治炼,项目建设与贵州大龙经济开发区产业规划不冲突,同时本项目使用贵州中伟资源循环公司产出的赤铁矿(高冰镍浸出渣),属于产业端的延伸,与园区发展循环经济理念一致。所以,本项目符合《贵州大龙经济开发区总体规划(2016-2030年)》产业规划发展要求。

项目与贵州大龙经济开发区功能分区、土地利用规划的位置关系叠图见图 1.9-1~ 图 1.9-2。

(2) 与规划环评报告书的符合性分析

根据《贵州大龙经济开发区总体规划(2011-2030)环境影响跟踪评价报告书》结论及其审查意见,提出的主要环保要求是: 1、充分考虑雨污分流及防洪构筑物的布局,以避免雨污混流;加强源头治理,各工业企业应按照循环经济的理念,大力推行清洁生产,减少生产废水及污染物的产生量;各行业对特征污染物进行控制,采取特殊的方式处理达到《污水综合排放标准》(GB8978-1996)三级标准后进入污水管网。2、入区企业要严格执行"三同时"制度,对污染物排放进行全过程控制;大气污染物,必须实现达标排放;企业应采用先进的、密闭性好的生产设备、物料存贮容器和输送管线;按照区域环境总量指标,严格控制单位工业用地面积的污染物排放源强。3、生活垃圾经统一收集后进行无害化处理;企业产生的危险废物设置暂存设施,统一送危

险废物处置单位处置,固体废物收集处置率达到100%。

本项目设置"雨污分流"系统,严格控制生产废水及污染物的产生量,污水经预处理达到《无机化学工业污染物排放标准》(GB31573-2015)车间或污水处理设施排放口水污染物排放限值后采用架空管道送至中伟新材料股份有限公司生产废水处理系统处理后回用;本项目原料储存及输送均按其特性采取贮存容器及输送管线,大气污染物达标排放;本项目生活垃圾收集后交由当地环卫部门处置,危险废物可自行处置的自行处置,不能自行处置的委托具备危废处置资质的单位进行处置。因此,本项目符合规划环评结论及其审查意见的结论。

(3) 与规划环评管控清单符合性

根据《贵州大龙经济开发区总体规划(2011-2030)环境影响跟踪评价报告书》列 出负面管控清单,筛查项目是否符合大龙经济开发区入驻要求,本项目属于产业布局 的重点准入区,符合产业布局要求;建设项目投运前取得 SO₂、NO₂及重金属总量指 标,不会突破清单环境容量管控要求;废气能够达标排放,废水不直接进入地表水 体,固废均能妥善处置,因此满足清单的环境质量管控要求,综上,项目与大龙经开 区环境准入负面清单约束条件不冲突。相关分析详见表 1.9-7。

表 1.9-7 项目与大龙经开区环境准入负面清单符合性分析表

序号	类别	管理要求	本项目
_	产业空间布局约束		
1	禁止准入区: 大龙经济开发区集 中式饮用水源一级保护区、车坝 河集中式饮用水源一级保护区	禁止在饮用水源一级保护区内新建(改扩建)与供水 设施和保护水源无关的项目	本项目不涉及
2	限制准入区: 大龙经济开发区集 中式饮用水源二级保护区、车坝 河集中式饮用水源二级保护区、 高速公路、铁路一级重大市政公 用设施的保护绿地	禁止在饮用水源二级保护区内新建(改扩建、扩建) 排放污染物的工业企业建设项目:其他限制准入区采 取引导存量、控制增量的政策,严格控制工业点源污 染物总量,加强现有工业企业升级改造,逐步关停或 搬迁治理不符合产业政策、能耗高、污染严重的工业 企业。	本项目不涉及
3	重点准入区:除限制准入区和禁 止准入区以外的区域	优先发展低能耗、低水耗、低污染、高效益的企业, 鼓励和支持新材料、新能源等产业集群发展。	本项目采用先进 的处置及回收工 艺,属于低能 耗、低水耗、低 污染、高效益的 企业
=;	行业准入限制	严格按照《产业结构调整指导目录》和《外商投资产 业指导目录》引进行业	本项目符合《产业结构调整指导目录(2024年本)》
Ξ	环境容量管控		
1	总量指标管控	SO ₂ 、NO ₂ 、COD、氦氦	建设项目投运前
2	总量管控要求	严格落实排污总量管理制度,蔡溪区域已无水环境容量,暂停审批向蔡溪排放新增污染物总量的建设项目:进一步加强污染物总量减排工作,支持和鼓励新	取得 SO ₂ 、NO ₂ 及重金属总量指 标,项目不向水

		建项目采用排污权交易方式取得总量控制标准。	体直接排放污水
рч	环境质量管控		
1	水源保护	禁止在饮用水源一级保护区内新建(改扩建)与供水 设施和保护水源无关的项目;禁止在饮用水源二级保 护区内新建(改扩建、扩建)排放污染物的工业企业 建设项目	本项目不涉及
2	大气污染防治	在开发区主城区禁止新建燃煤发电项目和新建、扩建 铁合金建设项目	本项目属于
3	水污染防治	新建、改建和扩建污水排放项目必须明确污水处理达 标排放或满足市政污水管网接管要求进入污水处理厂 进行处理	本项目生活生活 达标排入大龙工 业污水厂
4	固体污染防治	在开发区具备锰渣处置能力前或处置方案不可行,禁止新(扩建)排放锰渣建设项目;在缺乏危险废物安全处置设施或未落实有资质的危险废物处置接收单位前,禁止新建、扩建和改造(新增危险废物)排放危险废物的建设项目	本项目不产生锰 渣: 本项目产生 的危废委托相关 处置单位处理
5	土壤污染防治	对新建排放气态汞的企业应进行定期监测,明确废气 达标排放。	本项目不涉及

1.9.4 与三区三线的符合性分析

本项目处于原贵州中伟资源循环公司部分厂区内(购置土地及构筑物后属于自由产权),经引用贵州中伟资源循环公司原全厂用地红线与贵州省"三区三线"划定成果比对,贵州中伟资源循环公司原全厂用地红线不涉及生态红线,基本农田,属于工业项目,位于大龙经开区内,处于城镇开发边界内,与划定的三区三线无冲突。项目与永久基本农田、生态保护红线位置关系见图 1.9-3。

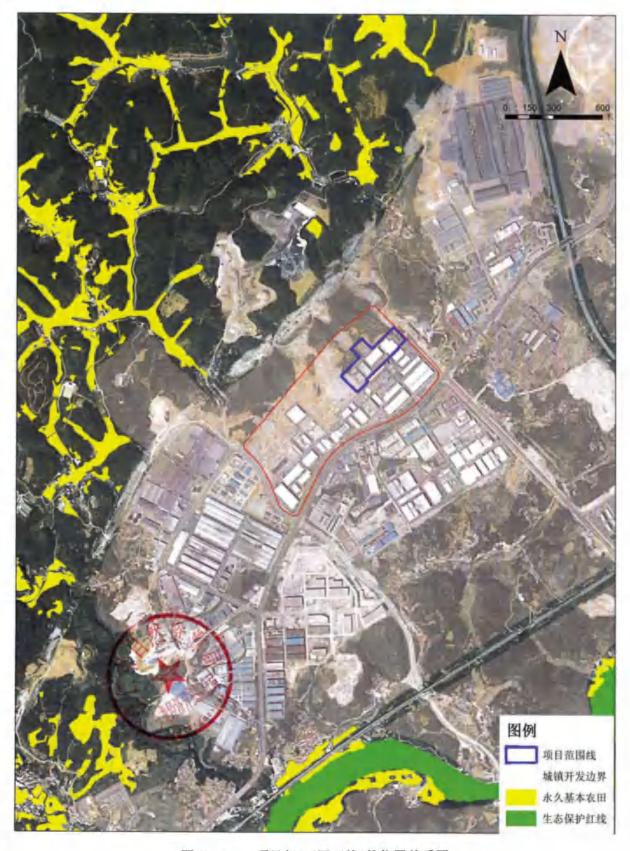


图 1.9-3 项目与"三区三线"的位置关系图

1.9.5 与《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评[2016]150 号)的符合性分析

为更好地建立项目环评审批与规划环评、现有项目环境管理、区域环境质量联动机制,更好地发挥环评制度从源头防范环境污染和生态破坏的作用,加快推进改善环境质量,环保部于2016年10月27日印发了《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评[2016]150号),该《通知》明确环境影响评价需要落实"生态保护红线、环境质量底线、资源利用上限和环境准入负面清单"(简称"三线一单")约束,项目与生态保护红线的位置关系详见图1.9-3。

序号	项目	具体要求	本项目	是否 符合
ī	生态红线	生态保护红线是生态空间范围内具有特殊重要生态功能必须实行强制性严格保护的区域。除受自然条件限制、确实无法避让的铁路、公路、航道、防洪、管道、干渠、通讯、输变电等重要基础设施项目外,在生态保护红线范围内,严控各类开发建设活动,依法不予审批新建工业项目和矿产开发项目的环评文件。	本项目位于贵州大龙经开区内,选址不涉及 饮用水源保护区、风景名胜区、自然保护 区、地质公园等,不在国家、地方划定的生 态红线范围内,满足生态保护红线要求。	符合
2	环境 质量 底线	环境质量底线是国家和地方设置的大气、水和土壤环境质量目标,也是改善环境质量的 基准线。项目环评应对照区域环境质量目标,深入分析预测项目建设对环境质量的影响,强化污染防治措施和污染物排放控制要求。	本项目地表水、地下水、环境空气、声环境、土壤环境均满足相应要求。项目建成后,经预测,区域环境质量仍满足相应环境质量标准要求。	符合
3	资源 利用 上限	资源是环境的载体,资源利用上线是各地区能源、水、土地等资源消耗不得突破的"天花板"。相关规划环评应依据有关资源利用上线,对规划实施以及规划内项目的资源开发利用,区分不同行业,从能源资源开发等量或减量替代、开采方式和规模控制、利用效率和保护措施等方面提出建议,为规划编制和审批决策提供重要依据。	本项目购置现有企业的用地及建筑,占地为工业用地,满足贵州大龙经开区土地利用规划对工业用地布局的要求;同时,项目生产工艺废水委托中伟新材料股份有限公司处理后全部外排大龙经开区工业污水处理厂;生活污水经处理达标后排入大龙经开区工业污水处理厂;项目用水不会导致水资源需求量突破区域水资源量。	符合
4	负面 清单	环境准入负面清单是基于生态保护红线、环境质量底线和资源利用上线,以清单方式列出的禁止、限制等差别化环境准入条件和要求。 要在规划环评清单式管理试点的基础上,从布局选址、资源利用效率、资源配置方式等方面入手,制定环境准入负面清单,充分发挥负面清单对产业发展和项目准入的指导和约束作用。	本项目不属于《市场准入负面清单(2025年版)》所列行业,不属于《贵州大龙经济开发区总体规划(2011-2030)环境影响跟踪评价报告书》禁止引入行业	符合

表 1.9-8 本项目与环环评[2016]150 号文的符合性分析

由表 1.9-8 可知,本项目的建设落实了"生态保护红线、环境质量底线、资源利用 上限和环境准入负面清单"的约束要求,体现了从源头防范区域环境污染和加快推进改 善环境质量为核心的环保管理要求。因此,本项目建设与《关于以改善环境质量为核 心加强环境影响评价管理的通知》(环环评[2016]150号)要求保持一致。

1.9.6 与《省人民政府办公厅关于印发<贵州省生态环境分区管控方案>的通知》符合性

根据《省人民政府办公厅关于印发<贵州省生态环境分区管控方案>的通知》(黔府办函(2024)67号)中的生态环境分区管控及要求,本项目所在单元为重点管控单元:以生态修复和环境污染治理为主,加强污染物排放控制和环境风险防控,进一步提升资源利用效率。严格落实区域及重点行业污染物允许排放量。对环境质量不达标的管控单元,落实现有各类污染源污染物排放削减计划和环境容量增容方案。

本项目在建设和营运过程中落实环评报告书提出的环境保护措施,加强污染物排放控制及提出严格的环境风险防空措施后满足生态环境管控的相关要求,因此符合《省人民政府办公厅关于印发<贵州省生态环境分区管控方案>的通知》的生态环境分区管控及要求。

项目位于《省人民政府办公厅关于印发<贵州省生态环境分区管控方案>的通知》中"贵州大龙经济开发区重点管控单元(编码为 ZH52062220002)"。环评对生态环境分区管控进行查阅后,筛选出与本项目有关的条款,并结合本项目情况进行逐条分析,最终得出,本项目符合《省人民政府办公厅关于印发<贵州省生态环境分区管控方案>的通知》要求。

项目与三线一单公众应用平台叠图结果详见图 1.9-4。

			"三线一单"生态环境准入清单	本项目内容	符合 性
环境	管控单元	编码	重点管控单元: ZH52062220002		
环境	管控单元	名称	贵州大龙经济开发区重点管控单元		
		省	贵州省	本项目处于重点	,
行	政区域	市	铜仁市	管控单元	.L
		县	玉屏治侗族自治县		
督	控单元分	类	重点管控单元		
管控要求	空间布局	的東	1.执行贵州省及铜仁市水要素普适性要求。2.大气环境高排放重点管控区执行省、市普适性总体管控要求。3.禁止在现有企业环境防护距离内再规划建设集中居民区、学校、医院等环境敏感目标。4.舞阳河及其支流车坝河等地表水源及其两侧控制区为禁止建设区。5.居住用地与工业用地间应设置生态隔离带。邻近居住用地的地块不宜布置有机废气排放易扰民的项目。6.禁止在饮用水水源一级保护区内新建(改建、扩建)与供水设施和保护水源无关的建设项目;禁止在饮用水源二级保护区内新建(改建、扩建)排放污染物的工业企业建设项目。7.在开发区主城区禁止新建燃煤发电项目和新建、扩建铁合金建设项目。8.加大企业环评审批力度,凡涉锰涉汞企业落户铜仁必须	本项目居住在 知有居于发和。 一个方面,不是 一个方面,不是 一个方面,不是 一个方面。 一个方面,不是 一个方面。 一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	符合

表 1.9-9 "三线一单"生态环境准入清单符合性分析

		报经市委、市政府研究同意,各区(县)不得新增涉汞涉锰矿 山开采企业,已获得开采权的,到期后一律不得延期,各地要 严格执行铜仁市汞锰行业高质量发展规划,严格落实环保要 求,倒逼企业转型升级。以大龙开发区为重点,从源头上控制 和规范有色矿产资源开发和冶炼。鼓励和引导汞锰企业进行升 级改造或对企业重组,对不符合产业政策、污染严重的落后生 产工艺、技术和设备要按期坚决予以淘汰。优先发展低耗能、 低水耗、低污染、高效益的产业,鼓励和支持新材料、新能源 等产业集群发展。	物有限,采取措施后均能满足达标排放要求。	
管控要求	污染物排放管 控	1.执行贵州省及铜仁市水要素普适性要求。2.对新建排放气态汞的企业应进行定期监测,确保废气达标排放。3.对涉汞企业加强污染源监控,减少企业废气中汞等重金属的排放量。4.在开发区具备镭渣处置能力前或处置方案不可行,禁止新(扩建)排放锰渣建设项目;在缺乏危险废物安全处置设施或未落实有资质的危险废物处置接收单位前,禁止新建、扩建和改建(新增危险废物)排放危险废物的建设项目。5.大龙污水处理厂实施提标改造,出水水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中表 1 一级 A 标准要求。6.加快推进建设开发区工业固体废物公共渣场;解决贵州重力科技有限公司含汞冶炼渣处置问题。7.工业生产废水必须经处理达到要求后方能进入工业废水集中处厂理进行处理。 对水质、水量能满足工业废水处理厂正常运行的,采取完善管网,做到全收集、确保稳定运行,达标排放。对水质、水量不能满足工业废水处理厂正常运行的;采取修建分散式污水处理设施,确保设施正常运行,达标排放。	本项目不属于以 上提及企业项 目。废水委托中 伟新材料股份有 限公司处理回用	符合
管控要求	环境风险防控	1.执行贵州省及铜仁市土壤普适性管控要求。建立城市重污染 天气预警制度。2.强化大龙经济开发区规划跟踪评价和建设项 目后评价,对长期性、累积性和不确定性环境影响突出,规划 有重大变化,有重大环境风险或者穿越重要生态环境敏感区的 重大项目,应积极开展环境影响跟踪评价和后评价,并据此强 化后续环境管理。完善环境风险防控体系。3.全面落实园区、 企业环境风险应急预案各项要求,增强突发环境事件处置能 力。开展涉危涉重涉化企业、有风险隐患的渣场等风险排查和 整改工作,及时消除隐患,按要求建设园区隔离带、绿化防护 惯和风险事故水池等设施,园区与企业之间要强化应急联动, 形成多级环境风险管控体系。4.落实舞阳河流域水环境应急风 险防范措施: (1)切断源头。 (2)采取拦截吸附等措施。 (3)将舞阳河干流的罗家寨电站进行落闸,若污染团已进入舞 阳河干流,则直接使用坝式水电站将污染团拦截至坝中,防止 发生跨界污染。 (4)做好突发环境事件应急监测工作。 (5) 做好舆情控制监控工作,及时公布突发环境事件及应急处置情 况。完善流域环境监管制度,构建环保、司法部门联动机制。 落实舞阳河环境应急"一河一策一图",落实环境应急措施,储 备应急物资,有效提升应急处置能力。	环评要求企业严格采取本环评提出的同时应按相 美要求及时编辑 企业突发环境等 件应急案	符合
	资源开发效率 要求	执行铜仁市资源开发利用效率普适性要求,万元国内生产总值 能耗下降比例 13%。	本项目不属于高 耗能项目,本项 目不会突破资源 利用上限	符合

图 1.9-4 "三线一单"公众应用平台叠图

2 建设项目工程分析

2.1 建设项目概况

2.1.1 项目基本概况

- (1) 项目名称:稀贵金属资源循环利用项目
- (2) 建设性质:新建
- (3) 行业类别: N7724 危险废物治理业、C322 贵金属冶炼
- (4) 环评类别: 四十七、生态保护和环境治理业, 101. 危险废物利用及处置
- (5) 排污许可管理类别: 重点管理
- (6) 建设单位:贵州新铂材料科技有限公司
- (7) 建设地点:贵州大龙经济开发区北部工业园
- (8) 总投资: 63600万元
 - (9) 用地面积: 63280m²
- (10)建设规模:年利用赤铁矿(高冰镍浸出渣)5000t/a(干基)、废催化剂3000t/a(干基)
- (11) 劳动定员及工作制度:劳动定员为150人,工作制度为4班3倒制(轮休),工作时间8h/班,全年工作330天。工作人员依托园区生活设施,不在厂区食宿。

2.1.2 地理位置及周边环境现状

本项目厂址位于贵州大龙经济开发区 2 号干道与 1 号干道交汇处贵州中伟资源循环产业发展有限公司原有部分厂区内,中心地理坐标东经 109°0′28.699″,北纬 27°20′28.613″,地理位置详见图 2.1-1。

项目厂址占地现状为工业用地。厂址及周边环境现状见图 2.1-2。

图 2.1-2 周边环境现状照片组图

2.1.3 危险废物处置规模

本项目危险废物处置设施均位于富集车间内,处置规模为3000t/a,处置类别主要涉及HW50废催化剂、HW02医疗废物、HW13有机 树脂类废物、HW18 焚烧处置残渣、HW19 含金属羰基化合物废物及 HW49 其他废物等含有贵金属的危险废物,项目危险废物处置规模及 行业来源详见表 2.1-1。

表 2.1-1 项目废物处置规模及原料行业来源一览表

处置装置	原料名称	处置规模(t/a)	危废类别	行业来源	危险废物	危废代码	各注
	失效汽车尾气催化剂	1000	HW50 废催化剂	非特定行业	机动车和非道路移动机械尾气净化废催化剂	900-049-50	
				甘加沙沙西朝	催化重整生产高辛烷值汽油和轻芳烃过程中产生的废催化剂	261-165-50	
	ide britati (b. 30)			哲恒化于原种	二甲苯临氢异构化反应过程中产生的废催化剂	261-159-50	
	及知惟化剂	1000	HW50 疫催化	III/III	烷烃脱氢过程中产生的废催化剂	261-156-50	
	、拠が知益	1000	定	建林工油 30 日	石油产品加氢精制过程中产生的废催化剂	251-016-50	
	14 Ht			作 A水石 (四) 000 和 1.先	石油炼制中采用钝镍剂进行催化裂化产生的废催化剂	251-017-50	
				In India	石油产品催化重整过程中产生的废催化剂	251-019-50	
回转器			HW50 废催化	基础化学原料	树脂、乳胶、增塑剂、胶水/胶合剂生产过程中合成、酯化、缩 合等工序产生的废催化剂	261-151-50	
			震	期间	有机溶剂生产过程中产生的废催化剂	261-152-50	
	废钯催化剂 (颗粒铝基 栽体)	009	HW49 其他废 物	非特定行业	含有或者沾染毒性、感染性危险废物的废弃的包装物、容器、过滤吸附介质	900-041-49	含有或沾染 贵金属的废 弃包装物、 容器、过滤 容器、过滤
			HW13 有机构 脂类废物	非特定行业	湿法治金、表面处理和制药行业重金属、抗生素提取、分离过程 产生的废弃离子交换树脂,以及工业废水处理过程产生的废弃离 子交换树脂	900-015-13	
AC AN AD AL CANADA	废铂钯催化		Travers als the th	H MILLY M. IS BY	树脂、乳胶、增塑剂、胶水/胶合剂生产过程中合成、酯化、缩 合等工序产生的废催化剂	261-151-50	
和大松牌汉克	剂(其他载	300	HW30 次加化	华恒化子原件	烷烃脱氢过程中产生的废催化剂	261-156-50	
1	(本)		TIL.	MAG	采用烷基化反应(歧化)生产苯、二甲苯过程中产生的废催化剂	261-158-50	
					二甲苯临氢异构化反应过程中产生的废催化剂	261-159-50	

稀贵金属资源循环利用项目环境影响报告书

		乙烯氧化生产环氧乙烷过程中产生的废催化剂	261-160-50
		乙炔法生产醋酸乙烯酯过程中产生的废催化剂	261-163-50
		采用碳酸二甲酯法生产甲苯二异氰酸酯过程中产生的废催化剂	261-166-50
		合成气合成、甲烷氧化和液化石油气氧化生产甲醇过程中产生的 废催化剂	261-167-50
		甲苯氯化水解生产邻甲酚过程中产生的废催化剂	261-168-50
		异丙苯催化脱氢生产0.甲基苯乙烯过程中产生的废催化剂	261-169-50
		邻二甲苯氧化法生产邻苯二甲酸酐过程中产生的废催化剂	261-172-50
		二氧化硫氧化生产硫酸过程中产生的废催化剂	261-173-50
		四氯乙烷催化脱氯化氢生产三氯乙烯过程中产生的废催化剂	261-174-50
		苯氧化法生产顺丁烯二酸酐过程中产生的废催化剂	261-175-50
		甲苯空气氧化生产苯甲酸过程中产生的废催化剂	261-176-50
		羟丙腈氮化、加氢生产3-氨基-1-丙醇过程中产生的废催化剂	261-177-50
		B-羟基丙腈催化加氢生产3-氨基-1-丙醇过程中产生的废催化剂	261-178-50
		甲乙酮与氨催化加氢生产 2-氨基丁烷过程中产生的废催化剂	261-179-50
		苯酚和甲醇合成 2,6二甲基苯酚过程中产生的废催化剂	261-180-50
		糠醛脱羰制备呋喃过程中产生的废催化剂	261-181-50
		过氧化法生产环氧丙烷过程中产生的废催化剂	261-182-50
		除农药以外其他有机磷化合物生产过程中产生的废催化剂	261-183-50
	农药制造	化学合成农药生产过程中产生的废催化剂	263-013-50
	化学药品原料 药制造	化学合成原料药生产过程中产生的废催化剂	271-006-50
	鲁用药品制造	兽药生产过程中产生的废催化剂	275-009-50
	生物药品制品制造	生物药品生产过程中产生的废催化剂	276-006-50
	非特定行业	废液体催化剂	900-048-50
HW02 医药废物	化学药品原料 药制造	化学合成原料药生产过程中产生的废吸附剂	271-004-02
		极脂、合成乳胶、增塑剂、胶水/胶合剂生产过程中合成、脂 化、缩合等工序产生的胶母液	265-102-13
HW13 有机树 脂类废物	合成材料制造	树脂(不包括水性聚氨脂乳液,水性丙烯酸乳液、水性聚氨酯丙烯酸复合乳液)、合成乳胶、增塑剂、胶水/胶合剂生产过程中精馏、分离、精制等工序产生的釜成残液、废过滤介质和残渣	265-103-13
	非特定存业	湿法冶金、表面处理和制药行业重金属、抗生素提取、分离过程产生的废弃离子交换档脂,以及工业废水处理过程产生的废弃离子交换树脂	900-015-13

稀贵金属资源循环利用项目环境影响报告书

	900-048-50	废液体催化剂	非特定行业			
	261-152-50	有机溶剂生产过程中产生的废催化剂	基础化学原料制造	为 剂		
	251-016-50	石油产品加氢精制过程中产生的废催化剂	精炼石油产品 制造	UW40 BEOBEL	100	失效含铑均相催化剂
	900-020-19	金属羰基化合物生产、使用过程中产生的含有羰基化合物成分的废物	非特定行业	HW19含金属 羰基化合物废 物		
含有或治染 贵金属的废 养包装物、 容器、过滤 吸附介质等	900-041-49	含有或者活染毒性、感染性危险废物的废弃的包装物、容器、过滤吸附介质		430		
	900-039-49	烟气、VOCs 治理过程(不包括餐饮行业油烟治理过程)产生的废活性炭,化学原料和化学制品股色(不包括有机合成食品添加剂脱色)、除杂、净化过程产生的废活性炭(不包括 900-405-06、772-005-18、261-053-29、265-002-29、384-003-29、387-00129类废物)	北京公司	HW49 其他废		
危险废物焚烧、热解等 处置过程产 生的底渣、 飞灰和废水	772-003-18	具有毒性、磨染性中一种或者两种危险特性的危险废物焚烧、热解等处置过程产生的飞灰、废水处理污泥和底渣(不包括生活垃圾焚烧炉协同处置感染性医疗废物产生的底渣)	环境治理业	HW18 焚烧处置残渣		
	900-451-13	废覆制板, 印刷线路板, 电路板破碎分选回收金属后产生的废树 脂粉				

成。结焦堵塞是一种简单的物理遮盖现象,是由含C物沉积而堵塞细孔,并未破坏表面结构,只要将沉积物烧掉就可以恢复其活性;机械 失效汽车尾气催化剂主要因高温而产生结焦堵塞、机械损伤等因素导致催化剂失活,均不涉及重金属污染。结焦堵塞是一种简单的物 理遮盖现象,是由含C物沉积而堵塞细孔,并未破坏表面结构,只要将沉积物去掉就可以恢复其活性;机械损伤多由震动、冲击等外因造 损伤多由震动、冲击等外因造成。

废铂催化剂、废钯催化剂失活原因主要包括化学失活、热失活和机械失活。化学失活主要由积碳堵塞催化剂孔隙及覆盖活性成分引

起;热失活主要由催化剂烧结、活性组分氧化、相变等因素引起;机械失活主要由受到震动、冲击等外因造成催化剂结构不完整导致。

失效含铑均相催化剂多采用 DAVY/DOW 低压法催化剂羰基合成工艺,反应过程采用均相络合物铑催化体系,铑原子为活性中心。关 于该类催化剂的失活,主要原因为随着羰基化反应的进行,催化剂内部铑配合物之间的相互作用形成了没有催化活性的多核铑簇化合物导 致催化剂失活。

2.1.4 项目组成

本项目购置贵州中伟资源循环产业发展有限公司北部约 6.33 公顷用地及其地面构筑物,并利用原用地上的厂房进行改建。本项目组成见表 2.1-2。

表 2.1-2 项目建设工程组成一览表

单)	项工程名称	建设内容、规模及相关参数	备注
	XBC-01#富集 车间	1 栋,占地面积 6057m², 2F,建筑高度 29,52m;设置火法富集工序、氧压浸出、硫酸化焙烧等工序	中伟资源循环原 8# 浆化车间,本项目 在车间内进行改建
主体工程	XBC-02 铂钯 精炼车间	1 栋,占地面积占地面积 3235.54m²,4F,建筑高度 17.8m;生产工序有蒸馏及提取锇钌工序、金萃取工序、铂钯预处理工序、钯萃取及精炼工序、铂精炼工序;设置原料/中间物料库、产品仓库	中伟资源循环原 18#镍线车间,本项 目在车间内进行改 建
	XBC-03#铑铱 精炼车间	1 栋,占地面积 2100.48m², 3F,建筑高度 12.61m;布置铑铱分离工序、铑铱预处理工序、铑精炼工序、铱精炼工序等	属于中伟资源循环 原 20#镍净化车 间,本项目在车间 内进行改建
補助工程	氯气站	位于 XBG-02#甲类仓库内,占地面积 164m²	中伟资源循环原 21#镍溶解车间,本 项目在车间内进行 改建
43:	维修车间	位于生产综合配套车间,占地面积 388m2	1
	办公设施	位于生产综合配套车间,占地面积 388m²	1
	生活设施	食宿依托园区生活设施,不在厂区食宿	1
储运工程	XBC-04#生产 综合配套车间	1 栋,占地面积 5626.84m², 2F,建筑高度 9.15m;布置渣库 (756m²)、原料危废暂存库 (756m²)、赤铁矿暂存库 (387m²)、污水预处理站、辅料库、维修车间 (388m²)、备 品备件和材料库 (259.2m²)、综合办公室、卫生间、淋浴间、 监控室等	属于中伟资源循环 原 7#原料仓库,本 项目在车间内容进 行改建
	XBG-02#甲类 仓库	1 栋,占地面积 612.15m², 1F,建筑高度 12.25m; 主要布置氯气站、辅料的仓储	中伟资源循环原 21#镍溶解车间,本 项目在车间内容进 行改建
	产品仓库	位于 XBC-02 铂钯精炼车间内,占地面积 70m ² ,储存金银铂钯 铑铱产品	1
	储罐区	1 个 850m³ 硫酸储罐(φ10000×11000)、1 个 850m³ 酸盐储罐 (φ10000×11000)、2 个纯水储罐(900m³/个,φ12000×800)、 2 个液碱储罐(900m³/个,φ12000×800)、2 个双氧水储罐 (50m³/个,φ3500×5500)	属于中伟资源循环 原 19#罐区,本项 目罐组及罐组配套 设施全部利用,不 改建
	给水	(1) 新鲜水: 新鲜水由中伟资源循环净水站供应; 本次建设不 新增供水设施; (1) 化学水供应; 纯水不新增供应设施, 纯水外购至中伟新材 料股份有限公司 (3) 循环水系统; 本项目设置循环水系统, 总的循环水量为 1408.5m³/h。	,
公用工程	排水	(1) 排水方式:采取雨污分流方式排水 (2) 雨水排放:初期雨水接入中伟资源循公司雨水系统,经中 伟资源循初期雨水池收集后接入中伟新材料污水处理站处理后 回用,后期清洁雨水依托中伟资源循雨水排放口接入附近市政 雨水管网,最终排入后锁小溪; (3)生产废水排放:拟建项目生产废水处理达到《无机化学工 业污染物排放标准》(GB31573-2015)车间和间接标准后接入	利用购置场地的现 有雨水收集管网、 生活污水收集管 网、对生产废水收 集输送管廊根据项 目工艺布置进行改 造

-		经材料是大体和外体和任何 用	
		新材料污水处理站处理后回用; (4)生活污水排放;新增生活污水排入中伟资源循生活污水收 集管网后经中伟资源循生活污水排放口进入市政污水管网后进 入大龙工业污水处理厂处理。	
	供电	由中伟资源循 110kV 变电站供应,不新增供电设施	1
	供热	本项目在焚烧炉尾气处理系统配置余热锅炉1台。额定蒸发量 2.4t/h, 年蒸汽产生量为19008t/a	1
环保工.	废 气治理	(1) 电炉料仓废气、微波干燥废气、环境集烟尾气等经 1#布袋除尘器处理后引入 1#碱液吸收系统(两级碱液吸收),球磨及破碎放废气、矿热电炉烟气、中频炉烟气经 2#布袋除尘器处理后引入 1#碱液吸收系统(两级碱液吸收),适水淬废气、蒸晒回转窑废气、氧压浸出及压滤废气等直接引入 1#碱液吸收系统(两级碱液吸收), 2上废气经度气处理系统处理后 1 根 32m 高的排气简 (DA001) 排放: (2) 赤铁矿处理生产线赤铁矿处理生产线高压水雾化废气、预浸出废气、常压浸出废气等经风机引入 2#碱液吸收系统(三级碱液吸收)处理后经 1 根 15m 高的排气简 (DA002) 排放: (3) 废催化剂处理区域装料废气经风机引入 1#活性凝吸附装置(两级活性炭)处理,废催化剂处理区域如料及冷却废气经风机引入 34布袋除尘器处理,废催化剂处理区域的科及为 25m 高的排气简 (DA003) 排放; (4) 回转窑炉内废气经风机引入"二燃烧+余热锅炉(SNCR 脱硝)+半干式急冷塔+半干式应该喷消石灰、活性炭粉)+5带布袋除尘器处理,以上废气经 1 根 32m 高的排气简 (DA003) 排放; (5) 废催化剂回转窑燃烧机燃烧废气直接经 1 根 32m 的排气简 (DA004) 排放; (6) 精炼生产线铂钯炼精车间含氮及含氢酸性废气经风机引入44碱液喷淋系统(两级碱液吸收)处理,均上废气经 1 根 25m 高的排气简 (DA006) 排放; (7) 精炼生产线全有机组分废气经风机引入 1#酸洗喷淋塔+6#碱洗喷淋塔+1#干式过滤器+2#活性炭吸附装置处理后经 1 根 32m 高的排气简 (DA006) 排放; (9) 精炼生产线全氦聚气经、6两级碱液吸收)处理后经 1 根 32m 高的排气简 (DA008) 排放; (9) 精炼生产线含氮氧化物酸性废气,其中高浓度含氮氧化物酸性废气光经 7#碱液喷淋系统(两级碱液吸收)处理后经 1 根 25m 高的排气简(DA009)排放; (10)精炼生产线含氮度气经风机引入 2#破液喷淋牛4#水喷淋塔处理后经 1 根 15m 高的排气简(DA010)排放; (10)精炼生产线含氮度气经风机引入 2#破液喷淋牛4米水喷淋塔处理后经 1 根 15m 高的排气简(DA011)排放; (12) 化验室废气经 74布装除尘器+94碳液喷淋牛44水喷淋塔处理后经 1 根 15m 高的排气简(DA012) 排放; (12) 化验室废气经 74布装除尘器+94碳液喷淋牛4水喷淋塔处理后经 1 根 15m 高的排气简(DA013)排放。	新建
	废水治理	水经中伟资源循环厂区生活污水总排口接入市政污水管网。生产废水建设建设污水预处理站 1 座,占地 1400m²。初期雨水经初期雨水管网收集后进入中伟资源循环公司雨水主管后进入该公司 1#初期雨水池 (1250m³),初期雨水泵入污水处理站处理后回用于水淬用水	1
-	噪声治理	滅振、隔声、吸声等减噪措施	7

固废处置	危险废物:在甲类仓库内设置危险废物暂存间 1 座,占地面积 20m²;在生产综合配套车间设置危废原料库 1 座,占地面积 756m²。 一般固废:在生产综合配套车间设置渣库 1 座,占地面积 756m²。 生活垃圾:设置垃圾桶对生活垃圾进行收集,定期交由环卫部	1
风险防范	门清运 罐区设置围堰。酸液罐组围堰长 114m, 围堰高 1.9m; 液碱罐组 围堰长 109.2m, 围堰高 1.6m, 双氧水罐组围堰长 60m, 围堰高 1m 应急事故池; 依托中伟资源循环公司厂区 1#事故池(容积 800m³)	1

2.1.5 依托外部设施的可靠性分析

(1) 纯水供应的可靠性

本项目纯水由中伟新材料股份有限公司供应,主要依托该公司污水处理系统处理 后反渗透制取的纯水及自来水制取的纯水。贵州中伟资源循环公司使用的纯水均全部 由公司供应,本项目购置贵州中伟资源循环公司用地及地面建筑,导致该公司 28000 实物吨/年镍/钴中间品生产线、15000 金属吨/年镍豆镍粉料生产线等生产线取消,本 项目纯水使用量远低于该公司取消生产线的纯水使用量,因此,本项目依托中伟新材 料股份有限公司纯水制备系统供应可满足本项目使用需求。

(2) 初期雨水池依托的可靠性

本项目购置贵州中伟资源循环公司用地及地面建筑,属于该公司现有厂区初期雨水池的原收集范围,由于项目建设不改动现有雨水收集管道,且项目用地受制,项目拟依托该公司现有初期雨水池收集本项目初期雨水。根据 2.2.8.2 节初期雨水计算公式核定,本项目单次初期雨水量为 712.44m³,中伟资源循环公司东片区单次初期雨水量为 958.14m³,合计单次初期雨水量为 1670.58m³,中伟资源循环公司东片区已建1座容积为 1250m³ 的初期雨水池收集该公司东片区污染区初期雨水,因此,项目依托贵州中伟资源循环公司现有厂区初期雨水池是可行的。

(4) 事故池依托的可靠性

本项目购置贵州中伟资源循环公司用地及地面建筑,属于该公司现有厂区事故池的原收集范围,由于项目建设不改动现有地下雨污管道,且项目用地受制,项目拟依托该公司现有事故池收集本项目事故废水。贵州中伟资源循环公司现有厂区东片区设置应急事故池1个,容积为800m³,根据后文分析,现有事故池容积能够满足事故废

水的存储要求。

2.1.6 生产规模及产品方案

拟建项目以赤铁矿(高冰镍浸出渣)、失效汽车尾气催化剂、废铂催化剂(铝基载体)、废钯催化剂(铝基载体)、废钯催化剂(铝基载体)、废铂钯催化(其他载体)、均相催化剂等为原料,建设富集车间、铂钯精炼车间及铑铱精炼车间,达到年处理年利用赤铁矿(高冰镍浸出渣)5000t/a(干基)、废催化剂3000t/a(干基),达到产出海绵铂3.99t/a、海绵钯5.1t/a、金锭0.33t/a、铑粉0.45t/a、铱粉0.1t/a、银锭6.2t/a、粗硒1.33t/a、富钌渣0.5t/a、锇钠盐0.85t/a。

项目产品方案详见表 2.1-3。

生产线	产品类型	产品名称	标准	产量	去向
	中间产品			(t/a) 34.52	精炼生产线
	H. lell. uu	铂族精矿	1	34.32	
	中间产品	粗银	1	5.04	贵金属精炼生产线铸锭
赤铁矿处理生产线	中间产品	海绵铜	1	1.49	银置换工序
外状似处理生厂线	副产品	粗硒	《粗硒》 (YS/T 1154-2016)	1.33	外售
	副产品	镍净化前液	企业内部质控标准	28064.34	外售贵州中 伟资源循环 公司
失效汽车尾气催化剂 处理生产线	中间产品	贵铁合金液	1	25.24	精炼生产线
废铂催化剂(铝基载 体)处理生产线	中间产品	铂合金液	1	42.18	精炼生产线
废钯催化剂(铝基载 体)处理生产线	中间产品	钯合金液	1	17.6	精炼生产线
废铂钯催化(其他载 体)处理生产线	中间产品	铂族金属液	1	35	精炼生产线
含铑均相催化剂处理 生产线	中间产品	含铑水浸渣	I	0.1	精炼生产线
-1.) 5A	主产品	金锭	《金锭》 (GB/T 4134-2021)	0.33	外售
	主产品	银锭	《银锭》(GB/T4135-2016)	6.20	外售
	主产品	海绵铂	《海绵铂》(GB/T1419-2015)	3.99	外售
its A total level when	主产品	海绵钯	《海绵钯》(GB/T1420-2015)	5.10	外售
贵金属精炼生产线	主产品	铑粉	《铑粉》 (GB/T1421-2018)	0.45	外售
	主产品	铱粉	《铱粉》 (GB/T 1422-2018)	0.1	外售
	副产品	富钌渣	企业内部质控标准	0.5	外售
	副产品	锇钠盐	企业内部质控标准	0.85	外售

表 2.1-3 各生产线产品方案一览表

表 2.1-3 镍净化前液成分一览表

涉密, 略 ……。

2.1.7 主要原辅材料及能耗

2.1.7.1 主要原辅材料

中伟资源循环公司硫酸镍生产线产出的副产品赤铁矿是高冰镍浸出工序产出,危险废物来自周边区域相应行业企业收集。其余辅料均为市场外购。项目主要原辅材料使用量详见表 2.1-4。

表 2.1-4 主要原辅材料用量一览表

涉密,略……。

表 2.1-5 赤铁矿成分表

涉密,略……。

表 2.1-6 高冰镍成分表

涉密,略……。

表 2.1-7 废催化剂成分表

涉密,略……。

表 2.1-8 焦炭成分表

成分	固定碳	挥发物	灰分	S	低发热值(MJ/kg)
含量(%)	84	1.84	15.76	0.72	27.21

表 2.1-9 生石灰成分表

成分	CaO	SiO ₂	Fe	其它
%	50.96	3.27	2.36	43.41

表 2.1-10 石英石成分表

成分	CaO	MgO	SiO ₂	Fe	其它
%	0.87	1.11	92.90	1.86	3.26

表 2.1-11 天然气成分表

成分	CH ₄	C ₂ H ₆	C ₃ H ₈	N ₂	CO ₂	其它	合计
含量 (VV%)	92.56	2.74	0.54	1.18	1.07	1.92	100.00

表 2.1-12 木削成分表

元素	С	О	Н	N	S	合计
木屑 (%)	53.31	40.26	6.39	0.02	0.02	100

2.1.7.2 主要能源消耗

主要能源用量见表 2.1-13。

表 2.1-13 主要能源消耗一览表

序号	名 称	规 格	单 位	消耗量
1	电	10kV/380V	kWh/a	27173520

稀贵金属资源循环利用项目环境影响报告书

序号	名 称	规 格	单位	消耗量
2	新鲜水	/	t/a	55120.37
3	蒸汽	0.1-0.6MPa, 饱和蒸汽	t	16497.8
4	压缩空气	0.7MPa	Nm³/a	4471620
5	氮气	纯度≥99.99%, 0.6MPa	Nm³/a	45500
6	氧气	0.6-2MPa	Nm³/a	420111.81
7	天然气	0.2MPa	Nm³/a	1382177.2

2.1.8 主要生产设备

本项目主要生产设备见表 2.1-14~表 2.1-20。

表 2.1-15 富集车间实验室制样设备一览表

涉密, 路……。

表 2.1-16 富集车间主要生产设备一览表

涉密, 略……。

表 2.1-17 废催化剂生产线湿法富集主要生产设备一览表

涉密,略……。

表 2.1-18 铂钯精炼车间主要生产设备一览表

涉密,略……。

表 2.1-19 铑铱精炼车间主要生产设备一览表

涉密,略……。

表 2.1-20 矿热电炉技术参数一览表 涉密,略……。

2.1.9 公用工程

2.1.9.1 给水系统

(1) 供水水源

厂区供水由贵州中伟资源循环产业发展有限公司建设的 1 座 700m³/h 的净水设施供给。

(2) 生活用水系统

本项目生活用水系统主要生产车间办公室用水,由中伟资源循环厂区生活供水管 网直接接入本厂区,厂区内原有生活供水管道沿用,仅对厂房内生活用水管道根据车 间布局进行改造。

(3) 生产给水系统

生产给水系统主要包括生产用工艺水、车间设备及地面清洁用水、废气处理设施 用水、循环冷却系统补水、绿化用水等。本项目使用的纯水外购自中伟新材料股份有 限公司供给,不另行新建。自来水外购自中伟资源循环产业发展有限公司。

(4) 消防给水系统

本项目消防用水包括室内、室外消防灭火系统的用水等,并以发生火灾时最不利情况下的/用水量组合进行设计。

本工程消防水量最大的建(构)筑物为铂钯精炼车间,火灾危险性丙类,建筑体积 57592.612m³,根据《消防给水及消火栓系统技术规范》(GB50974-2014)规定,火灾延续时间按 3 小时计,本项目室内消火栓设计流量为 20L/s,同时使用消防水枪数 2 个,室外消火栓设计流量为 40L/s,故一次火灾消防用水量为 648m³。

本项目依托贵州中伟资源循环产业发展有限公司已建立的有效容积 1000m3 消防

水池, 经环状消防管网为本项目提供消防水源,整个工程的消防以室内外消火栓为主。

(5) 用水量

①、办公用水量

本项目劳动定员 150 人,不在厂区住宿,职工生活用水定额为 60L/人·d,则职工生活用水量为 9m³/d (2970m³/a)。

②、生产用水量

本项目生产系统采用纯水、冷凝水, 纯水外购自中伟新材料股份有限公司供应, 生产用水主要包含生产线工艺用水、循环冷却水系统补水、酸雾吸收塔补水、地面清 洁用水等。

I、生产线工艺用水

本项目生产线工艺最大日新鲜水用水量为992.81m³/d。

II、循环冷却系统补水

本项目富集车间循环冷却水给水量 639.5m³, 铑铱车间循环冷却水给水量 150m³/h, 铂钯车间循环冷却水给水量 620m³/h, 合计 1408.5m³/h, 在场地西侧建设循环冷却水系统一套,参照《工业循环水冷却设计规范》经验计算值,蒸发水量按循环水量的 1.8%计,则蒸发损耗量为 25.35m³/h,循环水系统排水约为循环水量的 0.1%,循环冷却系统强制排水约为 1.41m³/h,则循环冷却系统补水量为 26.76m³/h。

II、废气处理设施用水

根据建设单位提供的设计资料,废气处理设施用水总量为108.89m3/d。

III、设备及地面清洁用水

根据建设单位提供的设计资料,生产车间设备及地面清洗用水量为18.5m3/d。

IV、绿化用水

参照贵州省《行业用水定额》(DB52/T 725-2025),绿化用水定额取 1.1L/(m² · d),厂区绿化面积 7806.53m²,则绿化用水量为 8.59m³/d。

2.1.9.2 排水系统

本项目排水分为污水系统(生活污水、生产污水)和雨水系统,实行雨污分流、

清浊分流。本项目生产废水采用管廊动力输送,不设置暗管,对厂区内的现有管廊进行改造,生产废水经动力输送至污水处理设施。生活污水依托厂区现有生活污水管网,排入贵州中伟资源循环产业发展有限公司已建设的生活污水主管网,经贵州中伟资源循环产业发展有限公司 DW001 废水总排口排入市政污水管网。本项目雨水收集依托厂区现有已建设的雨水主管,接贵州中伟资源循环产业发展有限公司雨水主管后汇入贵州中伟资源循环产业发展有限公司 1#初期雨水池,后期依托贵州中伟资源循环产业发展有限公司雨水排放口排放。厂区雨污管网布置情况详见图 2.1-3。

(1) 生活污水

本项目职工生活用水量为 9m³/d(2970m³/a),排水系数按 0.9 计,污水产生量约 为 8.1m³/d(2673m³/a),排入市政管网接入大龙经开区工业污水处理厂处理。

(2) 生产废水

①、设备及地面清洁

生产车间设备及地面用水排污率按 80%计,则设备及地面清洗废水产生量为 15.02m³/d,排入污水处理站处理。

②、废气处理设施废水

废气处理设施用水蒸发损失量约为 10%,则废气处理设施废水产生量为 98m³/d, 经管廊输送至污水处理站预处理后经管廊输送中伟新材料股份有限公司生产废水处理 设施处理。

③、循环冷却系统强制排水

循环水系统排水约为循环水量(1408.5 m^3/h)的 0.1%,循环冷却系统强制排水约为 $1.41m^3/h$ (33.8 $4m^3/d$),回用于水淬用水。

4、工艺生产废水

根据建设单位提供的设计资料,根据运行工况,项目最大日工艺生产废水外输量为 25.21m³/d,排入污水处理站预处理后,经现有厂区管廊输送至中伟新材料股份有限公司生产废水处理设施处理。

(3) 初期雨水

本次评价初期雨水量参考《有色金属工业环境保护工程设计规范》(GB50988-

2014)初期雨水收集池容积的计算公式进行计算,初期雨水收集池容积应按可能产能污染的区域面积和降水量计算确定,按下式计算:

$$V_y = 1.2F \cdot I \times 10^{-3}$$

式中: V, ——初期雨水收集池容积 (m³);

F——受粉尘、重金属、有毒化学品污染的场地面积 (m^2) ;

I---初期雨水量(mm)。

本项目用地属于贵州中伟资源循环产业发展有限公司原用地范围,且利用原用地范围的生产厂房,不另行建设生产厂房,项目建设不改变雨水管网的走向,初期雨水池依托贵州中伟资源循环产业发展有限公司东片区初期雨水池,贵州中伟资源循环产业发展有限公司东片区已建设的1座容积为1250m³的初期雨水池。根据总平面图,本项目初期雨水收集收集范围面积约为39580m²,中伟资源循环公司东片区初期雨水收集池收集范围总面积约为29230m²。根据本项目特征,参照《有色金属工业环境保护工程设计规范》(GB50988-2014),本次评价初期雨水量参照重金属冶炼或加工企业取值,按15mm 计算。则按上式进行计算得出,本项目单次初期雨水量为712.44m³,中伟资源循环公司东片区单次初期雨水量为526.14m³,合计单次初期雨水量为1238.58m³。中伟资源循环公司东片区已建1座容积为1250m³的初期雨水池,可满足本项目及中伟资源循环公司东片区已建1座容积为1250m³的初期雨水池,可

2.1.9.3 水平衡

由于本项目矿热电炉、回转焙烧窑、热解焚烧炉为共用设备,赤铁矿、失效汽车 尾气催化剂焚烧渣、废铂催化剂(铝基载体)、废钯催化剂(铝基载体)、废铂钯催 化(其他载体)、含铑均相催化剂分别进入共用设备进行处理或熔炼,因此,厂区会 有不同的运行工况。根据项目特点,项目水量平衡情况见表 2.1-22,典型日水平衡见 图 2.2-3。 極贵金属资源循环利用项目环境影响报告书

序号 用水瓜目 赤铁矿垃埋生产组 次统汽车尾气催化剂生 产线 产线 产线 产线 产线 产线 产线 产线 计 产线 计 产线 计 产 产 产 产	新年大姓东 213.99 135.81 208.41	用水量 回用水 73.79	用水量 (m ² /d)			9	- T 38.	CAT SAN LL	of the state of	-		10 + 4 20	
	213.99 213.99 135.81 208.41	四用水73.79			MC-445-72, 441-812	4.5	17 MET.	10100/12	国際ない時間出	放水		成水去回	
	213.99	73,79	物料带入	中间水蒸汽	(m)/d)	(m3/d)	去前	(D/cm) III	去向	名除	(P/m)	去向	(p/(m))
	135.81	(3,79		7,72 (冷凝水)	10000		同用工艺生产	116.31	華酸镍溶液	雾化陡木	3.6	回用于水淬	3.6
	135.81		2.78	(光線) 80.6+	10.68	1,12	用水	23.53	水溶质	水消後水	70.19	循环使用	70.19
	135.81			1 4-38 / 24-4			2011年11日	0.33	告会国游演	雾化废水	4.57	回用于水斧	4.57
	208,41	97.01	80.0	1.73 1.75 R. P. C.	110.33	7.73	日本に出口	1000	40000	水淬烧水	92.43	循环使用	92.43
	208.41			TA:09 1 (0) 11			MIN	30.81	Wet-M	一段航酸浸出液	3,51	污水处理站	3,511
	208.41			1-1-28-36-7 CO. P.			※ 本本土田門	0.64	贵金属溶液	雾化版水	4.00	回用于水淬	4.00
等/ 定注于/ 33 按照相化剂 (包括数		145.24	60.0	LANGE CATHERINE	166.99	7,73	日本日田田	24.46	A 30 3K	水淬废水	141.24	循环使用	141.24
4 旅館組化剂 (铝基数				17.09 1987			出	47.08	小许低	一段硫酸浸出液	2.88	污水处理站	2.88
4 成后间位置 电影影響				Anna Citable			44年中中	0.55	班中国沿河	雾化陵水	2.78	阿用于水洋	2.78
	204.55	142.31	90'0	A AM CHARLES	164.74	7,73	THETE	15.05	AU 300 38	水溶废水	139,53	循环使用	139.53
14/ 定理主/ - 68				17,03 (00.01)			AT W	40,21	Without	一段硫酸級出液	1.90	污水处理站	1.90
多数的使相位(其他数 体)处现生产级	0.67	1	91'0	,	0.10	1	1	0,73	贵金属溶液	,	1	1	,
6 会辖均相催化網处理生	61.0	1	1	, T	0.00	1	,	1	1	水洗液	0.04	行水处理站	609
产级	2 20				204					水浸液	0.15	4 4 4 4 4 4	11.0
7 精炼生产线	1	1	2.57	22.26 (冷凝水) +27.30 (線代)	8.36	22.26	回用工艺生产: 用水	1	7.	精炼生产线工艺版 水	21.51	污水处理站	21.51
8 成气处理设施废水	108.89	1	1	1	10.89	1	1	1	1	废气处理设施废水	86	污水处理站	86
9 设备及地面清洁用水	18.5	1	1	1	3.48	1	+	1	+	设备及地面滑油废水	15.02	污水处理站	15.02
10 循环冷却蒸洗补水	642,24	1	,	~	608.4	1	_	1	+	强制排水	33,84	回用于水淬用水	33,84
11 45	6	1	1	1	6.0	1	1	1	1	生活污水	8.1	进入市政污水祭阿	8.1
12 初期周水	1	1	1	142,49	0	1	1	- 3	1	初別兩水	142.49	污水处理站	142.49

-
n3/6
4
4
40
则约合 142.49m³/d。
,5天内潜纳完毕,
が
雅
品
10
û
17/3
=
712,44m
47
施
新
茶
1400
推
列期 兩
域初期岸
以区域初期用
污染区域初期雨
(目污染区域初期青
本项目污染区域初期青
, 本项目污染区域初期雨水产生量为
-
-
-
图前文计算,
-

			用水	用水量(m ² /d)			全	冷凝水	間改及产品作出	·哈奇法	後水		放水去向	
古古	用水瓜鼠	新鲜水池水	回用水	物料带入	北極子回中	(m)/d)	(m)(d)	去向	(P/¿m) III	本向	名縣	(m//q)	共和	(P//m)
+	of the total and the dockle	2010 100	200 000	-	7.72 (冷凝水)	100.000	1	四川工艺生产	116.31	硫酸键溶液	雾化版水	3.6	回用于水弹	3.6
	你获得 处理上广线	215.33	13.19	2.78	(分)(報)(80'6+	89.01	1.12	用水	23.53	州北外	水消度水	70.19	循环使用	70.19
40	含铑均相催化剂处理生	040	,	5		000					水洗液	0,04	20 4 A W S	010
	1000	0.19	,	,		0.00		,		7	米沙湖	0.15	行不足法が	0.13
	相集生产统	,	1	2,57	22.26 (冷淡水) +27.30 (紫汽)	8,36	22.26	回用工艺生产 用水	1	1	植炼生产线工艺版 木	21,51	污水处理站	21,51
H	废气处理设施废水	108.89	-1	1	1	10.89	1	1	1	1	核气处理设施废水	86	行水处理站	86
-	设备及地面清洁用水	18.5	+	-	1	3,48	+	7	1	1	设备及地面滑结废 木	15,02	污水处理体	15.02
H	循环冷却系统补水	642.24	1	1	,	608.4	1	,	1	7	強制排水	33.84	回用于水斧用水	33.84
	40.00	6	1	1	1	6.0	,	1	1	1	生活污水	8.1	进入市政治水管网	8.1
-	初期用水	1	1.	1	142.49	0	1	1	1	1	初期用水	142.49	污水处理站	142.49
	が	992.81	73.79	8.35	208.85	721.04	29.98		139.84			392.84	1	392.84
	-64			1283.8					1283.8				1	

			用水	(P/sm) 書		Alt No DA HER BA	党	今能水	国胺及	田泉曜礼	00.00		版水去向	
台北	用水項目	\$2.40 de 10de de	李田田	No british 3	of city de city de	W. O. C. S.	Very and	40	All Cardian	40	9.7	水光艇	4	中
		WINT WALL	A TANKE	-1011111V	T-110 AV-5881 A	CHILD OF	M. CHIVEY	KIE	all convers	27.14	ti in	(p/¿m)	1410	(m//m)
	He MAZER AT TO AN MILE WITH				Anna Chamball			SE WALL THE STATE OF	0.33	告金国路液	雾化废水	4,57	回用于水溶	4.57
4	大双八十八世九四十	135.81	10.79	80'0	Cond carde	110.33	7.73	THE THE	1000	de-200 c.m.	水淬暖水	92.43	循环使用	92.43
	1.3%				17.00 CONT. 1			H.W.	30.81	Arrest	一段組織浸出液	3.51	污水处理站	3.51
•	含辖均相催化周处理生	0.40	-	,		000			,	,	水洗液	0,04	大田 地 中田	010
N	No.	6.19	,			000			7		水浸液	0.15	お今年年後	0.19

99
-
-
50
榮
75.5
280
180
300
1000
=
1980
-
100
100
-
leniui.
1000
-
-
-
=
a.
100
女
men.
LAME:
恕
Librar.
150
-
湖
200
-560
-
-068
505
10mg
200
die
签
-

						A 100 AN AN AND PARTY AND						The second secon		
中华	用水川目	新鲜水纯水	回用水	物料指入	北極之回日	(m ₂ /d)	W (m/d)	太向	(P/ _c m) 摄	東南	松梅	产生量 (m3/4)	京町	(100/4)
m.	精炼生产线	4	1	2.57	22.26 (冷凝水) +27.30 (蒸光)	8.36	22.26	回用工艺生产 用水	7	1	精练生产线工艺版 水	21.51	污水处理站	21.51
4	废气处理设施废水	108.89	1	1	/	10.89	1	1	1	1	废气处理设施废水	86	污水处理站	86
'n	设备及地面清洁用水	18.5	1	1	7	3,48	1	+	1	1	设备及地面清清废水	15.02	行水处理站	15.02
9	指环冷却系统补水	642.24	1	4	1	608.4	1	+	1	1	强制排水	33.84	回用于水淬用水	33.84
1	\$4¢	6	1	1	1	6.0	1	1	1	1	生活污水	8.1	进入市政污水管网	8.1
00	初期前水	1	1	1	142.49	0	1	1	1	1	初期雨水	142.49	行水处理站	142.49
	사기	914.63	10'16	2.65	208.87	742.36	29.99		31.14			419.67	/	419.67
	合計			1223.16					1223,16					
						续表 2.2-22	项目用排水量平衡表		(运行组合工况3)					
			用水	用水量 (m³/d)		24年以北北	仌	冷凝水	固度及产品特出	"品待出"	版本	Ш	成木去向	
命坐	用水项目	新鲜水池杯	回用水	物料带入	中同水蒸汽	(M ² /d)	能 (m¾d)	和	(p/em) III	井间	名称	产生量 (m/d)	岩间	量(10万/4)
	Action to this a				A STATE OF THE PARTY OF THE PAR			ALM ALM AL	0.64	報於國學報	葉化除木	4.00	- 仮光上田国	4.00
_	級留信代利 (部事級 体) 处理生产线	208.41	145.24	60'0	7,73 (冷暖水) +9,09 (紫光)	166.99	7.73	国用工艺生产 用水	47.08	水溶液	大学版本	141.24	循环使用污水外磨沫	141.24
c1	含權均用催化剂处理生 次統	0.19	1	1	1	00'0	1	+	7	-	大記漢	0.04	行水处理站	61.0
mi	精炼生产线	1	1	75.2	22.26 (冷泉水)	8.36	22.26	阿用工艺生产	1	1	精炼生产线工艺版 **	21,51	污水处理站	21.51
4	成气处理设施成水	108.89	1	1	1 1000	10.89	1	1	1	1	成气处理设施废水	86	特水处理站	86
ws	设备及地面清洁用水	18.5	1	1	1	3,48	1	-	1	4	设备及地面清洁度本	15.02	污水处理品	15.02
9	循环冷却系统补水	642.24	1	1	1	608.4	1	1	1	1	強制排水	33.84	回用于水淬用水	33.84
1	办公	6	1	1	,	60	1	1	1	4	生活污水	8,1	进入市政污水管网	8.1
œ	初期開水	1	1	1	142.49	0	1	1	1	1	初期雨水	142,49	行水处理站	142.49
	小件	987,23	145.24	2,66	208.87	799.02	29.99		47.72			467.27	1	467.27
	合计			1344					1344				,	
						续表 2.2-22	项目用排水量	项目用排水量平衡表(运行组合工况4)	合工况 4)					
9			用水量	(P/(m) 測		排作品担相	念	冷能水	開废及产品市出	田中田	液水		废水去向	
5.	用水項目	新鲜水池水	國用水	物料带入	中国水源汽	(p/ _E m)	(m¾d)	岩原	原 (m³/d):	計制	名略	产生量 (m ³ /d)	去闹	(p/,m)
	06-00-00-00-00-00-00-00-00-00-00-00-00-0	100			7.72 (沙路光)			四田十十年代次	0.45	员金属溶液	雾化庞木	2.78	回用于水淬	2.78
_	(本) 处理生产线	204,55	142.31	90'0	+9,09 (銀行)	164.74	7.73	用水	16.51	水淬造	水淬炭水 一段低酸浸出液	139.53	循环使用 污水处理站	139.53
ei	含锰均和催化剂处理生 产线	61.0	1	1	,	00'0	,	4	1	1	水洗液水水浸液	0.04	污水处理站	0.19
т.	精炼生产线	1	1	2.57	22.26 (冷凝水) +27,30 (蒸汽)	8.36	22,26	回用工艺生产 用水	1	1	精炼生产线工艺度 水	21.51	污水处理站	21.51
4	成气处理设施废水	108.89	1	1	,	10.89	1	1	1	1	族气处理设施废水	86	行水处理站	86
103	设备及地面清洁用水	18,5	7	1	,	3.48	,	~	1	1	设备及地面清洁版 水	15.02	行水处理站	15.02
9	循环冷却系统补水	642.24	1	1	1	608.4	1	1	1	1	强制排水	33,84	回用于水淬用水	33.84
1	办公	6	1	1	,	6.0	1	1	1	1	生活污水	8.1	进入市政污水管网	8,1
×	初期用水	-	1	-	142,49	0	1	-	1	,	初期相水	142.49	污水处理站	142.49
	WIT -	983.37	147.41	1 6 2	The state of the s	200			200					

由于废铅钯催化(其他栽体)处理生产线用水量较小,且无废水排放,因此,与废铅钯催化(其他载体)处理生产线组成的其余4种运行工况评价不再给出。

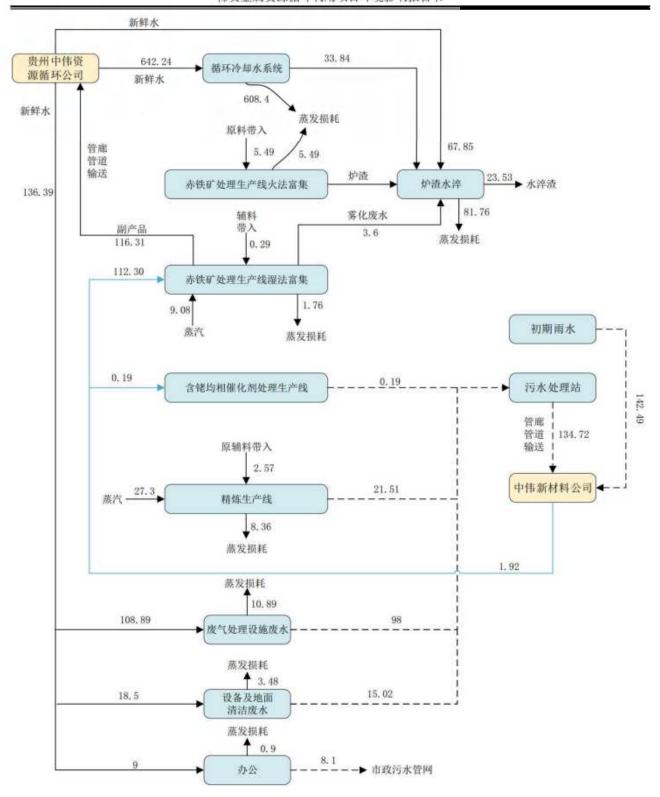


图 2.1-4 典型日水平衡图(运行工况 1) 单位: m³/d

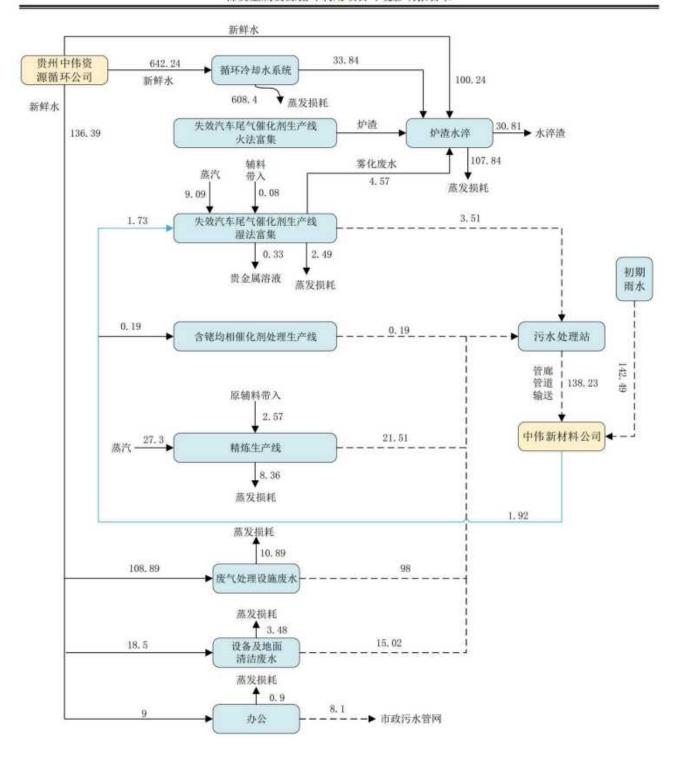


图 2.1-5 典型日水平衡图 (运行工况 2) 单位: m³/d



图 2.1-6 典型日水平衡图(运行工况 3) 单位: m³/d

图 2.1-7 典型日水平衡图 (运行工况 4) 单位: m³/d

2.1.9.4 供电系统

中伟资源循环公司建设有 110kV 变电站 1 座,站内设置 2×50MVA 变压器及二次设备箱体,厂区生产办公用电直接由变电站引出接入厂区。

(1) 10kV 变配电所设置

根据本项目工艺流程、车间划分、负荷大小及分布情况,全厂共设置 1 座 10kV 变配电所,设置在富集车间。该 10kV 变配电所负责向全厂的高压用电负荷提供 10kV 电源,采用放射式配电。

(2) 10kV 系统主接线

10kV 系统采用单母线分段接线,并引两回路外部 10kV 线路供电,每一回外部 线路 的供电能力应能满足该 10kV 变配电所全部负荷的需求。正常情况,10kV 变配电所单母线分段运行,当一回线路故障或检修时,由另一回路线路承担全部负荷。

(3) 操作电源

10kV 配电所采用 DC220V 微机监控型免维护铅酸蓄电池直流电源装置作为直流操作及控制电源。

(4) 10/0.4kV 变电所设置

根据工艺流程及车间负荷分布情况,全厂共设有7座10/0.4kV车间变电所,分别为铑铱车间变电所、铂钯车间变电所、循环水废气处理变电所、废水处理车间变电所、富集车间变电所1、富集车间变电所2、富集车间矿热电炉。 铑铱车间变电所、富集车间矿热电炉均设一台变压器、低压配电系统采用一路电源进线,单母线不分段接线方式。其他变电所均设两台容量相同的配电变压器,变压器同时工作。当一回高压线路或变压器故障或检修时,另一回高压线路或变压器承担该变电所除三级负荷外的全部生产负荷。

2.1.9.5 供热系统

本项目在焚烧炉尾气处理系统配置余热锅炉 1 台,蒸发量 2.4t/h,废铂/钯系废催 化剂(铝基载体)回转窑年运行时间 200 天,日作业时间 24 小时;废铂钯催化(其他载体)和含铑均相催化剂箱式热解焚烧炉年运行时间 330 天,日作业时间 24 小时,则余热锅炉年蒸汽产生量为 19008t/a。

项目蒸汽平衡见表 2.1-23。

来源 用量 (t/a) 去向 耗量 (t/a) 湿法富集车间 2997,8 4490.2 贵金属精炼生产线 自产蒸汽 19008 贵金属精炼生产线 9009.8 富余蒸汽外售 2510.2 19008 合计 19008 合计

表 2.1-23 蒸汽使用平衡表

2.1.9.6 供气系统

(1) 压缩空气、氧气、氮气

本项目不建设空分系统,项目所需的压缩空气、氧气、氮气直接外购至贵州中伟 资源循环产业发展有限公司,直接从该公司空分装置管道输送至本项目生产车间。压 缩空气、氧气、氮气使用量详见 2.1-14。

(2) 氯气供应系统

本项目设置氯气站 1 座, 氯气站配置在线液氯钢瓶 3 个(容积 0.8m³/个, 2 用 1 备,最大工作压力 2.0MPa,充装系数 0.8)、离线液氯钢瓶 1 个(容积 0.8m³/个)、钢瓶电子秤 3 套、液氯气化系统 1 套(该系统由液氯气化器、气化氯缓冲罐、热水循环泵和串级控制、自动控制系统及 SIS 系统组成)、热水机组 1 台。

工艺流程:外购氯气瓶氯气钢瓶间,液氯从钢瓶进入液氯气化器,在这里被循环热水(通常 40-65°C)间接加热,液氯吸收热量后发生相变,由液态转化为 0.8MPa 的气态氯,产生的高压气相氯进入氯气缓冲罐,该罐起到稳压和缓冲作用,确保向下游用户输送的氯气压力和流量连续、稳定。在正常生产时,液氯吸收装置处于待机状态。一旦系统任何一个环节(钢瓶、管道、阀门、气化器、缓冲罐等)发生氯气泄漏,系统会通过氯气泄漏检测仪自动报警并联动启动该装置。装置上的引风机会立即运行,将含有泄漏氯气的空气吸入吸收塔内,与塔内喷淋的碱液充分接触反应,从而将有毒的氯气转化为无毒的次氯酸钠和氯化钠溶液,实现安全处理,尾气达标排放。

液氯在线钢瓶区和液氯气化间按每小时循环次数 12 次,系统总风量为8904m³/h,考虑两个区域同时漏氯的概率低,综合考虑,选择 2 台风机,单台风机风量≥9000 m³/h。同时在出风口引出 1 条去工艺碱洗塔风管,风管规格 DN100,并配置

1台气动或电动切断阀,平时开启,利用工艺碱洗塔风机抽风,让氯库和气化间形成微负压,当发生泄氯时,关闭些切断阀,事故泄氯吸收装置开始工作,当浓度降至设定值时,切换到工艺碱洗塔风机抽风。

2.1.9.7 视频监控及安防系统

(1) 视频监控系统

在厂区内设置1套视频监控系统,根据监视对象和功能的不同,分为工业电视系统和视频安防监控系统,由系统根据管理员和操作员的权限进行独立管理。采用星型以太网架构,三层交换,即核心层、汇聚层和接入层。系统由前端、信号传输和监控终端组成,采用全数字化设计,二级监控方式。

在综合仓库警卫室设置厂级监控室,其余各生产车间警卫室及厂区门卫内设置现场级监控室。综合仓库通信机房配置千兆核心层交换机和不间断电源。负责全厂内视频安防监控用前端摄像机的存储。

综合仓库厂级监控室配置 55" LCD 拼接屏、网络型视频解码器和网络型控制键盘,负责全厂内视频安防监控用前端摄像机的显示及控制。各现场级监控配置网络型视频解码器和 LCD 显示屏负责各区域内视频安防监控用前端摄像机的显示。

摄像机全部采用数字网络高清摄像机, 采用光、 电缆传输视频信号。

本系统内前端摄像机按每天 24 小时连续工作,由车间级监控对区域内前端摄像机集中管理和图像显示,厂级监控室负责视频数据存储和监控图像的显示,视频数据按 1080P/H.265 格式连续保存 30 天。工业电视系统根据传输距离的不同,采用室外光缆或 UTP CAT.6 型通信电缆传输视频数据,电源线采用 KVV3×2.5 电缆或 RVV2×1.5 电缆。

(2) 门禁系统

根据工艺要求,本项目单独设计 1 套门禁系统,在门卫、富集车间、铂钯精炼车间、铑铱精炼车间及综合仓库的各配电室、主要出入口设置人脸门禁一体机,消防疏散通道出入口不设。门禁系统与视频监控系统共网建设,数据传输至厂级监控室内的电脑上进行统一控制、管理。门禁系统前端采用 UTP CAT.6 型通信电缆。

(3) 报警系统

在厂区围墙、铂钯精炼车间、铑铱精炼车间外围墙和富集车间外围墙上设置周界电子围栏,采用六线制脉冲电子围栏。每50m左右围墙设置1个防区,整个围墙共设置约44个防区,脉冲主机均采用双防区主机,通过网络报警主机接入视频监控系统网络,将报警信号上传至厂级监控室。

脉冲电子围栏报警系统可与围墙上的视频监控系统联动,有非法入侵时,联动周边摄像机在监控室弹屏报警。

2.1.9.8 化验室

本项目在铂钯车间设置化验室。分析化验室主要是赤铁矿(高冰镍浸出渣)成分进行检验分析,对精炼生产线生产的产品、生产线产出的固废渣进行检验、测定等。分析化验的工作任务包括组成成分检验、环境监测化验、处理处置工艺参数研究及其他相关分析研究。成分检验主要包括原料、辅料、中间产物、产品、固废等成分组成;环境监测化验主要包括废水、废气等主要关键污染物的检验测定,其余外委第三方检测公司;处理处置工艺参数研究主要包括处置工艺的研发及工艺参数的优化调整研究,对有资源化利用价值的废物进行有价物质回收利用工艺方面的研究等。化验室设备间表 2.1-24。

序号	设备名称	单位	数量
1	X 荧光光谱仪	套	1
2	ICP 光谱仪 (全谱直读型)	套	2
3	原子吸收光谱仪	套	1
4	紫外可见分光光度计	台	1
5	自动电位滴定仪	台	1
6	pH i†	台	2
7	微机库仑测硫仪	台	1
8	微波消解仪	台	1
9	微波消解仪 (石墨消散)	台	1
10	自动压样机	台	1
11	振动磨	台	2
12	制样粉碎机	台	2
13	台式钻床	台	1
14	破碎缩分联合机	台	1
15	标准筛振荡机	台	1
16	高温箱式电阻炉	台	2

表 2.1-24 实验室设备一览表

序号	设备名称	单位	数量	
17	火试金熔样炉	台	2	
18	火试样灰吹炉	台	1	
19	荧光熔样机	台	1	
20	坩埚混匀机	台	1	
21	电热板	台	2	
22	电热板	台	10	
23	医用冷藏箱 (立式)	台	1	
24	电热鼓风干燥箱	台	2	
25	电热鼓风干燥箱	台	2	
26	电热鼓风干燥箱	台	1	
27	玻璃器皿干燥柜	台	1	
28	电子防潮柜	台	2	
29	台式超纯水机	台	3	
30	电子天平	台	3	
31	电子天平	台	4	
32	电子台秤	台	1	
33	除湿机	台	4	
34	超声波清洗器	台	1	

2.1.10 储运工程

2.1.10.1 贮存设施

(1) 原料的储存

本项目原料为赤铁矿(高冰镍浸出渣)和废催化剂,赤铁矿(高冰镍浸出渣),在生产综合配套车间设置有赤铁矿暂存库和原料 1#危废暂存库,占地面积分别为756m²、387m²,最大储存量为600t和160t,在甲类仓库设置2#危险废物暂存库,占地面积为20m²,最大储存量为13t。废催化剂主要为失效汽车尾气催化剂、废钯催化剂、废铂催化剂和均相催化剂,废催化剂属于危险废物,采用分区暂存。由于原厂房防渗印证资料缺失,建设单位拟开展防渗施工改造,破开现有厂房地面混凝土层后重新铺设2.0mm厚HDPE膜(渗透系数≤1×10⁻¹⁰cm/s)+P8 抗渗混凝土层,改造后可满足《危险废物贮存污染控制标准》(GB18597-2023)的防渗要求。

(2) 化学品试剂储存设施

本项目辅料化学试剂均储存在甲类仓库,试剂库房根据物料特性进行隔离分区, 主要用于储存水合肼、乙醇、氨水、硝酸等。化学试剂的储存需满足易致毒易致爆化

学品管控要求。

(3) 储罐区

购置的场地上建设有罐区 1 处,共有储罐 8 个,分别为硫酸储罐、盐酸储罐、液 碱储罐、纯水储罐及双氧水储罐,以上储存介质均为本项目所需,因此,保留以上储 罐,硫酸、盐酸、液碱及双氧水自用外,富余部分仍外供中伟资源循环公司。罐区储 罐信息见表 2.1-26。

罐组	储罐名称	储存介质	形式	数量	容量 (m³)	储存温度	储存压力	储存位置
酸罐组	硫酸储罐	98%硫酸	固定式	1个	850	常温	常压	罐区
	盐酸储罐	36%硫酸	固定式	1个	850	常温	常压	
液碱罐组	液碱储罐	40%液碱	固定式	2个	900	常温	常压	
双氧水罐组	双氧水储罐	双氧水	固定式	2个	50	常温	常压	
纯水罐组	纯水储罐	纯水	固定式	2个	900	常温	常压	

表 2.1-26 储罐信息表

(4) 产品储存设施

项目主要产品为贵金属产品,暂存于铂钯精炼车间的产品库房内,库房占地面积 13m²。

(5) 固废储存设施

本项目在生产综合配套车间内设置一般工业固废 1 座,占地面积 756m²,最大储存量为 600 吨。厂区产生的危险废物暂存于生产综合配套车间设置有赤铁矿暂存库和原料 1#危废暂存库。

2.1.10.2 厂内外运输

所需的原料以及成品的运输主要采用公路的方式,运输车辆由社会力量解决,硫酸、液碱及采用槽罐车运输,固体物料和桶装业态物料采用卡车运输。厂内固体原料及产品的装卸或进出库利用管道、叉车或人工进行,液态物料采用架空管道输送(除少量使用的外)。

2.1.11 总平面布置及其合理性

项目根据当地气候特点,采用自然通风,降低能耗的原则,充分利用现有已建厂房布局,结合工艺特点,充分考虑建筑物的使用要求及其之间的相互联系,合理布局生产线及设备布局。

本项目主要由富集车间、铂钯精炼车间、铑铱精炼车间、甲类仓库、生产综合配 套车间、罐区、污水处理站等组成,根据生产线工艺流程节点,东侧大门入口处设置 生产综合配套车间及污水处理站,中部布置富集车间,西侧布置铂钯精炼车间、铑铱 精炼车间、甲类仓库、循环水系统及废气处理系统。

项目充分依托购置场地已建设的雨水管网和生活污水管网,新建管廊用于液态及气体辅料及生产废水的收集输送,项目生产设施地面标高在+380.0m 左右,依托的初期雨水池池体地面高程为+369.4m,初期雨水可以自流进入依托的初期雨水池,事故池与初期雨水池处于同一位置,事故废水可以自流现有厂区事故池。陆家湾居民点位于本项目建筑常年最大风频侧风向最近距离约 160m,根据本次评价预测,上述 1 个居民点声环境质量能够达到《声环境质量标准》(GB3096-2008)2 类标准,环境空气质量能满足《空气环境质量标准》(GB3095-2012)二级标准要求和《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 标准限值要求。综上所述,从生产工艺及环保角度考虑本项目总平面布置合理。项目总平面布置详见图 2.1-8。

本项目总体布局和功能分区充分考虑了位置、风向等各个因素,各类污染防治措施布置合理可行,保证了污染物的达标排放及合理处置。从环境保护角度出发,本项目总平面布置基本合理。

2.2 污染因素分析

2.2.1 施工期工艺流程产污环节

本项目工程施工期主要包括现有厂房内的隔墙、基座拆除,车间地面防渗施工改造,新建厂房(循环水站、废气处理设施厂房)的基础工程、主体工程、装饰工程,厂房内设备安装、工程验收等工序,其过程中将产生噪声、扬尘及废气、固体废弃物、施工污水等污染物,其排放量随工序和施工强度不同而变化。项目施工流程见图 2.2-1 及图 2.2-2。

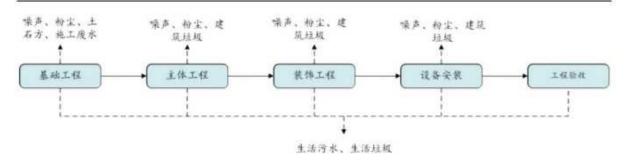


图 2.2-1 新建厂房施工流程图

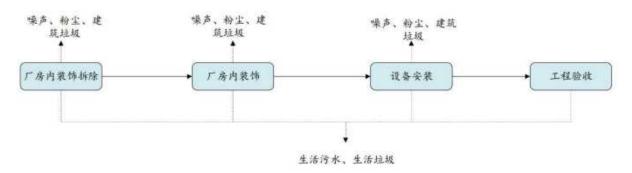


图 2.2-2 现有厂房改建施工流程图

2.2.2 营运期生产工艺流程、产污环节及物料平衡

涉密,略……。

生产工艺产污环节见图 2.2-3~图 2.2-18 和表 2.2-1。

稀贵金属资源循环利用项目环境影响报告书

污染源类别	總合	排	排放源	主要污染物名称	治理対策
	S5-2		2#活性炭吸附	废活性炭	送焚烧炉
	S5-3	银回收工序	银粉铸锭	收尘	返回银粉铸锭机
	S5-4	金萃取工序	金粉铸锭	收尘	返回金粉铸锭机
	S5-5	的相關係用工序	沉铜镍	铜铁渣	送矿热电炉
	85-6	中市以外在上市	水溶液氯化	不溶渣	进铑铢预处理工序
	SS-7		除进	含油废活性炭	送焚烧炉
	S5-8	钯萃取及精炼工	浓缩	不溶渣	进铑依预处理工序
	SS-9	社	锌粉置换	置換渣	进铑铱预处理工序
	SS-10		格合	不溶渣	进铑铱预处理工序
	SS-11	40年末	王水溶解过滤	过滤谱	送矿热电炉
	S5-12	HTTH ME LAT	锌粉置换	置换渣	进锋铱预处理工序
	S5-13		王水溶解过滤	不溶渣	进铑铢预处理工序
	S5-14	铑铱分离工序	盐酸过滤	过滤渣	送矿热电炉
	\$5-15		锌粉置换	置换渣	进铑铱预处理工序
	S5-15	はなる。	水溶液氯化过滤	过滤渣	送矿热电炉
	S5-16	格林州文建上厅	沉铜镍	铜镍渣	送矿热电炉
	SS-17		铱水解渣溶解过滤	过滤渣	送矿热电炉
	SS-18	依精炼工序	溶解还原过滤	过滤渣	送矿热电炉
	S5-19		净化过滤	过滤渣	送矿热电炉
	SS-21	铑精炼工序	铑水解渣溶解过滤	规辩过	送矿热电炉

2.2.2.1 物料及元素平衡

根据建设单位提供的设计数据,生产线物料平衡详见表 2.2-2~表 2.2-8。

表 2.2-2 赤铁矿处理生产线工艺物料及元素平衡表

涉密, 略……。

续表 2.2-2 赤铁矿处理生产线工艺物料及元素平衡表

涉密, 略.....。

表 2.2-3 失效汽车尾气催化剂生产线工艺物料及元素平衡表

涉密,略……。

表 2.2-4 废铂催化剂(铝基载体)工艺物料及元素平衡表

涉密, 略……。

表 2.2-5 废钯催化剂(铝基载体)工艺物料及元素平衡表

涉密,略……。

表 2.2-6 废铂钯催化(其他载体)处理生产线工艺物料及元素平衡表

涉密,略……。

表 2.2-7 废均相催化剂处理生产线工艺物料及元素平衡表

涉密,略……。

表 2.2-8 精炼生产线物料及元素平衡表

涉密,略……。

2.3 施工期污染源源强核算

2.3.1 大气污染源

施工期对环境空气的影响主要是地面扬尘污染,主要来自以下三个方面:①土石方挖掘及土石方堆放扬尘;②建筑材料搬运扬尘;③来自运输车辆引起的地面扬尘。根据类比调查资料,当风速为2.4m/s时,建筑施工扬尘严重,工地细颗粒物浓度相当于环境空气标准的1.4~2.5 倍。施工扬尘的影响范围达下风向150m处,施工及运输车辆引起的扬尘对路边30m范围内影响最大,路边的颗粒物浓度可达10mg/m³以上。

此外,装修阶段产生少量的装修油漆废气,主要为二甲苯、甲苯等,对周围大气环境产生影响。

2.3.2 水污染源

本项目施工期主要水污染源为施工废水、施工生活污水。

施工废水主要来自施工建筑中,根据类比分析,本项目施工废水产生量大约为 2m³/d,主要污染因子为 SS,浓度在 3000~4000mg/L 之间。

本项目不设置施工营地,施工人员为周边居民或租住于周边民房,如厕依托贵州 中伟资源循环公司卫生间。

2.3.3 噪声

本项目施工期噪声污染源主要是施工机械和运输车辆,根据同类工程施工阶段的类比调查,一般施工机械的声功率级在75dB(A)以上,其中声级最大的是空压机,声级达到105dB(A)。这些设备的运行将影响施工场地周围声环境质量。施工期的主要噪声源及声级见表 2.3-1。

产噪设备	距声源 1m 处声级值	产噪设备	距声源 1m 处声级值
混凝土搅拌机	85~90	打桩机	95
振捣棒	90	电锯、电钻	89
装载机	75~85	空压机	105
升降机	75~85	混凝土输送泵	90~100

表 2.3-1 主要施工机械的噪声声级 单位: dB(A)

2.3.4 固废

根据现场调查,本项目主要施工区域为除利用改建车间外,循环水及废气处理均 需开挖建设,基础开挖产生的废弃土石方运至当地政府指定的弃土场堆存。

施工期间生活垃圾设置生活垃圾收集设施,施工人员每天 30 人,施工人员生活垃圾产生量为 30kg/d,施工周期为 6 个月,则生活垃圾产生量为 5.4t,交由园区环卫部门清运处置,不会对周围环境造成明显影响。

本项目建筑固废按 0.02t/m² 计,则本项目产生的建筑固废量为 254.5t,将建筑垃圾分类,尽量回收其中尚可利用的部分建筑材料,对没有利用价值以及不能回填的废弃物应妥善堆放、及时处理,运至当地政府指定的建筑垃圾填埋场堆存。

本项目防渗施工施工改造,需对地面浅层车间混凝土地面开展逐层铲除后开展危险废物鉴别,对属于危险废物的,委托有资质的单位处置,不属于危险废物的按照建筑垃圾运至当地政府指定的建筑垃圾填埋场堆存。

2.4 营运期污染源源强核算

本项目属于废弃资源综合利用业,由于目前尚未颁布该行业的污染源源强核算技术指南,因此,本次评价依据《污染源源强核算技术指南 准则》(HJ884-2018)选取源强核算方法。根据技术指南,源强核算方法主要有实测法、物料衡算法、产污系数法、排污系数法、类比法、实验法等方法。

2.4.1 大气污染源源强核算

2.4.1.1 有组织废气污染源核算说明

本次评价大气污染源污染源强核算主要采用产污系数法、物料衡算法。

2.4.1.2 有组织废气污染源核算结果

有组织废气污染源核算结果见表 2.4-1,各生产线大气污染物排放统计见表 2.4-2,各排气筒废气污染物最大速率排污源强见表 2.4-3。

稀贵金属资源循环利用项目环境影响报告书

20年前	污染物产生 核響方法 产生量
kg/h	
1.563	产污系数法 1.563
0.688	产污系数法 0.688
0.604	产污系数法 0.604
0.223	产污系数法 0.223
3.171	产污系数法 3.171
14.377	产污系数法 14.377
1.826	产污系数法 1.826
2.593	物料衡算 2.593
910.0	物料衡算 0.016
0.000	物料衡算 0.000
0.212	物料衡算 0.212
0.007	物料衡算 0.007
0.001	物料衡算 0.001
0.054	物料衡算 0.054
0.003	物料衡算 0.003
1.084	物料衡算 1.084
0.071	物料衡算 0.071
690.0	物料衡算 0.069
0.0000	物科衝算 0.0000
0.001	物料衡算 0.001
0.013	产污系数法 0.013
1.830	产污系数法 1.830

稀贵金属资源循环利用项目环境影响报告书

0.7m+	60°C,连续	排放		H32m, 內径	60°C,连续	排版					H35m, 内径	0.3m+	190°C,连续 排放		H32m, 内径	0.2m,	120°C,连续 排放		H32m, 内径 1.4m,	60°C,连续	排放	
	4800	4800	4800	4800	4800	4800	4800	4800	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
	0.421	0.019	0.113	0.056	0.062	0.031	2.390	0.017	0.092	1.106	0.193	0.103	0.0001	1.825	0.023	0.348	0.029	0.000	0,008	0.003	0.039	0.201
	880.0	0.004	0.023	0.012	0,013	900.0	0.498	0.003	0.077	0.922	0.161	980.0	0.0001	1.521	0.019	0.290	0.024	0.000	0.007	0.003	0.033	0.168
	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	J	1	1	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算
1	%86	%66	%86	%\$6	95%	%56	%06	%56	%66	40%	%08	1	%06	%08	1	1	1	%66	%66	%66	%66	%66
碱液吸收)				nd the definition of the state of the	1#職復敗收系统(四級職務吸收)					二燃室+余热锅炉	(SNCR 脱硝)+半干	式急冷烙+半干式反应	塔+5#布袋除尘+板式换 热器+3#碱液喷淋塔+1#	水吸淋塔		,			1#布袋除尘器+1#碱液吸收系统(两级碱液吸	收)		表冷+2#布袋除尘器+1#
	21.06	1.867	5.625	1.125	1,23	0.615	23.9	0.334	9.216	1.843	0.965	0.103	0.001	9.126mg/a	0.023	0.348	0,029	0.045	0.845	0.312	3.9	20.102
	4.388	0.389	1.172	0.234	0.256	0.128	4.979	0.070	7.680	1.536	0.804	980.0	0.001	7.605u g/a	0.019	0.290	0.024	0.038	0.704	0.260	3.250	16.752
	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	设计值	设计值	物料衡算	物料衡算	物料衡算	设计值	产污系数法	产污系数法	物料衡算	产污系数法	产污系数法	产污系数法	产污系数法	产污系数法
	硫酸等 H2S 硫酸等		硫酸雾	硫酸雾	硫酸雾	SO2	硫酸雾	颗粒物	NOX	SO2	00	非甲烷总 烃	二陽英	颗粒物	NOx	SO2	颗粒物	颗粒物	颗粒物	颗粒物	颗粒物	
					DA00							DA00	4			DA00	S		DA00	-		
Ī		GI-10	GI-11	GI-12	GI-13	71.13	41-15	G1-15				65.1	125			65.3	3	G2-3	G2-4	G2-5	G2-6	G2-7
Ť,	預急	田区田	常浸及應用出压器	政党政策田田田	脂酸浆化	松松	蒸砸	沿出		特回	でなる	日本	極 数 数	7%	4410	的東京	然 机	球磨	本 形 田 珠	料仓	(後) 计	电炉
												Ī		光华		元価	を開き	Er.	×			

稀贵金属资源循环利用项目环境影响报告书

											H15m, 内径 0.7m,	60°C, 连续	排成		H25m, 内径 L4m,	55°C, 建聚 推放	=
1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
0.044	0.046	0.097	0.000030	0.00007	0.00001	0.00007	0.008	0.0003	0.001	0.005	0.0002	0.003	0.0001	0.007	0.003	0.003	0.001
0.037	0.039	0.081	0.00025	9000000	0.00000	9000000	0.007	0.0003	0.0005	0.004	0.00014	0.003	0.00009	0.005	0.003	0.002	0.001
物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算
50%	%06	%09	%66	%66	%66	%66	%09	%66	%66	%86	%66	%86	%66	%66	99.70%	%66	99.70%
碱液吸收系统 (两级碱	液吸收)						1#鹹液吸收系统(两级 鹹液吸收)	2#布袋除尘器+1#藏液 吸收系统(两级碱液吸 收)	44布袋除尘器		2#藏液吸收系统(三级	碱液吸收)			4#鐵液吸收系統(兩級	城 (股)(及)(又)	
0.055	0.462	0.242	0.03	0.0067	0.0005	0.0074	0.021	0.033	0.055	0.268	0.017	0.17	0.011	0.652	1.09	0.28	0.279
0.046	0.385	0.202	0.025	900.0	0.000	900.0	810.0	0.028	0.046	0.223	0.014	0.142	600.0	0.543	806.0	0.233	0.233
产污系数法	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	产污系数法	产污系数法	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算
NOX	SO2	HF	锰 (Mn)	雅 (J)	(Cn)	歌 (Ni)	颗粒物	颗粒物	颗粒物	硫酸雾	H2S	硫酸雾	H ₂ S	HCI	Ü	HCI	Cl ₂
									DA00		DA00	61			DA00	0	
							G2-8	G2-9	G2-10		G2-11		G2-12		G2-13		G2-14
添 森							水淬	₩ 型 型	大 防 水 水 水 大 水	一段	及 及 民 田 殿 選 所 田 田 麗 雅 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田	一段	及	一一段	沒 家 所 用 思	一一段	祖後即田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田

稀贵金属资源循环利用项目环境影响报告书

1.106 1.200 1.106 1.200		H35m, 内径	0.3m+	190°C,连续 排放			H32m, 内径	0.2m+	120°C, 连续 排放		H32m, 内径 1.4m,	60-C, 连续	## W						H32m, 内径	1.4m+ 60°C, 连续 非验	11F.IX		
0.922	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
	0.684	0.227	0.281	0,001	0.012	1.825	0.023	0.348	0.029	0.0005	0.039	0.005	0.059	0.303	0.038	0.040	0.045	0.016	0.00000	0.00002	0.000001	0.00001	0.013
1算	0.570	0.189	0.235	0.001	0.010	1,521	0.019	0.290	0.024	0.0004	0.033	0.004	0.049	0.253	0.032	0.033	0.038	0.013	0.00008	0.00002	0.00000	0.00001	0.011
物料後	物料衡算物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	/	1	j	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衝算
40.0%	80.0%	1	%0'86	%0.06	%0.08	%0.08	1	1	1	%0.66	%0.66	%0.66	%0.66	%0.66	20.0%	%0.06	%0.08	%0.66	%0.66	%0.66	%0.66	%0.66	%0.09
	二燃室+余热锅炉	(SNCR 脱盘)+半干	式急冷烙+半干式反应	塔+5#布袋除尘+板式换 热器+3#碱液喷淋塔+1#	水長茶塔			1			1#布袋除尘器+1#鍼液 吸收系统(两级碱液吸	1(\$\chi)							表冷+2#布袋除尘器+1# 碱液吸收系统(两级碱	液吸收)			1#職液吸收系统(两级 藏液吸收)
1.843	3.418	0.227	14.07	0.01	90.0	9.126mg/a	0.023	0.348	0.029	0.045	3.922	0.471	5.883	30.31	0.048	0.401	0.225	1.559	0.0093	0.002	0.0001	0.001	0.032
1.536	2.848	0.189	11.725	800.0	0.050	7.605u g/a	610.0	0.290	0.024	0.038	3.268	0.393	4.903	25.258	0.040	0.334	0.188	1.299	800.0	0.002	0.0001	0.001	0.027
设计值	设计值物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	设计值	产污系数法	产污系数法	物料衡算	产污系数法	产污系数法	产污系数法	产污系数法	产污系数法	产污系数法	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算
NOx	SO ₂	00	HCI	非甲烷总烃	P2O5	一曜英	颗粒物	NOx	202	颗粒物	颗粒物	颗粒物	颗粒物	颗粒物	NOx	SO ₂	HF	HCI	(Sn)	# (J)	(CE)	S S	颗粒物
			DA00	4				DA00	S		DA00	-							DA00	-			DA00 1
			1.50					- 5	5	G3-2	G3-3	G3-4	G3-5						G3-6				G3-7
	11	西京	日日本	南教教	DA.		四年	を表す	発光	球磨	本、 田 東、 田 東	料仓	後珠十二条						西本存在	校安			张
		##	回转效功	Ē	G3-1	7-53	63-	1-69	- E	63-1	G3-1 G3-1 G3-2	1 数	1 数	1 年 日	2 日	2 日	1 期	1 年 日	国	国	1 期	国	国

稀贵金属资源循环利用项目环境影响报告书

	H32m, 内径 1.0m, 40°C, 连续 排放		HI5m, 内径 0.7m,	60°C,连续	排放		H25m, 内径 1.4m,	55°C, 连续	排放			H35m da 75	O 3m	1909年,连经	排放		H32m, 内径
1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	720	720	720	720	720	720	720	720
0.0003	0.000	0.004	0.0001	0.003	0.0001	0.007	0.001	0.005	0.001	0.083	0.664	0.003	0.094	0.111	0.001	1.106	60000
0.0002	0.000	0.004	0.0001	0.003	0.0001	900.0	0.001	0.004	0.001	0.115	0.922	0.005	0.131	0.154	0.001	1.536	0.013
物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	1
%0.66	%0.66	%0'86	%0.66	%0.86	%0.66	%0.66	99.7%	%0.66	%2.66	%0.66	40.0%	%0.08	1	%0.08	%0.06	%0.08	1
2#布袋除尘器+1#碱液 吸收系统(两级碱液吸 收)	# 布袋除尘器		2#碱液吸收系统(三级	碱液吸收)			4#碱液吸收系统(两级	碱液吸收)			二燃室+余热锅炉	(SNCR 脱磷) + 半干	式急冷塔+半干式反应	塔+3-1#布袋除尘+板式	模热器+3-1#截淋塔 (鐵液)+3-2#喷淋塔	(米)	1
0.028	0.048	0.211	0.012	0.173	0.01	0.704	0.462	0.47	0.47	8.294	1.106	0.017	0.094	0.555	0.009	5.53mg/a	0.009
0.023	0.040	0.176	0.010	0.144	0.008	0.587	0.385	0.392	0.392	11.519	1.536	0.024	0.131	0.771	0.013	7.68ug/ a	0.013
产污系数法	物料衡算	产污系数法	物料衡算	产污系数法	物料衡算	产污系数法	物料衡算	产污系数法	物料衡算	类比法	类比法	物料衡算	物料衡算	物料衡算	物料衡算	类比法	产污系数法
颗粒物	颗粒物	硫酸雾	H_2S	硫酸雾	H ₂ S	HCI	Cl ₂	HCI	Cl	颗粒物	NOx	SO ₂	00	HCI	非甲烷总烃	二陽英	颗粒物
	DA00 3		DA00	7			DA00	9					DAAG	4			DA00
G3-8	63-9		G3-10		G3-11		G3-12		G3-13					G3-1			G3-1
中频	西水水	一、松	環 没 及 労 選 選 出 圧 激	一一一	強烈及恐惧的田田		盆浸及窓田田湾	(数	盐浸及滤器用压器			回转	窑及	製	京 数 然		回转
												时约	は中	対対	理社	1	

稀贵金属资源循环利用项目环境影响报告书

720 0.2m+	720 120°C, 连续 排放	720	720	720	720	720 H32m, 内径	720 1.4m,	720 60°C,连续	720 排放	720	720	720	H32m, 内径 1.0m, 40°C, 连续 排放	720	720 HI5m, 內径	720 0.7m+	排放 720	720	April 1100
0.131	0.011	0.0003	0.023	0.003	0.035	0.179	0.016	0.018	0.016	0.307	0.008	0.0001	0.000	0.002	8000000	0.001	9000000	0.003	ŀ
0.182	0.015	0.0004	0.032	0.004	0.048	0.249	0.022	0.025	0.022	0.426	0.011	0.0002	0.000	0.002	0.00011 0	0.002	0.00008	0.004	ł
1	1	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	Alberta Aber Arte
1	1	%0.66	%0.66	%0.66	%0.66	%0.66	20.0%	%0.06	%0.66	%0.08	%09	%66	%66	%86	%66	%86	%66	%66	1000
			1#布袋除尘器+1#纖液吸收系统(两级碱液吸	(3)			表冷+2#布袋除尘器+1#	鍼液吸收系统 (两级碱	液吸收)		1#布袋除尘器+1#碳液 吸收系统(两级碱液吸收)	2#布袋除尘器+1#鐵液 吸收系统(两级碱液吸 收)	44布袋除尘器		2#碱漆吸收系统(三级			4#碱液吸收系统(两级	The Bridge of the Paris
0.131	0.011	0.026	2,322	0.279	3.482	17.947	0.02	0.181	1,559	1.535	610.0	0.012	0.02	0.088	0.008	0.072	900.0	0.294	
0.182	0.015	0.036	3.225	0.388	4.836	24.926	0.028	0.251	2.165	2.132	0.026	0.017	0.028	0.122	0.011	0.100	800.0	0.408	1
产污条数法	物料衡算	产污系数法	产污系数法	产污系数法	产污系数法	产污系数法	产污系数法	物料衡算	物料衡算	物料衡算	物料衡算	产污条数法	物料衡算	产污系数法	物料衡算	产污系数法	物料衡算	产污系数法	Allended Me Arte
NOX	SO2	颗粒物	颗粒物	颗粒物	颗粒物	颗粒物	NOx	SO2	HCI	HF	颗粒物	颗粒物	颗粒物	硫酸雾	H ₂ S	硫酸雾	H ₂ S	HCI	****
0			DA00	_						0010	1		DA00 3		DA00	7	n - " - 4	DA00	
		G3-2	G3-3	G3-4	G3-5			G3-6			G3-7	G3-8	G3-9		G3-10		G3-11	63 13	G3-12
1000	烧机	球磨	本 と 田 本 田 田 本 田 本 田 本 田 本 田 本 田 本 田 本 田	料仓	後汝十秦		ch Mi	4年4年	が存み		水淬	中参	大型 安	一様な	多沿河湖	はない	で	一一段	11 -

稀贵金属资源循环利用项目环境影响报告书

1.4m,	55°C, 连续 排放					HISm this	0.7m,	井放			H32m, 内径 1.0m, 40°C, 连续	排放		H25m, 内径 1.4m,	55°C,连续	排	H32m, 内径 1.0m.	40°C,连续
720	720	5950	5950	5950	5950	5950	5950	5950	5950	5950	5950	5950	2950	2950	5950	5950	1984	1984
0.002	0.0004	0.2190	2.6274	1.2230	0.5840	0.0111	0.0015	0.000005	0.000004	4.379	0.0003	0.000003	0.011	0.0004	600.0	0.0002	0.079	0 0001
0.003	0.001	0.037	0.442	0.206	860.0	0.002	0.0003	0.00000	0.00000	0.736	0.0001	0.00000	0.002	900000	0.001	0.00004	0.0399	0.00003
物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衛質
%66	99.70%	%66	40%	%08	1	%86	%06	%66	%66	%08	%66	%66	%66	99.70%	%66	%01.66	%09	%66
					一條化十分相保格	计并十个报语 GNS)	式急冷塔+半干式反应 按+5-4在络哈小-格引格	品 24-13大阪出 スペパス	Avstaria		44布袋除尘器	4#布袋除尘器		4#碱液吸收系统(丙级			1#活性炭吸附装置	44布络除小器
961.0	0.128	21.896	4.379	6.115	0.584	0.555	0.015	0.0005	0.0004	21.896mg/a	0.03	0.0003	1.073	0.12	0.878	0.08	0.198	0.006
0.272	0.178	3.680	0.736	1.028	860.0	0.093	0.003	0.0000	0.0000	3.68ug/ a	0.005	0.000	0.180	0.020	0.148	0.013	0.100	0.003
产污系数法	物料衝算	设计值	设计值	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	设计值	物料衝箕	物料衡算	产污系数法	物料衡算	产污系数法	物料衡算	物料平衡	产污系数法
HCI	Cl2	颗粒物	NOx	SO2	00	HCI	非甲烷总烃	(Cr)	铅 (Pb)	二曜英	颗粒物	颗粒物	HCI	Cl ²	HCI	Ü	非甲烷点烃	颗粒物
							DA00				DA00			DA00	9		DA00	2
	G3-13						G6-1				G6-2	G6-3		G64		G6-5	G4-1	G4-2
に段	基 協 別 別 形 思 題 の の の の の の の の の の の の の					林松	なり。				数 好 期 冷 却	強	一:	混り込ままる。	二段	盐浸及滤出压滤	制球	泰松
									废铂	第名	(本 (本) (本) (本)	理生产					成均 相催	4.2

稀贵金属资源循环利用项目环境影响报告书

排放			TING- HOZ	H35m, M4	1000C 15C54	190~5、年後	74-1K		H32m, 内径 1.0m, 40°C, 连续 排放				H25m, 内径 L4m,	25℃, 连续	井灰		H32m, 内径 0.5m,	60°C,连续 排放	H32m, 内径 0.3m,	180°C,连续排放
	1984	1984	1984	1984	1984	1984	1984	1984	104	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920
	0.073	928.0	0.042	0.304	0.004	0.021	600.0	0.7360	0.00000	0.004	0.093	0.127	0.180	810.0	0.050	0.003	0.001	0.003	0.00003	0.00003
	0.037	0.442	0.021	0.153	0.002	0.010	0.005	0.371	0.00000	00000	0.012	910.0	0.023	0.002	900.0	0.0004	0.0002	0.0003	0.00000	0.00000
	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算
	%0.66	40.0%	%0.08	1	%0.66	%0.08	%0.06	%0.08	%0.66	%0.66	%0.66	%2.66	0.0%	%0.06	0.0%	%0.0	%0'86	%0.86	%0.66	%0.66
		一條令一人特別於	· · · · · · · · · · · · · · · · · · ·	よるを表しませた。 サイクを表しませた。	以识存给+牛士以及应 按184本结路分,按中拉	指于24位教际上14位以实生期 14 8 13 46 16 16 17 14	が おう に まっと ままれ 大 表 来 本		44布袋除尘器				4#碱液吸收系统(两级	製液吸收)			1#酸洗喷淋塔+6#碳洗麻淋栓+1#土井冰場	以作者工作工人之间的 +2#活性炭吸附装置	HE AND AND HELD	0#12次55 土部
	7.301	1,46	0.209	0.304	0.443	0.103	0.091	3.68mg/a	0.00005	0.358	9.3	42.4	0.18	0.179	0.05	0.003	990.0	0.125	0.003	0.003
	3.680	0.736	0.105	0.153	0.223	0.052	0.046	7.3ug/h	0.0005	0.045	1.174	5.354	0.023	0.023	900.0	0.000	0.008	0.016	0.0004	0.0004
	设计值	设计值	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	类比法	产污系数法	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	产污系数法	产污系数法
	颗粒物	NOx	SO2	00	HF	HCI	非甲烷总烃	二曜英	颗粒物	硫酸雾	HCI	氯气	非甲烷总烃	硫化氢	非甲烷 总烃	非甲烷总烃	紐田	紐	颗粒物	颗粒物
				00.14	DAOO	+			DA00 3				DA00	0			DA00	_	DA00	∞
					G4-3				G4-4				G5-1		G5-2	G5-3	G5-4	GS-5	G5-6	GS-7
拉斯 科冷 古			Ack Hy.	次記	7-1X		H		蚕	蒸馏	反应	総	位 後 後 後 後 後	TANTO	消光	領还 原汽 淀	银还原	超过	银粉干燥	银粉铸锭
处理 线											13.			-	精炼	生產				

稀贵金属资源循环利用项目环境影响报告书

G5-8		非甲烷总经	物料衝算	990.0	0.52		85.0%	物料衡算	0.010	0.078	7920	4
G5-9	DA00	非甲烷总烃	物料衡算	0.013	0.104	1#酸洗喷淋塔+6#碱洗麻米排料。	85.0%	物料衡算	0.002	0.016	7920	H32m, 内径 0.5m,
	7	HCI	物料衡算	0.345	2.734	□ 女子 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95.0%	物料衡算	0.017	0.137	7920	60°C, 连续
G5-10		非甲烷总烃	物料衡算	0.053	0,416		85.0%	物料衡算	0.008	0,062	7920	
		HCI	物料衡算	0.011	0.09		%0.66	物料衡算	0.0001	0.001	7920	H25m, 内径
G5-11	DA00 9	NOX	物料衡算	0.025	0.2	8#碱液喷淋系统(两级 碱液吸收)	97.5%	物料衡算	0.001	0.005	7920	
G5-12	DA00	颗粒物	产污系数法	0.0000	0.0001	o de de Repóndo in	%0.06	物料衡算	0.00000	0.00001	7920	H32m, 内径 0.3m,
G5-13	∞	颗粒物	产行系数法	0.0000	0.0001	2.4.较感出籍	%0.06	物料衡算	0.00000	0.00001	7920	180°C,
G5-14		HCI	物料衡算	90000	0.05		%0.66	物料衡算	0.0001	0.0005	7920	
41		HCI	物料衡算	0.016	0.126		%0.66	物料衡算	0.0002	0.0013	7920	- 9
21-5	0014	Ç	物料衡算	0.021	0.17	4世代教医学友族 / 开资	%1.66	物料衡算	0.0001	0.0005	7920	H25m, M住
7	DAOO	HCI	物料衡算	1.159	9.178	4年實徵收收系统(四級	%0.66	物料衡算	0.012	0.092	7920	1.4m,
01-00	0	Cl2	物料衡算	0.040	0.317	WATA WATA	%2.66	物料衡算	0.0001	0.001	7920	3
		HCI	物料衡算	3.681	29.153		%0.66	物料衡算	0.037	0.292	7920	
G5-17		Cl2	物料衡算	5.029	39.833		%2'66	物料衡算	0.015	0.119	7920	
G5-18		非甲烷总烃	物料衡算	0.196	1.553		85.0%	物料衡算	0.029	0.233	7920	
		HCI	物料衡算	0.114	906.0		95.0%	物料衡算	900'0	0.045	7920	
GS-19	2	非甲烷总烃	物料衡算	0.163	1.294	1#酸洗喷淋塔+6#碱洗	85.0%	物料衡算	0.025	0.194	7920	H32m, 内径
G5-20	7	非甲烷总烃	物料衡算	0.033	0.259	喷淋塔+1#干式过滤器 +2#活性炭吸附装置	85.0%	物料衡算	0.005	0.039	7920	60°C, 连续
		氨气	物料衡算	1.395	11.046		%0.06	物料衡算	0.139	1.105	7920	
G5-21		非甲烷总烃	物料衡算	0.078	0.621		85.0%	物料衡算	0.012	0.093	7920	
G5-22		非甲烷	物料衛算	0.261	2.07		85.0%	物料衡算	0.039	0.311	7920	

稀贵金属资源循环利用项目环境影响报告书

				H15m, 内径 0.8m, 60°C, 连续 排放		4	H25m, 內住	1.4m,	55°C, 印数	H+/X	H15m, 内径 0.8m, 60°C, 连续 排放	H25m. 内径 1.4m, 55°C, 连续 排放	HI5m, 內径 0.8m, 60°C, 连续 排放	H25m, 内径	1.4m,	55°C,连续 排放		H25m, 内径 0.8m, 60°C, 连续	排放	
	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920
	900.0	0.059	0.073	0.079	0.018	0.001	0.032	0.007	0.004	0.065	0.870	0.084	0.536	0.007	0.0003	0.001	0.036	0.011	0.109	0.030
	0.001	0.007	60000	0.000	0.002	0.0002	0.004	0.001	0.0005	0.008	0.110	0.011	0.068	0.001	0.00004	0.0001	0.005	0.001	0.014	0.004
	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算
Ī	%0.06	%0.05	95.0%	%0.06	%66	%66	%01.66	%66	%66	%56	%06	%66	%06	40%	%06	20%	%05'66	%08.66	%66	99.30%
				2#酸液喷淋塔+2#水喷 淋塔				4并赋税吸收系统(网数	城池(以北)		2#酸液喷淋塔+2#水喷淋塔	4#碱液吸收系统(两级 碱液吸收)	2#酸液喷淋塔+2#水喷淋塔		4#碱液吸收系统(两级	碱液吸收)	7#碱液喷淋系统 (两级	碱液吸收)+8#碱液喷 淋系统(两级碳液吸 收)	8#碱液喷淋系统(两级	磁液吸收)
	90.0	0.117	1,45	0.794	1.832	0.14	10.775	0.738	0.367	1.306	8.702	8.366	5,361	0.012	0.003	0.002	7.288	5.672	10.9	4.232
	800'0	0.015	0.183	0.100	0.231	0.018	1.360	0.093	0.046	0.165	1.099	1.056	0.677	0.002	0.000	0.000	0.920	0.716	1,376	0.534
	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衝算	物料衝算	物料衡算.	物料衡算	物料衡算	产污系数法	物料衡算	物料衡算	物料衡算	物料御算
总经	氨气	H2S	HCI	類人	HCI	HCI	Cl ₂	HCI	HCI	HCI	類气	HCI	第八	氮气	HCI	颗粒物	HCI	NOx	HCI	NOX
				DA01 0			9014	DAO	0		DA01 0	DA00 6	DA01 0		DA00	9		DA00		
				G5-23	G5-24	G5-25	2000	07-55	G5-27	G5-28	G5-29	G5-30	65-31		65.33	76-60		G5-33	2000	G5-34
申任				浓缩	酸化	酸溶	25.36	NUE	杂 染	锌丝置换	邻	酸化	还原		海松	NEX AND		报 報 章	浓缩	計譜

稀贵金属资源循环利用项目环境影响报告书

100 A.73	90 30		CLE	物料衡算	1.306	10.346	四日 为对大地域如100	%09.66	物料衡算	0.005	0.041	-	7920
維起	G5-35		HCI	物料伽其	0.035	0.274	7#職液戰棒系统(內級職液吸收)+8#職液虧	%66	物料衡算	0.0003	0.003	-	7920
沉铂	GS-36	DA00	HCI	物料衡算	0.027	0.216	淋系统 (两级磺胺吸收)	%66	物料衡算	0.0003	0.002	7	7920
锌粉置换	G5-37	9	HCI	物料衡算	0.019	0.152	4#碱液吸收系统(两级	%56	物料衡算	0.001	0.008	7	7920
HO AN	06 30		颗粒物	物料衡算	0.000	0.001	碱液吸收)	20%	物料衡算	0.0001	0.001	75	7920
MX MC	00-00		HCI	物料衡算	0.503	3.98		95%	物料衡算	0.025	0.199	75	7920
			HCI	物料衡算	0.010	80.0	7#鹹液喷淋系统(两级	99.5%	物料衡算	0.0001	0.0004	75	7920
王水	G5-39	DA00	NOX	物料衡算	0.569	4,506		%8.66	物料衡算	0.0011	60000	75	7920
解析		6	Cl ²	物料衡算	0.028	0.222	淋系统(两级碱液吸收)	%6.66	物料衝算	0.00003	0.0002	79	7920
			HCI	物料衡算	0.227	1.8		%0.66	物料衡算	0.002	0.018	79	7920
水解	G5-40		NOX	物料衡算	0.030	0.236		99.3%	物料衡算	0.00021	0.0017	75	7920
		DAM	Cl ₂	物料衡算	0.180	1.427	44時海馬防系络(田郊	%9'66	物料衡算	0.001	9000	79	7920
指版溶解	G5-41	9	HCI	物料衡算	0.126	I		%0.66	物料衝算	0.001	0.010	79	7920
预处	06.40		Cl2	物料衡算	0.190	1.507		%9'66	物料衡算	0.001	9000	7920	20
型	71-65		HCI	物料衡算	0.253	2		%0.66	物料衡算	0.003	0.020	79	7920
TBP 萃取	G5-43		非甲烷总经	物料衡算	0.040	0.32		85.0%	物料衡算	900.0	0.048	79	7920
		00.00	HCI	物料衡算	0.126	-	14製洗喷淋塔+64碳洗	95.0%	物料衡算	900'0	0.050	7920	20
洗洗	G5-44	7	非甲烷总经	物料衡算	0.016	0.128	喷淋塔+1#干式过滤器 +2#活性炭吸附装置	85.0%	物料衡算	0.002	0.019	79	7920
反楼	GS-45		非甲烷 总烃	物料衡算	0.024	0.192		85.0%	物料衡算	0.004	0.029	79.	7920
転 水	G5-46		Cj.	物料衡算	0.396	3.14		%9.66	物料衡算	0.002	0.013	79	7920
能水解	G5-47	9	Cl	物料衡算	0.396	3.14		%9.66	物料衡算	0.002	0.013	79.	7920
387 1623	06.40	DA00	HCI	物料衡算	0.002	0.016	4#職稅吸收系统(內級	95.0%	物料衡算	0.0001	0.001	79	7920
TO MIT	8765	0	硫酸雾	物料衡算	0.001	0.005	解(水)以以)	95.0%	物料衡算	0.00003	0.0003	79	7920
			硫酸雾	物料衡算	0.002	0.012		%0'56	物料衡算	8000000	0.001	79	7920
除钌	G5-49		Cl2	物料衡算	0.008	0.063		%9'66	物料衡算	0.00003	0.000	19	7920
			小脚一	新和衛	0.000	0.624		700.00	Abn 459 (457 457	1000	2000	2000	0

稀贵金属资源循环利用项目环境影响报告书

							H25m, 内径	0.8m,	60°C,连续 排放			H25m, 内径	55°C, 连续	排放						H32m, M42	60°C,连续	11F/IX	H25m, 内径 1.4m,
	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920
	0.001	0.018	0.159	0.038	0.067	0.029	0.0002	0.001	0.001	0.017	0.001	0.0001	0.019	910.0	0.017	0.0001	0.147	0.032	0.027	0.059	0.011	0.016	0.008
	0.0001	0.002	0.020	0.005	0.009	0.004	0.00002	0.0001	0.0002	0.002	0.0001	0.00001	0.002	0.002	0.002	0.00001	0.019	0.004	0.003	0.007	0.001	0.002	0.00106
	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算
	95.0%	%9.66	95.0%	%9.66	95.0%	95.0%	%6.66	%5'66	%8'66	95.0%	95.0%	30.0%	20.0%	%0.06	%0.06	%0.56	%0'56	%9.66	85.0%	95.0%	85.0%	85.0%	95.0%
								8#碱液喷淋系统(两级	碱液吸收)			4世間海町的系络(斑翅	城海吸收)							1#酸洗喷淋塔+6#碱洗	喷淋塔+1#干式过滤器 +2#活性炭吸附装置		4#碱液吸收系统(两级碱液吸收)
	810.0	4.468	3.186	9.532	1.347	0.585	0.18	0.137	0.65	0.335	0.013	0.0001	0.037	0.157	0.173	0.002	2.939	7.943	0.18	1.176	0.072	0.108	0.168
	0.002	0.564	0.402	1.204	0.170	0.074	0.023	0.017	0.082	0.042	0.002	0.0000	0.005	0.020	0.022	0.000	0.371	1.003	0.023	0.148	600.0	0.014	0.021
	物料衡算	物料衝算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	产污系数法	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算
氮	硫酸雾	Ç	HCI	Cl	HCI	HCI	Cl2	HCI	NOX	HCI	HCI	颗粒物	NH3	HCI	HCI	HF	HCI	Cl	非甲烷总经	HCI	非甲烷总烃	非甲烷总烃	HCI
								DA00	6			DAOO	9							2400	7		DA00 6
	GS-50	G5-51		G5-52		G5-53		65-54		G5-55	GS-56		G5-57		05 50	00-00	18.7	GS-59	G5-60		GS-61	G5-62	G5-63
	総水	松电	演化	水溶	後親	盐酸溶解		氧化	沉铱	溶解还原	領化		般烧		お谷	京元	溶解	及網	1.次 萃取		洗涤	反举	沉铑

稀贵金属资源循环利用项目环境影响报告书

55°C, 连续 排放		H25m, 内径	0.8m,	60°C,连续	排放			110 cm	H25m, 內住	55°C, 连续 ###	H-1X		HI5m, 内径 0.5m,	25°C,连续 排放		H15m, 内径	1.0m, 25°C, 连续 排放	
	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920						
	0.0014	0.0012	0.001	0.0012	0.026	0.0004	0.008	0.0001	0.500	0.050	0.019	0.0001	0.475	0.01	0.00001	0.0081	0.0004	0.0012
	0.00018	0.00015	9000000	0.00015	0.003	0.00005	90100.0	0.00001	0.063	900.0	0.002	0.00001	90.0	0.0012	0.000002	0.0010	0.00005	0.00015
	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料	物料	物料	设计值	设计值	物料	物料	物料	物料
	%6.66	%5.66	%8.66	%6.66	%5'66	%8.66	95.0%	30.0%	20.0%	%0.06	%0.06	95.0%	%08	1	%06	%56	%56	%06
	OHL	の	98,02°32°13.7	の用しなる株面を設する	2年最後以本京第(四級	城市区域以			4世紀 発出 中女 外 / 田佐				3#酸液喷淋塔+3#水喷	华 兼			9#藏液喷沫+4#水喷淋 格	
	1.4	0.235	0.25	1.16	5.246	0.2	0.168	0.0001	-	0.5	0.187	0.002	2.376	0.010	0.00014	0.162	800.0	0.012
	0.177	0.030	0.032	0.146	0.662	0.025	0.021	0.000	0.126	0.063	0.024	00000	0.3	0.0012	0.000018	0.020	0.001	0.0015
	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	产污系数法	物料衡算	物料衡算	物料衡算	物料衡算	设计值	设计值	物料衡質	物料衡算	物料衡算	物料衡質
	Cl2	HCI	NOx	Cl2	HCI	NOx	HCI	颗粒物	NH3	НСІ	HCI	HF	NH3	H ₂ S	硫酸雾	нсі	HF	研設等 (NOx表
			DA00	6					9000	9			DA01	-			DA01 2	
		G5-64			G5-65		99-55		67 30	/0-55	0, 20	80-60	-	,			,	
	+	10000000000000000000000000000000000000	HT/MF	34.00	大品	在相	破役		ANTH	NXNC	为养	洪化	水处	世		1	松松	
													污水	以 对 对			英 函	

稀贵金属资源循环利用项目环境影响报告书

i.				H15m, 內径 0.15m, 25°C, 连续 排放
-				H 23
0.0016	0.00081	0.00058	0.00096	0.0195
0.00020	0.00010	0.00007	0.00012	0.0022
参数解析	物料	物料	物料	参 草 草
20%	%66	%66	%66	70%
		7#布袋除尘器	44 (37)	3#性裝吸附装置(两级 活性裝)
0.002	0.081	0.058	960.0	0.065
0.0003	0.010	0.007	0.012	0.007
物料衡	物料衡算	物料衡算	老额 物數 表	参 類 類
NH3	颗粒物	器 (Pb)	颗粒物	非甲烷总
				DA01 3
				_
	火试	例	制样	原料 危废 储存
				甲仓纪库教授政策

稀贵金属资源循环利用项目环境影响报告书

各排气筒废气污染物最大速率排放源强统计表
表 2.4-3

Diest or the D	111-35-45-401	风机风量/烟气	12 th 12 th 12	最大值	八值	排放标准值 (mg/	A3 she to -5 -1 45 to 1
排放口獅方	排放参数	量(m3/h)	污染物名称	排放浓度 (mg/m³)	排放速率 (kg/h)		取人但运行生产线
			颗粒物	3.66	0.349	120	废铂催化剂(铝基载体)处理生产线
			NOx	15.29	1.461	240	赤铁矿处理生产线
			SO ₂	7.92	0.757	550	汽车废三元催化剂处理生产线
			五氧化二磷	0.0017	0.00016	15	赤铁矿处理生产线
			氟化氢	0.22	0.021	0.9	废钯催化剂(铝基载体)处理生产线
			母 (Vs)	0.02	0.002	,	
			(Si)	0.001	0.00007	4.3	大學 P.
	A 12 17 17 17 17 17 17 17 17 17 17 17 17 17		供 (Co)	0.0002	0.00001	1	小玩!! 处理士/一致
DA001	H32m, M42 1.4m,	95550	铜 (Cn)	900'0	0.0005	1	
	2-09		锰 (Mn)	0.003	0.00025	5.0	汽车废三元催化剂处理生产线
			铅 (bp)	0.11	0.011	0.7	
			(SP)	0.007	0.0007	1	安华中国文化支干
			(S) 総	0.007	0.0007	8.5	亦获 处理生厂线
			(PO) 觀	0.000004	0.0000004	0.85	
			铭 (Cr)	900000	900000	1	汽车废三元催化剂处理生产线
			硫酸雾	0.36	0.034	20	赤铁矿处理生产线
			HCI	0.23	0.022	10	废铂催化剂(铝基载体)处理生产线
	111 cm ch (2, 0,7		颗粒物	3.82	0.732	30	去學好外租生女经验处第二 治疗除二甲烷
DA002	HISM, M在 U./m,	23000	硫酸雾	4.13	0.095	20	小校》及項目/ 公政日次日、八十次二九年 少如外籍生女会際共通中国時等分
	200		H ₂ S	0.18	0.004	10	化四处建工/ 3000000000000000000000000000000000000
174,002	H32m, 内径 1.0m,	00005	非甲烷总烃	0.80	0.04	120	失效汽车尾气催化剂处理生产线+含铑均相
DAOUS	40°C	20000	颗粒物	0.01	0.001	120	催化剂处理生产线
			颗粒物	20.00	0.114	20	废铂催化剂(铝基载体)处理生产线、废铂
			NOx	200.01	1.136	250	钯催化(其他榖体)剂处理生产线同时运行
			SO ₂	136.48	0.775	80	废钯催化剂(铝基载体)处理生产线、废铂 钯催化(其他载体)剂处理生产线同时运行
10010	H35m, 内径 0.3m,	0023	00	60.28	0.342	80	废铂催化剂(铝基载体)处理生产线、含铑
DA004	2°0€1	2080	HCI	41.68	0.237	50	均相催化剂处理生产线同时运行
			非甲烷总烃	1.03	900'0	120	废钯催化剂(铝基载体)处理生产线、含铑 均相催化剂处理生产线同时运行
			格 (Cr)	0,0001	0.000001	0.5	医红细维化 (甘柏勒休) 刻外租生淬线
			铅 (Pb)	0.01	0.00008	0.5	White is still the term of

稀贵金属资源循环利用项目环境影响报告书

			二噁英	0.34ngTEQ/Nm ³	1.907	0.5ngTEQ/Nm³	钯催化剂(铝基载体)处理生产线、含铑均相催化剂处理生产线同时运行
			HF	0.0004	0.002	2.0	含铑均相催化剂处理生产线
			P ₂ O ₅	0.0018	0.010	15	废铂催化剂(铝基载体)处理生产线
			颗粒物	9.58	0.019	120	为在第二十個40名[集留不安全]。 1000年
DA005	H32m, 內在 0.2m,	2000	NOx	145.00	0.290	240	- 八十次二九届名的文理士厂级奖成相届名的 计由个数据
	7.071		SO ₂	12.08	0.024	550	 応理 上
			CI2	0.512	0.051	8	废铂催化剂处理生产线、精炼生产线同时运 行
			HCI	1.840	0.184	10	失效汽车尾气催化剂处理生产线、精炼生产 线同时运行
			H ₂ S	0.023	0.002	10	
DAGOK	H25m, 内径 1.4m,	000001	非甲烷总烃	0.294	0.029	120	
DOON	55°C	000001	NOX	0.002	0.0002	200	
			二氧化氯	0.008	0.001	/	******
			硫酸雾	0.007	0.001	20	作的作出
			NH ₃	0.664	990.0	20	
			HF	0.0003	0.00003	3	
			颗粒物	0.001	0.0001	30	
			H ₂ S	0.62	0.007	10	
	- 52 O Z		羅曲	0.04	0.0005	25	
DA007	1132III, 131E 0.3III,	12000	非甲烷总烃	12.37	0.148	120	精炼生产线
	200		氨气	11.69	0.140	20	
			HCI	3.82	0.046	10	
DA008	H32m, 内径 0.3m, 180°C	3000	颗粒物	0.0003	0.00008	120	精炼生产线
	452.00		Cl ₂	0.17	9000	5	
DA009	H25m, 內住 0.8m,	32500	HCI	89.0	0.022	10	精炼生产线
	200		NOx	0.22	0.007	200	
DA010	H15m, 内径 0.8m, 60°C	30000	NH3	0.334	0.01	20	精炼生产线
11040	H15m, 内径 0.5m,	00001	NH3	5.0	0.475	20	で で は で か に か に か に か に か に か に か に か に か に か
DAOLI	25°C	12000	H ₂ S	0.1	0.0012	10	らかな年記
			硫酸雾	0.00004	0.000002	45	
	H15m da 22 10m		HCI	0.022	0.0010	10	
DA012	75°C	46000	HF	0.001	0.00005	0.6	实验室
	25		NOx	0.003	0.00015	240	
			NH3	0.004	0.00020	20	

稀贵金属资源循环利用项目环境影响报告书

			颗粒物	0.005	0.00022	120	
			铅(Pb)	0.00007	0.00058	0.7	
DA013	H15m, 内径 0.15m, 25°C	700	非甲烷总经	0.0022	0.0195	120	甲类仓库危废暂存间

2.4.1.3 无组织废气源强核算

本项目无组织废气主要为富集车间料仓、矿热电炉、水淬及二次资源处理区域废 气,以及储罐大小呼吸产生的酸雾。

(1) 富集车间无组织废气

①、料仓

富集车间上料仓经仓顶除尘器收尘后无组织排放,参考《逸散性粉尘控制技术》第二十二章混凝土分批搅拌厂中表 22-1 中贮仓排气的排放系数为 0.12kg/t(卸料),上料仓进出物料总量为 17043.43t/a,则上料仓粉尘排放量为 2.05t/a,经仓顶除尘器(收尘效率 99%)处理后,排放量为 0.021t/a。

②、矿热电炉

富集车间矿热电炉无组织废气主要为进卸料口产生的环境集烟未被集气罩收集,根据前文有组织计算,约 0.25%的矿热电炉烟气未被收集,产生计排放情况详见表 2.4-5。

③、水淬

富集车间矿热电炉炉渣出炉后采用水淬进行冷却,据前文有组织计算,约 10%的水淬废气未被收集,污染物主要为颗粒物,排放量为 0.059t/a。

④、含铑均相催化剂处理

富集车间含铑均相催化剂在处理过程中会产生无组织有机废气,废气无组织排放量按原料量(100t/a)的万分之一核算,无组织废气排放量为0.01t/a。

(2) 储罐酸雾

本项目设置有罐区 1 处,设置有 850m³ 硫酸储罐 1 个、850m³ 盐酸储罐 1 个、900m³ 液碱储罐 2 个、50m³ 双氧水储罐 2 个、900 纯水储罐 2 个,罐区无组织废气主要为储罐大小呼吸产生的硫酸雾、氯化氢。

小呼吸排放是由于温度和大气压力的变化引起蒸气的膨胀和收缩而产生的蒸气排出,它出现在罐内液面无任何变化的情况,是非人为干扰的自然排放方式。

储罐小呼吸排放量按美国《工业污染源调查与研究》第二辑计算,其计算公式如下:

$$L_{\scriptscriptstyle B} = 0.191 \cdot M \cdot \left(\frac{P}{100910 - P}\right)^{0.68} \cdot D^{1.73} \cdot H^{0.51} \cdot \Delta T^{0.45} \cdot F_p \cdot C \cdot K_{\scriptscriptstyle C} \cdot \eta_1 \cdot \eta_2 \qquad (\text{$\triangle \neq $2.5-1$})$$

式中: L_B ——储罐的呼吸排放量(kg/a);

D---罐的直径(m);

H——平均蒸气空间高度(m);

△T—一天之内的平均温度差 ($^{\circ}$ C);

 F_P ——涂层因子(无量纲),根据物料状况取值在 $1\sim1.5$ 之间;

P---液体蒸汽压力:

C——用于小直径罐的调节因子(无量纲);对于直径在 $0\sim9$ m 之间的罐体, $C=1-0.0123\times(D-9)^2$;罐径大于 9m 的 C=1;

 K_C —产品因子(石油原油 K_C 取 0.65, 其他的有机液体取 1.0);

n/----内浮顶储罐取 0.05, 拱顶罐 1:

η2——设置呼吸阀取 0.7, 不设呼吸阀取 1。

②大呼吸损失

大呼吸排放是由于人为的装料与卸料而产生的损失。因装料的结果,罐内压力超过释放压力时,蒸气从罐内压出;而卸料损失发生于液面排出,空气被抽入罐体内,因空气变成有机蒸气饱和的气体而膨胀,因而超过蒸气空间容纳的能力。

③、大呼吸排放公式

$$L_W=4.188\cdot10^{-7}\cdot M\cdot P\cdot K_N\cdot K_C\cdot \eta_1\cdot \eta_2$$
 (公式 2.5-2)

式中: Lw—固定顶罐的工作损失(kg/m³)

 K_N —周转因子(无量纲),取值按年周转次数(K)确定。K<=36, K_N =1; 36<K<=220, K_N =11.467×K-0.7026; K>220,盐酸年周转次数均为 1,硫酸的年 周转次数均为 2,因此,硫酸 K_N =1,盐酸 K_N =1;

M—储罐内蒸气的分子量;

P--在大量液体状态下,真实的蒸气压力(Pa);

Kc-产品因子(有机液体取 1.0):

ni----内浮顶储罐取 0.05, 拱顶罐 1:

η2——设置呼吸阀取 0.7, 不设呼吸阀取 1。

浓硫酸储罐参数及计算结果见表 2.5-4。

表 2.4-4 浓硫酸储罐参数及计算结果一览表

参数溶质	D	Н	ΔT	P	C	Kc	ηι	η2	М	Kn
98%硫酸	10	1.1	15	0.00398	1	1	1	1	98	1.
36%盐酸	10	1,1	15	2800	1	1	1	1	36.5	1
硫酸		4	呼吸 LB	(kg/a)			大呼吸	LW (kg/ı	m ³)	
1911, 1152			0.023	3			1.0	63×10^{-7}		
北京位		小	呼吸 LB	(kg/a)			大呼吸	LW (kg/ı	m ³)	
盐酸			79.48	3				0.029		

根据表 2.4-4 可知,浓硫酸储罐小呼吸硫酸雾产生量为 0.023kg/a,项目浓硫酸年投入量为 1673.1m³(3078.51t/a),则浓硫酸储罐大呼吸硫酸雾产生量为 0.27kg/a,浓硫酸储罐大小呼吸硫酸雾产生量为 0.293kg/a(产生速率 3.34×10⁻⁵kg/h),经罐顶的呼吸阀无组织排放。

根据表 2.4-4 可知, 盐酸储罐小呼吸氯化氢产生量为 21.68kg/a, 项目盐酸年投入量为 754.19m³(889.95t/a),则浓硫酸储罐大呼吸硫酸雾产生量为 21.67kg/a,盐酸储罐大小呼吸氯化氢产生量为 101.15kg/a(产生速率 0.012kg/h),经罐项的呼吸阀无组织排放。

稀贵金属资源循环利用项目环境影响报告书表 2.4-5 无组织污染源源强核算结果及相关参数一览表

	排份 经粉	*******								长 m×胎 m×	恒	106×56×14.4	9									长 m×锅 m×	高m 32.7×18.6×11
	排放时	间/h	7920	7920	7920	7920	4800	7920	4800	7200	4800	7200	0009	4800	4800	0009	7200	7200	1920	7920	7920	8760	8760
中华中华	情(mg/	m³)	1.0	1.0	0.12	0.4	0.135	0.02	/	0.04	/	1	0.15	900.0	1	0.24	0.04	1	0.05	1.0	4.0	0.3	0.05
1	重	t/a	0.021	0.344	0.022	0.033	0.0002	0.005	0.0026	0.000101	0.000018	0.0007	0.000108	0.0130	0.0000	0.000023	0.000001	0.00004	800.0	0.015	810.0	0.000293	0.101
污染物排放	排放量	kg/h	0.003	0.036	0.005	9000	0.00004	0.0053	0.0005	0.000017	0.000004	0.00014	0.000063	0.0027	0.0002	0.00017	0.0000001	0.000014	0.005	0.003	9000	3.34×10 ⁻⁵	0.012
	核管	方法	物料	1	1	1	1	1	1	1	1	1	1	+	1	1	1	1	1	1	1	1	
遍	拉班	//w //w	66	1	1	1	1	1	1	1	/	1	1	1	1	1	1	1	1	1	1	1	
治理措施		T T	仓顶除 尘器	1	1	1	/	1	1	/	1	1	/	1	1	1	1	1	1	1	/	/	
	曹	t/a	2.05	0.344	0.022	0.033	0.0002	0.005	0.0026	0.000101	0.000018	0.0007	0.000108	0.0130	0.0000	0.000023	0.000001	0.00004	800.0	0.015	810.0	0.000293	0.101
污染物产生	产生量	最大值 kg/h	0.26	0.036	0.005	900.0	0.00004	0.0053	0.0005	0.000017	0.000004	0.00014	0.000063	0.0027	0.0002	0.00017	0.0000001	0.000014	0.005	0.003	900'0	3.34×10-5	0.012
		核算方法	系数法	系数法	系数法	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	物料衡算	系数法	系数法	物料衡算	物料衡算
	分元 拉克特加	242	颗粒物	颗粒物	NOx	SO2	P2O5	HF	曹	徽	铁	锏	锰	铝	鉄	鍋	饆	铬	HCI	颗粒物	非甲烷总烃	硫酸雾	HCI
	35-22-36	TAKWA CI	无组织								11,48 60	九祖 然								无组织	无组织	无组织	无组织
	西共	H ¥	本合								矿热电	县								水淬	车间内		酸储罐
1年1	1 世	然									富集	车间											凶

2.4.2 水污染源源强核算

本项目厂区排水系统按雨污分流、清污分流进行设计。本项目废水主要包括:生产线工艺废水、循环冷却系统强制排水、设备地面清洁废水、废气处理设施废水、初期雨水及生活污水等。废水产生及处置情况见表 2.4-6。

序 产生量 污废水种类 主要污染物 处理措施/回用方式 号 (m^3/d) 赤铁矿处理生 雾化废水 3.6 pH, SS 回用于水淬 产线 送入污水处理站处理预处理 失效汽车尾气 一段硫酸浸 pH, Fe, Cl., SO42, Ni, Cr, 3.51 后经管廊输送至中伟新材料 3 催化剂处理生 出液 Zn, Mn 公司废水处理设施处理 产线 雾化废水 pH, SS 回用于水淬 4.57 送入污水处理站处理预处理 废铂催化剂 一段硫酸浸 pH, Fe, Cl., SO42, Sn, Cr, 2.88 后经管廊输送至中伟新材料 Ni, P 4 (铝基载体) 出液 公司废水处理设施处理 处理生产线 雾化废水 4.0 pH, SS 回用于水淬 送入污水处理站处理预处理 废钯催化剂 一段硫酸浸 1.9 pH, SO42-后经管廊输送至中伟新材料 5 (铝基载体) 出液 公司废水处理设施处理 处理生产线 雾化废水 2.78 pH, SS 回用于水淬 送入污水处理站处理预处理 水洗液 0.04 废均相催化剂 6 pH, Zn, Cl-后经管廊输送至中伟新材料 处理生产线 水浸液 0.15 公司废水处理设施处理 pH, COD, NH3-N, Cl., Ni, 含氨废水 8.34 Fe, Cu, Zn, Te, As, Pb, Sb, Cr, P 送入污水处理站处理预处理 7 精炼生产线 pH, COD, SO42, Cl., Ni, 后经管廊输送至中伟新材料 Co, Fe, Cu, Zn, Mn, Te, 公司废水处理设施处理 其他废水 13.17 As, Pb, Sb, Ag, Sn, Ba, Se, Cr, F 循环冷却系统强制排水 33.84 回用于水淬 8 送入污水处理站处理预处理 9 设备及地面清洁 15.02 pH, SS 后回用于水淬 含氨废气喷淋 pH, COD, NH3-N, SO42-12 塔废水 送入污水处理站处理预处理 焚烧系统喷淋 10 喷淋塔废水 31 pH, NH3-N, SO42-后经管廊输送至中伟新材料 塔废水 公司废水处理设施处理 其他废气喷淋 55 pH, Cl., SO42-塔塔废水 pH, SS, COD, BOD5, NH3-11 生活污水 8.1 排入市政污水管网 N、总磷、 经贵州中伟资源循环公司管 712.44 12 初期雨水 廊输送至中伟新材料股份有 22 m3/2次 限公司废水处理设施处理

表 2.4-6 项目各类废污水产生及处置情况一览表

拟建项目废水污染源源强核算方法及核算结果见表 2.4-7。

稀贵金属资源循环利用项目环境影响报告书

表 2.4-7 废水污染源源强核算结果及相关参数一览表

1000	排放的同 排放去向 Ab		4. 24. 44. 44.	中指新的	1200 四八百年	派公司外	(米) [X			44-20-44-44	4114到10	1200 四公司五	成公司小			中伟新村	4000年	保厂区 保厂区	中伟新材	4084 料股份有	保厂区					中作新材	和 科股份有	/920 限公司环	後 区				
5	排放量 ¹ 1 (1/a)	1	0.007	40.74	0.00003	0.00008	0.00004	0.002	1	900.0	0.036	0.00004	0.00003	0.00001	0.003	/	0.003	0	1	0	0.171.	1	80.0	46.75	0.00001	0.00030	0.00020	0.025	0.001	0.003	0.00002	0.00003	
0.排放	排放浓度 (mg/L)	ব	39.060	232441.38	0.160	0.485	0.234	8.832	4	44.972	252.917	0.312	0.194	0.104	20.139	4	45.884	0.03	8.9	0.01	11793.1	4	15	9200	0.002	0.109	0.074	9.235	0.363	1.072	0.007	600.0	
污染源排放	排放量 (m3/d)				3.51							2.88					,	4		010	61.0						200	8.34					
	核算方法	1	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	1	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	1	物料平衡	7	J	物料平衡	J	1	I	1	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	
選手	效率/%	1	%06.66	%00.0	%06.66	%06.66	96.666	%06.66	1	%06.66	%06.66	%06.66	%06.66	%06.66	95.00%	1	%06.66	/	+	%06'66	1	1	-	+	%06.66	%06.66	%06.66	%06.66	%00'06	95.00%	%06.66	%05'66	
治理措施	TZ		4	14年代	THE STATE OF THE PARTY OF THE P	S. OK. OL. O.	+ 201/18			All Sur Ale	子生子化	T-ULW-	系統化成	111111		中和+化	华沉淀+	絮凝沉淀+调值	中和+化	学沉淀+	絮凝沉淀 十调值					中和+化	学沉淀+	製製汽流	+调值				
	产生量 (t/a)	/	6.846	40.74	0.028	0.085	0.041	1.548	1	6.476	36.42	0.045	0.028	0.015	0.058	1	2.759	15.359	1	0.051	0.171	1	80.0	46.75	900.0	0.299	0.203	25.41	0.01	0.059	0.02	0.005	
10年	产生浓度 (mg/L)	ė	39059.74	232441.38	159.75	929.99	233.92	8832.09	ю	44972,22	252916.67	312.5	194,44	104.17	402.78	3	45883.92	255429.9	8'9	3517.24	11793.1	9	15	9200	2.35	108.73	73.83	9234.73	3.52	21.4	7.43	1.81	
污染源产生	产生量 (m3/d)				3.51			Ī				2.88					·	4		010	61.19						0 34	8.34					1
	核算方法	设计值	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	设计值	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	设计值	物料平衡	物料平衡	设置值	物料平衡	物料平衡	设计值	设计值	设计值	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	
	污染物	Hd	Fe	SO42-	ž	ర	Zn	Mn	Hd	Fe	SO42-	Sn	č	Z	Ь	Hd	Fe	SO,2-	Hd	Zn	D	Hd	COD	NH3-N	Z	Cu	Fe	Zn	Te	As	Pb	Sb	
	污染源			FIT 12k mily	故院殿山山田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	文田英					District and	女馬殿	文田茂				一段硫酸	※ 出 ※		水洗液+	水浸液						今年 中	百载成小					1
- Parity	产线			失效汽车	尾气催化	剂生产线				alk Eri Me (Is	及时催化 到 / 年 五	月、日発	製作が発	出土し		废钯催化	剂 (铝基	载体)处理生产线	We List to Mit	なられる情	生产线						精炼生产	統					

稀贵金属资源循环利用项目环境影响报告书

										中伟新材	料股份有	限公司环	(根) 区									四田七本	集集	中伟新材	料股份有	限公司环	保厂区	中伟新村	料股份有	限公司环保厂区	中伟新材	料股份有	限公司坏保厂区	回用于水
											000	0767											7920		0000	076/			7970	0.00		3120		7920
162,396	0.00005	1	0.591	78.248	9000000	0.001	0.002	0.005	0.00001	0.00003	0.004	0.001	0.001	9000000	0.00022	0.00015	0.00000	0.001	0.00041	0.019	198.827	/	0.02		52.64	12.89	52.64	1	33,66	138.6	1	9.0	0.126	1
59019.390	810'0	6.5	136.00	17999.38	0.014	0.299	0.508	1.055	0.002	0.008	0.943	0.154	0.225	0.014	0.051	0.033	0.023	0.299	0.094	4,348	45736.166	7	0.82	7.5	2900	710	2900	7.5	8500	35000	7.5	148.88	31.27	1
											13 13	13.1/											15.02		N. A.	23			12			17	i	7
I	物料平衡	4	物料平衡	1	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	= £=	1	物料平衡	1	1	1	1	4	1	I	,	1	1	1
1	95.00%	1	20%	1	%06'66	%06.66	%06.66	%06'66	%06'66	96.666	%00'06	99.50%	99.50%	99.50%	%05'66	99.50%	95.00%	%00'06	%06'66	55.00%	1	1	%00'66	1	1	1	/	+	1	/	-	1	1	,
										中和+化	学沉淀+	絮凝沉淀	+调值									数据が数	+调值		4				_			_		_
162,396	0.001	1	0.739	78,248	0.063	1.302	2.208	4.587	0.009	0.034	0.041	0.134	961.0	0.012	0.044	0.029	0.002	0.013	0.41	0.042	198.827	1	2.48	1	52.64	12.89	52.64	1	33.66	138.6	~	9.0	0.126	1
59019.54	0.36	∞	170	17999.38	14.58	299.44	507.82	1055.12	2	7.74	9.38	30.8	44.98	2.75	10.14	92.9	0.56	3.07	94.37	19.6	45736.2	7	200	6	2900	710	2900	-	8500	35000	8.5	148.88	31.27	1
											1212	13.17											15.02			22			1.2			31		33.84
物料平衡	物料平衡	设计值	设计值	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	物料平衡	设计值	设计值	设计值	设计值	设计值	设计值	设计值	设计值	设计值	设计值	设计值	设计值	1
CI	Ь	Hd	COD	SO42-	Z	Cn	Fe	Zu	చి	Mn	Te	As	Pb	Sp	Ag	Sn	Ва	Se	ċ	н	Ċ-	ЬH	SS	Hd	COD	NH3-N	SO42-	Hd	NH3-N	SO42-	Hd	Ö	SO42-	1
											At the rds ab	共正及小										设备及地	面清洗废 水	Tr Air ote Av	共同及二	以作品品	XX	今年時時年	ロ政会に居業技術	**************************************	44.34. 55 Ut.	次院永知	水木	循环冷却系络辐射
																						沿久乃州	対量が高						废气喷淋	塔废水				循环冷却系统

稀贵金属资源循环利用项目环境影响报告书

			排入市政	污水管网			中伟新材	料股份有限公司环保厂区
			0000	076/				1
	1	68.0	1.18	0.59	60.0	0.02		_
	6~9	300	400	200	30	8		300
				8.1			712.44	m3/2⁄K
	1	1	1	1	1	1		~
	1	1	1	1	1	1		_
			The site Sala	化美元				初期雨水池
	1	68'0	1.18	0.59	60.0	0.02		1
	6~9	300	400	200	30	8		200
			. 0	8.1			712.44	m3/2⁄K
	1	类比法	类比法	类比法	类比法	类比法		类比法
	Hd	SS	COD	BODS	NH3-N	TP		SS
排水	生活污水						初期雨水	
			**	25.00				污染区域

2.4.3 噪声源强核算

项目的主要噪声源设备有:矿热炉、回转窑、球磨机、破碎机、压滤机、风机、泵类等。主要噪声源声级值及治理措施见表 2.4-9°

表 2.4-8 噪声污染源源强核算结果及相关参数一览表

		声源类型	操用湯	lm5	降噪措施		西州	噪声排放值		
装置	噪声源	(頻发、偶 尔等)	核算方法	暴声值 dB (A)	77	降噪效果	核算方法	噪声值 dB (A)	持续时间加	数量
	箱式热解炉	頻发	类比法	95	厂房隔声	15	类比法	80	24	1合
	回转式焚烧炉	频发	类比法	95	厂房隔声	15	类比法	80	24	1合
	矿热电炉	頻次	类比法	100	厂房隔声	15	类比法	55	24	日
	蒸晒回转窑	頻发	类比法	95	厂房隔声	1.5	类比法	80	24	1台
	球磨机	頻发	类比法	90	基础减振、厂房隔声	25	类比法	65	24	1台
富集车	对辊破碎机	頻发	类比法	95	厂房隔声	15	类比法	80	24	1台
亘	混料机	頻发	类比法	06	基础减振、厂房隔声	25	类比法	65	24	1台
	水雾化装置	頻发	类比法	90	基础减援、厂房隔声	25	类比法	65	24	2套
	压浸釜	頻发	类比法	85	基础减振、厂房隔声	25	类比法	09	24	2台
	压滤机	頻发	类比法	85	基础减振、厂房隔声	25	类比法	09	24	7台
	风机	頻发	类比法	95	进风口消声器、厂房隔声	25	类比法	70	24	3台
	泵类	頻发	类比法	75	基础减振、厂房隔声	25	类比法	20	24	45台
	高频炉	频发	类比法	06	厂房隔声	1.5	类比法	75	24	1台
	假烧炉	叛发	类比法	06	厂房隔声	15	类比法	75	24	4台
	干燥箱	频发	类比法	80	厂房隔声	15	类比法	65	24	3台
铂钯精	真空机组	频发	类比法	95	进风口消声器、厂房隔声	20	类比法	75	24	日9
炼车间	路心机	頻发	类比法	85	基础减振、厂房隔声	25	类比法	09	24	1.6
	风机	頻发	类比法	95	进风口消声器、厂房隔声	25	类比法	70	24	3台
	泵类	頻发	类比法	75	基础减振、厂房隔声	25	类比法	20	24	196台
	压滤机	頻发	类比法	85	基础减振、厂房隔声	25	类比法	09	24	号9
	假烧炉	頻发	类比法	06	厂房隔声	15	类比法	7.5	24	4 台
##	真空机组	頻发	类比法	95	进风口消声器、厂房隔声	20	类比法	75	24	6台
おれた	离心机	频发	类比法	85	基础减振、厂房隔声	25	类比法	09	24	2台
F +	泵类	頻发	类比法	75	基础减振、厂房隔声	25	类比法	50	24	72台
	压滤机	頻发	类比法	85	基础减振、厂房隔声	25	类比法	09	24	7台
甲类厂	泵类	频发	类比法	85	基础减振、厂房隔声	25	类比法	09	24	4台
原本何	14 15	All Les	- MAC LL 1.2.1-	000	中国市上 医中线口口夹	000	345 1 12 3-45	-		4 7.

稀贵金属资源循环利用项目环境影响报告书

		声源类型	噪声游	海通	降噪措施		陸神	噪声排放值		
※ 屋	縣市鎮	(頻发、偶 尔等)	核算方法	噪声值 dB (A)	77	降噪效果	核算方 法	噪声值 dB (A)	持续时间加	数量
nk to file	风机	頻发	类比法	95	进风口消声器、厂房隔声	20	类比法	09	24	2台
及りが	余热锅炉	频发	类比法	7.5	厂房隔声	15	类比法	50	24	70
理然犯	水泵	频发	类比法	65	基础减振、厂房隔声	25	类比法	40	24	9 号
污水处	水泵	頻发	类比法	85	基础减振、厂房隔声	25	类比法	55	24	36 台
理路	风机	頻发	类比法	06	进风口消声器、厂房隔声	20	类比法	70	24	1台
循环水系统	水泵	頻次	类比法	85	基础减振、厂房隔声	25.	类比法	55	24	∞

2.4.4 固废源强核算

本项目营运期产生的各类固体废物主要包括一般工业固废、危险废物及生活垃圾。根据建设单位提供的设备厂商的资料,矿热电炉液压系统液压液(主要为水基乙二醇)定期补充,无需进行更换。项目固体废物治理措施见表 2.4-10。

(1) 熔炼渣

根据设计资料,本项目矿热电炉熔炼赤铁矿产生水淬渣为 11725.77t/a (含水率约40%)。根据建设单位提供的试验阶段的赤铁矿富集炉渣浸出毒性检测结果(采用《固体废物 浸出毒性浸出方法 硫酸硝酸法》(HJ/T 299-2007)浸出),各检测因子均满足《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)表 1 浸出毒性鉴别标准值要求,矿热电炉熔炼赤铁矿产生水淬渣为一般固废,铁含量约占水淬渣干基量的 25.14%,外售铁回收企业。

根据设计资料,本项目矿热电炉熔炼失效汽车尾气催化剂焚烧渣产生水淬渣为3851.4t/a(含水率约40%),失效汽车尾气催化剂熔炼水淬渣主要含铁、铝、硫、氟等,依据《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)开展危险废物鉴别后,根据鉴别结果采用相应的处置措施,鉴别前暂作为危险废物管控;矿热电炉熔炼废铂催化剂焚烧渣产生水淬渣为5885.02t/a(含水率约40%),矿热电炉熔炼废铂催化剂焚烧渣产生水淬渣为3488.18t/a(含水率约40%),废铂催化剂和废钯催化剂熔炼水淬渣主要含铁、铝、氟等,依据《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)开展危险废物鉴别后,根据鉴别结果采用相应的处置措施,鉴别前暂作为危险废物管控。

(2) 废耐火材料

耐火材料主要用于矿热电炉及回转窑焚烧炉,矿热电炉耐火材料主要用于炉体和放出溜槽耐火材料,根据设计资料,矿热电炉耐火材料消耗量约160t/a,则矿热电炉废耐火材料产生量为160t/a,由于矿热电炉处置赤铁矿、废催化剂焚烧渣,含有重金属,因此,矿热电炉废耐火材料应依据《危险废物鉴别标准 浸出毒性鉴别》(GB5085.3-2007)开展危险废物鉴别后,根据鉴别结果采用相应的处置措施,鉴别前暂作为危险废物管控。

根据设计资料,回转窑耐火材料消耗量约 0.15t/a,则回转窑废耐火材料产生量为 0.15t/a,根据查阅《国家危险废物名录(2025版)》,回转窑废耐火材料属于 HW18 焚烧处置残渣(772-003-18),暂存于危险废物暂存间内,定期交由有资质的单位处 置。

(3) 废石墨电极

矿热电炉采用石墨电极,消耗量约140t/a,根据类比冶炼企业经验值,废石墨电极产生量约为使用量的10%,则废石墨电极产生量为14t/a。废石墨电极属于一般工业固废,外售外售资源回收企业。

(4) 失效汽车尾气催化剂外壳

失效汽车尾气催化剂预处理时产生的金属外壳,产生量约为167t/a,属于一般工业固废,外售外售资源回收企业。

(5) 浸出渣

矿热电炉产出的贵铁合金在二段盐酸浸出时产出浸出渣,产生总量为 1.18t/a。浸出渣产生量为主要含铁、镍、铂、钯、铑等,含有贵金属组分,收集后送入矿热电炉熔炼,不出厂处理。

(6) 精炼生产线含贵金属滤渣

精炼生产线在铂钯预处理、铂精炼、铑铱分离、铱精炼、铑精炼工序提纯、置换等过程中产生少量不溶渣、过滤渣、置换渣,产生总量为34.5t/a,其中,铂精炼置换渣1t/a、铂精炼王水溶解过滤渣0.1t/a、铂钯预处理不溶渣2t/a、铑铱分离王水解吸不溶渣17.81t/a、钯萃取及精炼锌置换渣0.03t/a等共计20.93t/a,送入铑铱预处理工序进一步回收贵金属;钯萃取及精炼浓缩不溶渣0.5t/a、钯萃取及精炼络合不溶渣0.1t/a、铑铱分离过滤渣0.37t/a、铑铱分离置换渣0.32t/a、铑铱预处理过滤渣3t/a、铑精炼过滤渣0.1t/a、铱精炼置换渣0.3t/a、铱精炼过滤渣1.5t/a,合计13.56t/a全部送入矿热电炉熔炼,不出厂处理;银回收浸银渣5.37t/a应依据《危险废物鉴别标准浸出毒性鉴别》(GB5085.3-2007)开展危险废物鉴别后,根据鉴别结果采用相应的处置措施,鉴别前暂作为危险废物管控。

(7) 精炼生产线铜镍渣

精炼生产线在铂钯预处理和铑铱预处理除杂过程中会产生铜镍渣,主要含铜和镍,产生量为17.5t/a,根据查阅《国家危险废物名录(2025版)》,铜镍渣属于HW46 含镍废物(261-087-46),送入矿热电炉富集回收贵金属,不出厂处理。

(8) 污水处理除重渣

本项目生产废水全部排入污水处理站进行除重处理后委托中伟新材料股份有限公司进一步蒸发处理,废水除重过程中产生除重渣,经压滤后产生量约为763t/a,除重渣中仍含有少量的贵金属,送入矿热电炉富集回收,不出厂处理。

(9) 废滤布

本项目使用的压滤机定期更换滤布,废滤布产生量为 0.5t/a,根据查阅《国家危险废物名录(2025版)》,废滤布属于 HW49 其他废物(900-041-49),送入热解焚烧炉处置,不出厂处理。

(10) 废滤料

废气处理系统干式过滤器中的滤料需定期更换,废滤料产生量为 2.5t/a,根据查阅《国家危险废物名录(2025版)》,废滤布属于 HW49 其他废物(900-041-49),送入热解焚烧炉处置,不出厂处理。

(11) 废除尘器布袋

本项目废气处理系统布袋除尘器产生的粉尘采用布袋除尘装置进行处理,用于废气处理的布袋除尘器布袋(由涤纶、丙纶、克力等纤维经无纺、纺织工艺制成)平均更换周期约为2~3年,经计算,本项目废布袋产生量为0.14t/a,根据本项目粉尘处理性质,查阅《国家危险废物名录(2025版)》,废布袋属于HW49其他废物(900-041-49),送入热解焚烧炉处置,不出厂处理。

(12) 除尘设施收尘灰

本项目除尘设施收尘产生总量为 247.332t/a, 其中金、银干燥及铸锭工序布袋收 尘灰返回铸锭, 其余收尘灰送入矿热电炉富集回收, 不出厂处理。

(13) 废活性炭

本项目精炼生产线含有机废气处理系统活性炭吸收装置需定期更换,废活性炭产生量为 1.5t/a,查阅《国家危险废物名录(2025 版)》,废活性炭属于 HW49 其他废

物 (900-039-49), 送入热解焚烧炉处置, 不出厂处理。

(14) 废包装物

赤铁矿从相邻企业购置,吨袋重复使用,吨袋使用量 6098 个/a,破损率约为 15%,则赤铁矿废吨袋产生数量为 915 个/a,单个吨袋质量约 2.3kg,则赤铁矿废吨袋产生质量为 2.1t/a,赤铁矿废吨袋外售资源回收公司。

生石灰、石墨电极、石英石、草酸、木削、硼砂等辅料包装吨袋共计约7266个,质量约16.71吨,用于水淬渣的包装。废催化剂包装吨袋产生数量为2900个/a,质量约为6.67t/a,根据《国家危险废物名录(2025版)》,含有或者沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质,属于危险废物,废物类别及代码为HW49其他废物(900-041-49),废催化剂包装吨袋送入热解焚烧炉处置,不出厂处理。

沾染毒性的化学品包装物产生量约为 2617 个/a,根据《国家危险废物名录(2025版)》,含有或者沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质,属于危险废物,废物类别及代码为 HW49 其他废物(900-041-49),沾染毒性的化学品包装物送焚烧炉处置,其中,金属桶经清洗后循环利用。其他非沾染沾染毒性的化学品包装物产生量约为 5505 个/a,外售资源回收公司。

(15) 化验室废物

化验室废物主要包含化验室产生的无机废液、残渣、废药剂以及沾染的一次性实验用品、过滤吸附介质等,年产生量约为 0.8t/a,查阅《国家危险废物名录(2025版)》,化验室废物属于 HW49 其他废物(900-047-49),暂存于危废暂存间,定期委托有资质的单位处置。

(16) 废矿物油及废机油桶

废矿物油及废机油桶主要产生于设备维修过程,废矿物油产生量约为 1.5t/a,废

机油桶为盛装机油使用后产生,废机油桶产生量约为 0.3t/a; 废机油桶、废矿物油属于《国家危险废物名录(2025 版)》中 HW08(900-214-08)类危险废物,废矿物油采用铁桶收集后暂存于危险废物暂存间,交具有相关危险废物处置资质的单位处置。

(17) 生活垃圾

本项目职工人数 150 人, 按人均产生垃圾 1kg/d 计, 故本项目的生活垃圾产生量为 49.5t/a, 经垃圾桶收集后交由园区环卫部门清运处置。

表 2.4-10 固体废物污染源源强核算结果及相关参数一览表

41年					私	产生情况	处置	处置措施	
ムが生力	装置/工序	固废名称	固废属性	固废代码	核算方法	产生量/ (1/a)	ZT	处置量 (t/a)	最终去向
		水淬渣	一般工业固废	900-099-S01	物料平衡	11725.77	自行贮存	11725.77	外售铁回收企业
赤铁矿处	中地中的	废耐火材料	待鉴定废物	1	物料平衡	160	委托处置	160	根据鉴别性质处置
理生产线	W SALEN	废石墨电极	一般工业固废	900-099-S59	物料平衡	14	自行贮存 委托利用	14	外售资源回收企业
	预处理	外壳	一般工业固废	900-099-S17	类比法	167	自行贮存委托利用	167	外售资源回收企业
失效汽车	矿热电炉	水淬渣	待鉴定废物	,	物料平衡	3851.4	自行贮存委托处置	3851.4	根据鉴别性质处置
和生产线	回转窑	废耐火材料	允险废物	722-003-18	物料平衡	0.15	自行贮存委托处置	0.15	交由危废资质单位处置
	二段盐酸浸出	浸出漆	一般工业固废	261-013-816	物料平衡	90'0	自行贮存/ 自行处置	90.0	送至矿热电炉
废铂催化剂(铝基	矿热电炉	水淬渣	待鉴定废物	1	物料平衡	5885.02	自行贮存委托处置	5885.02	根据鉴别性质处置
载体) 处理生产线	二段盐酸浸出	浸出渣	一般工业固废	261-013-S16	物料平衡	0.54	自行贮存自行处置	0.54	送至矿热电炉
废钯催化 剂(铝基	矿热电炉	水淬渣	待鉴定废物	1	物料平衡	2021,74	自行贮存委托利用	2021.74	根据鉴别性质处置
载体) 处理生产线	二段盐酸浸出	浸出渣	一般工业固废	261-013-S16	物料平衡	0.26	自行贮存自行处置	0.26	送至矿热电炉
	が加速体理工序	铜镍渣	危险废物	261-087-46	物料平衡	16.5	自行贮存	16.5	送至矿热电炉
	世紀以外祖上は	不溶渣	一般工业固废	900-099-S59	物料平衡	2.0	自行处置	2.0	进铭铁预处理工序
	银回收工序	浸出流	待鉴定废物	1	物料平衡	5.37	自行贮存 委托利用	5.37	根据鉴别性质处置
精炼生产	钯萃取及精炼工	不溶渣	一般工业固废	900-099-859	物料平衡	0.5	自行贮存	0.5	送至矿热电炉
线	社	置換渣	一般工业固废	900-099-S59	物料平衡	1	委托处置	1	送至矿热电炉
	的维州工学	置换渣	一般工业固废	900-099-S59	物料平衡	1	自行贮存	1	进铑铱预处理工序
	THUMBETH	不溶渣	一般工业固废	65S-660-006	物料平衡	0.1	自行处置	0.1	进铑依预处理工序
	雄铁公路工度	不溶渣	一般工业固废	900-099-S59	物料平衡	17.81	自行贮存	17.81	进辖依预处理工序
	THE WAY	置换渣	一般工业固废	900-099-S59	物料平衡	0.32	自行处置	0.32	送至矿热电炉

稀贵金属资源循环利用项目环境影响报告书

本一年十二年					礼	产生情况	外 胃	处置措施	
(14年)	装置/工序	固废名称	固灰属性	固废代码	核算方法	产生量/(1/a)	1.2	处置量 (1/a)	最终去向
	地比斯州山市	过滤渣	一般工业固废	900-099-S59	物料平衡	m	自行贮存	3	送矿热电炉
	格林以文理上中	制镍渣	危险废物	261-087-46	物料平衡	1.0	自行处置	1.0	送矿热电炉
	24-4-17 Table	过滤谱	一般工业固废	900-099-S59	物料平衡	0.1	4年10年	0.1	送至矿热电炉
	松相冰二中	置換済	一般工业固废	900-099-S59	物料平衡	0.3	日行紀存/	0.3	送至矿热电炉
	铑精炼工序	立法済	一般工业固废	900-099-S59	物料平衡	1.5	日刊光度	1.5	送至矿热电炉
污水处理	除重、累凝沉淀	压滤渣	危险废物	772-006-49	物料平衡	763	自行贮存自行处置	763	送矿热电炉
超	板框压滤机	废滤布	危险废物	900-041-49	物料平衡	0.50	自行贮存自行处置	0.50	送焚烧炉处置
	干式过滤器	废滤料	危险废物	900-041-49	物料平衡	2.5	自行贮存自行处置	2.5	送焚烧炉处置
废气治理	除尘装置	收尘灰	危险废物	900-041-49	物料平衡	247.332	自行贮存自行处置	247.332	金、银工序布袋收尘灰 返回铸锭,其余收尘灰 送矿热电炉
		废布袋	危险废物	900-041-49	物料平衡	0.14	自行贮存自行处置	0.14	送焚烧炉处置
	活性炭吸附装置	废活性炭	危险废物	900-039-49	物料平衡	1.5	自行贮存自行处置	1.5	送焚烧炉处置
L 17 160 to	21. 12 de les	废矿物油	危险废物	900-214-08	类比法	1.8	4 5-10-4	1.8	交由危废资质单位处置
以由班扩	以奋雅护	废机油桶	危险废物	900-249-08	类比法	0.3	日行 <u></u>	0.3	交由危废资质单位处置
实验室	京 愛	化验室废物	危险废物	900-047-49	类比法	8.0	炎比炎且	8.0	交由危废资质单位处置
		赤铁矿废破损吨袋	一般固废	900-099-S59	物料平衡	2.3	自行贮存委托利用	2.3	外售资源回收公司
公子を		辅料废吨袋	一般固废	658-660-006	物料平衡	16.71	自行贮存自行利用	16.71	回用于水淬渣包装
原相作区	原辅料包装	废催化剂废吨袋	危险废物	900-041-49	物料平衡	6.67	4 624445	6.67	送焚烧炉处置
2		沿染毒性的化学 品包装物	危险废物	900-041-49	物料平衡	2617 1/a	自行处置	2617 1/a	送焚烧炉处置, 金属桶 交由危废资质单位处置
		其他包装物	一般固废	658-660-006	物料平衡	5505 ⁴ /a	自行贮存/ 自行利用	5505 4/a	外售资源回收公司

稀贵金属资源循环利用项目环境影响报告书

100	HWI8 焚烧处	01 000 000	31.0	₩	E	中	3	797	ŧ	交由环境主管部门
置残渣	40ml	722-003-18	0.15	田粹莊	Ð	里金属	ć Š	¥.	-	叶川, 具有厄波定置 置發质单位处置。
HW46 含镍废 物	含镍废	261-087-46	17.5	铂钯预处理、 铑铱预处理	匜	重金属	Ni, Cu	K	Ŧ	送矿热电炉
		772-006-49	763	除重、絮凝沉 淀	題	重金属	Ni, Co, Cu, As拳	*	T/In	送矿热电炉
		900-041-49	0.50	板框压滤机	短	重金属	Ni, Co, Cu, As奪	Я	T/In	送热解焚烧炉处置
		900-041-49	2.5	干式过滤器	阻	有机物	VOCs	A	T/In	送热解焚烧炉处置
Ž.	HW49 其他废	900-041-49	0.14	布袋除尘器	回	重金属	Ni, Co, Cu, As等	Н	T/In	送热解焚烧炉处置
	を	900-039-49	1.5	活性炭吸附装置	晅	有机物	VOCs	A	ı	送热解焚烧炉处置
		900-041-49	6.67	原料包装	囲	有机物	vocs	*	T/In	送热解焚烧炉处置
		900-041-49	2617 1 /a	辅料包装	恒	有害物质	化学品	*	T/ In	送焚烧炉处置,金 属桶外售交由危废 资质单位处置
E	HW08 废矿物	900-214-08	1.5	设备维修	液	矿物油	現	X	T, I	
無	油与含矿物油废物	900-249-08	0.3	设备维修	丽	矿物油	泵	Н	1, 1	交由环境主管部门 光声 电水色帐件
<u>*</u>	HW49 其他废物	900-047-49	8.0	实验室检测	固液	无机废液、 残渣、废药 剂	化学品	K	T/C/I/R	叶川, 具有厄陵处 置资质单位处置

2.4.5 污染源排放汇总

2.4.5.1 污染物排放口汇总

全厂污染物排放口情况见表 2.4-12。

表 2.4-12 全厂排放口汇总表

污染	1-34		+10-+16 T-1			排放口参	数
源类型	序号	排放口名称	排放口编号	排放口类型	高度 (m)	内径 (m)	排放温度 (°C)
	1	富集车间火法富集综合废气排放口	DA001	一般排放口	32	1.4	60
	2	富集车间酸性废气排放口	DA002	一般排放口	15	0.7	60
	3	废催化剂处理区域综合废气排放口	DA003	主要排放口	32	1.0	40
	4	废催化剂焚烧废气排放口	DA004	主要排放口	35	0.3	190
	5	回转窑炉内燃烧废气排放口	DA005	一般排放口	32	0.2	120
大气	6	精炼生产线含氯及含氢酸性废气排放口	DA006	一般排放口	25	1.4	55
污染	7	精炼生产线含有机组分废气排放口	DA007	一般排放口	32	0.5	60
源	8	精炼生产线贵金属干燥铸锭废气排放口	DA008	一般排放口	32	0.3	180
	9	精炼生产线含氮氧化物酸性废气排放口	DA009	一般排放口	25	0.8	60
	10	精炼生产线含氨废气排放口	DA010	一般排放口	15	0.8	60
	11	污水处理站废气排放口	DA011	一般排放口	15	0.5	25
	12	实验室废气排放口	DA012	一般排放口	15	1.0	25
	13	危废暂存间排放口	DA013	一般排放口	15	0.15	25
ale 322	1	生活污水排放口	DW001	一般排放口	排入	人大龙工业	污水厂
水污	2	污水处理站排放口	DW002	一般排放口	排至中值	新材料股	份有限公司
染物	3	雨水排放口	YS001	一般排放口	降雨期	间,不连约	表且不稳定

2.4.5.2 污染物排放情况

项目污染物排放情况表 2.4-13。

表 2.4-13 污染物排放情况统计表 单位: t/a

	污染源	污染物名称	污染物产生量	污染物削减量	污染物排放量
		颗粒物	251.353	245.303	6.050
		SO ₂	48.181	42.228	5.953
		NOx	36.303	22.99	13,313
		CO	1.312	0	1.312
		硫酸雾	31.364	30.641	0.723
		HCI	134.107	131.603	2.504
废气	有组织废气	非甲烷总烃	8.459	6.958	1.501
		HF	2.459	2,434	0.025
		P ₂ O ₅	0.138	0.125	0.013
		甲醛	0.191	0.187	0.004
		H ₂ S	2.237	2.131	0.106
		氯气	140.84	140.382	0.458
		NH ₃	29.39	26.265	3.125

		锡 (Sn)	0.3383	0.3349	0.0034
		铜 (Cu)	0.2616	0.259	0.0026
		锑(Sb)	0.342	0.339	0.003
		砷 (As)	1.020	1.01	0.010
		铅 (Pb)	5.262	5.20942	0.05258
		镍 (Ni)	0.0404	0.04	0.0004
		钴 (Co)	0.007	0,00693	0.00007
		猛 (Mn)	0.043	0.0426	0.0004
		铬 (Cr)	0.0162	0.016035	0.000165
		镉 (Cd)	0.0002	0.000198	0.000002
		二氧化氯	0.634	0.628	0.006
		二噁英	49.358mg/a	mg/a	9.872mg/a
		颗粒物	2,409	2.029	0.38
		NOx	0.022	0	0.022
		SO ₂	0.033	0	0.033
		P ₂ O ₅	0.0002	0	0.0002
	无组织废气	HF	0.005	0	0.005
		砷 (As)	0.0026	0	0.0026
		镍 (Ni)	0.000101	0	0.000101
		钴 (Co)	0.000018	0	0.000018
		铜 (Cu)	0.0007	0	0.0007
		锰 (Mn)	0.000108	0	0.000108
		铅 (Pb)	0.013	0	0.013
		锑 (Sb)	0.0009	0	0.0009
		锡 (Sn)	0.000023	0	0.000023
		镉 (Cd)	0.000001	0	0.000001
		铬 (Cr)	0.00004	0	0.00004
		非甲烷总烃	0.015	0	0.015
		HCl	0.008	0	0.008
ds de	生产废水	废水量	7484.23	7484.23	0
废水	生活污水	废水量	2673	0	2673
	一般	L业固废	11954.27	11954.27	0
G idea	危险	金废物	2467.192	2467.192	0
引废*	待鉴	定废物	11923.53	11923.53	0
	华统	舌垃圾	49.5	49.5	0

2.4.6 非正常工况下污染源源强核算

2.4.6.1 大气污染源

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),非正常排放生产过程中开停车(工、炉)、设备检修、工艺设备运转异常等非正常工况下的污染物排放,以及污染物排放控制措施达不到应有效率等情况下的排放,不包括事故排放(泄漏、火灾爆炸)。

根据项目特点,本项目废气非正常排放主要考虑布袋除尘器布袋、活性炭装置活性炭未、喷淋塔完全失效的情形,导致污染物治理效率下降为零。则项目废气非正常排放源强一览表如表 2.4-14。

2.4.6.2 水污染源

本项目生产废水经污水处理站预处理达到《无机化学工业污染物排放标准》 (GB 31573-2015)车间或设施排放口标准后采用管廊架设输送至中伟新材料股份有限公司生产废水处理设施处理。生活污水达标排入贵州大龙经开区污水处理厂。本项目非正常工况下,废水不会直接接入地表水体。

稀贵金属资源循环利用项目环境影响报告书

		区村区 量/		最大值	で値			单次			
污染源	非正常排放原因	(m3/h)	污染物名称	排放浓度 (mg/m³)	排放速率 (kg/h)	排放标准值 (mg/m³)	达标情 紀	本 配 E)	年发生頻 次(次)	应对措施	最大值运行生产线
			颗粒物	354.88	33.909	120	超标				废铂催化剂(铝基载体)处 理生产线
			NOX	19.11	1.826	240	达标				赤铁矿处理生产线
			SO2	79.24	7.572	550	达标				汽车废三元催化剂处理生产 线
			五氧化二磷	0.17	910.0	15	达标				赤铁矿处理生产线
			氟化氮	22.31	2.132	9	超标				废钯催化剂(铝基载体)处 理生产线
			(As) 趣	2.22	0.212	1	1				
			微 (Ni)	0.07	0.007	4.3	达标				土鄉亞外理生主公
DANG	设施故障, 污		供 (Co)	0.02	0.001	1	1			及时检修, 短时	亦状# 处理士厂线
排气簡	染物取消效率	95550	铜 (Cn)	0.57	0.054	1	/	2-4	1~7	不能恢复正常,	
	下降到 0%		锰(Mn)	0.26	0.025	S	达标			则停产检修	汽车废三元催化剂处理生产 线
			铅(Pb)	11.35	1.084	0.7	超标				
			(SP)	0.75	0.071	1	1				并 安 中 中 中 中 中
			(Sn)	0.72	690.0	8.5	达标				小以# 火 压土 3
			(PQ) 兴	0.0004	0.00004	0.85	达标				The second secon
			铅 (Cr)	90.0	9000	1	1				汽车废三元催化剂处理生产 线
			硫酸雾	7.20	889.0	20	达标				赤铁矿处理生产线
			HCI	22.66	2.165	10	超标				废铂催化剂(铝基载体)处 理生产线
24000	设施故障, 污		颗粒物	79.57	1.83	30	超标			及时检修, 矩时	赤铁矿处理生产线酸性浸
DA002	染物取消效率	23000	硫酸雾	206.63	4.753	20	超标	2~4	1~2	不能恢复正常,	出、汽车废三元催化剂处理
H CHI	下降到 0%		H ₂ S	17.93	0.412	10	超标			则停产检修	生产线酸性浸出同时运行
DA003	设施故障, 污		非甲烷总烃	20.14	1.007	120	达标			及时检修,短时	失效汽车居气催化剂处理生
排气简	染物取消效率下降到 0%	20000	颗粒物	2.00	0.100	120	达标	2-4	7-7	不能恢复正常, 则停产检修	产线+含铑均相催化剂处理生产线
			颗粒物	2000.10	11.361	20	超标				废铂催化剂(铝基载体)处
DA004	设施故障,污染物取消效率 下降到 0%	2680	NOx	400.01	2.272	250	超标	2-4	?	及时检修,短时不能恢复正常,回停产检修	理生产线、废铂钯催化(其 他载体)剂处理生产线同时 运行
			SO ₂	682.41	3.876	80	超标				废钯催化剂(铝基载体)处

稀贵金属资源循环利用项目环境影响报告书

											理生产线、废铂钯催化(其 他载体)剂处理生产线同时 运行
			93	60.28	0.342	80	达标				废铂催化剂(铝基榖体)处
			HCI	2103.57	11.948	20	超标				理生产线、含铑均相催化剂 处理生产线同时运行
			非甲烷总烃	10.28	0.058	120	达标				废钯催化剂(铝基载体)处 理生产线、含铑均相催化剂
			1	.00	000000		1447				处理生产线同时运行。
			(E) a	0.01	0.00008	0.5	公 称				及珀钯催化 (其他軟件) 剂 处理生产线
			110								钯催化剂(铝基载体)处理
			一路次	2.64	14.98µg/h	0.5ngTEQ/Nm³	海				生产线、含铑均相催化剂处理生产线同时运行
			HF	39.31	0.223	2	达标				含铑均相催化剂处理生产线
			P ₂ O ₅	8.80	0.05	15	达标				废铂催化剂(铝基载体)处 理生产线
			CIS	168.88	16.89	\$	超标				废铂催化剂处理生产线、精 炼生产线同时运行
			HCI	110.48	11.05	10	超标				失效汽车尾气催化剂处理生 产线、精炼生产线同时运行
	175 345-11-000		H ₂ S	0.23	0.023	10	达标			Total Mark to	
DA006	较陽故障, 污	00000	非甲烷总烃	0.29	0.029	120	达标			及时检修, 短时子终神位于非	
排气筒	米初联消炎率	100000	NOX	0.30	0.030	200	达标	5~7	7~	个肥恢复广治, 国体放校协	
	1. 本型 0.20		二氧化氯	0.80	080'0	1	1			からした。	日本 子子 子 大
			硫酸雾	0.50	0.050	20	达标				相冰土厂或
			NH3	1.32	0.132	20	达标				
			HF	0.01	0.0005	3	达标				
			颗粒物	0.002	0.0002	30	达标				
			H ₂ S	1.23	0.015	10	达标				
10000	设施故障,污		型山	2.01	0.024	25	达标			及时检修,短时	
DAUU/ 井 位 鎮	染物取消效率	12000	非甲烷总经	82.46	066'0	120	达标	2-4	1~2	不能恢复正常,	精炼生产线
	下降到 0%		氨气	116.86	1.402	20	超标			则停产检修	
			HCI	76.45	0.917	10	超标				
DA008 排气筒	设施故障,污染物取消效率 下降到 0%。	3000	颗粒物	0.26	0.0008	120	达标	2-4	2~1	及时检修,短时 不能恢复正常, 则停产检修	精炼生产线
10000	设施故障, 污		Cl2	51.70	1.680	5	超标			及时检修,短时	
DAU09 井 小 俳	染物取消效率	32500	HCI	93.15	3.027	10	超标	2-4	1~2	不能恢复正常,	精炼生产线
	下降到 0%		NOX	61.03	1.984	200	超标			则停产检修	

稀贵金属资源循环利用项目环境影响报告书

DA010 排气筒	设施故障,污染物取消效率 下降到 0%	30000	NH3	62.53	1.876	20	超标	2-4	1~5	及时检修,短时 不能恢复正常, 则停产检修	精炼生产线
DAGII	设施故障, 污		NH ₃	25.00	0.3	20	超标			及时检修,短时	
排气筒	染物取消效率 下降到0%	12000	H ₂ S	0.10	0.0012	10	达标	2-4	1~2	不能恢复正常, 则停产检修	污水处理站
			硫酸雾	0.0004	0.00002	45	达标				
			HCI	0.44	0.0205	10	达标				
5	设施故障, 污		HF	0.02	0.0010	6	达标			及时检修, 短时	
DAUI2 排气值	染物取消效率	46000	NOx	0.03	0.0015	240	达标	2-4	1~2	不能恢复正常,	实验室
2	下降到 0%		NH3	0.01	0.0003	20	达标			则停产检修	
			颗粒物	0.22	0.0102	120	达标				
			铅 (Pb)	0.42	0.0193	0.7	达标				
DA013	设施故障, 污									及时检修,短时	
排气简 排气简	染物取消效率下降到 0%	700	非甲烷总烃	10.60	0.007	120	达 标	5-4	1~2	不能恢复正常, 则停产检修	甲类仓库危废暂存间

3 环境现状调查与评价

3.1 区域自然环境概况

3.1.1 地理位置及交通

本项目位于贵州大龙经济开发区 2 号干道与 1 号干道交汇处中心地理坐标东经 109°0′25.757″, 北纬 27°20′17.255″。大龙经济开发区位于贵州省东部的铜仁地区玉屏 县大龙镇北面,具有独特的交通优势,东距湖南省长沙市 600km、怀化市 110 km, 西距省会贵阳 360km, 南距桂林 500km, 北邻铜仁, 距铜仁大兴机场 60km。湘黔铁路(株六复线)、玉铜高等级公路、G65 号高速公路、320 国道、201 省道穿境而过。特别是大龙火车站是成都铁路局与广州铁路局的口子站,是湘黔渝三省(市)五地(州)十七县(市)的物资集散地,铜仁大兴机场缩短了开发区与外界的距离,使大龙逐步形成以铁路、航空、国道主干线、地方公路为主的立体交通网络。项目交通位置见图 2.2-1。

3.1.2 地形地貌

玉屏县地处贵州高原东部边缘向湘西低山丘陵的过渡地带,位于武陵山脉以东,为江南台窿之西缘,武陵背斜与雪峰背斜之间的负向构造地带,低山多丘陵间有平地,境内以新店乡尖坡山 989m 为最高,东部舞阳河出省界的张板滩最低海拔316m,高差 673m,多在 400--600m 之间。岩溶剥蚀面民红色粘土丘陵起伏平缓,地势开阔。舞阳河及其支流两岸河谷盆地呈连珠状分布,地势平坦,耕地多集中连片,土壤肥沃。根据地貌形态,海拔高度和切割程度,全县地貌类型分为低山、丘陵和坝地,北部属低山丘陵区;南部河流切割较深,地势较高,垂直差异较大,属低山分布区;舞阳河左岸,县域中部河岸一带,地势平缓,属坝地。

3.1.3 地质

(1) 地质构造

大龙镇属于丘陵区,处于新晃—玉屏—镇远深大断裂北盘,地层产状平缓,断层 南盘出露板溪群砂岩、板岩,北盘出露中上寒武纪白云岩,覆盖厚薄不均匀,在谷地 和开阔平坦区域覆盖较厚,一般 3-4m,地区地震基本烈度为 6°。经济开发区内为平缓丘陵地貌,利用 ARCGIS 进行三维高程分析结果,场地大部分用地在 330-450m 高程,地形东南和西部高程相对较高,河流流域及周边地区高程相对较低。

(2) 地层岩性

项目场地所在区域出露地层有:寒武系上统、奥陶系下统以及第四系,地层岩性 由新到老叙述见表 3.1-1。

界	系	统	名称	地层 代号	厚度 m	岩性描述
新生界	第四系			Q	0~15	成因类型主要有冲洪积、残坡积,岩性以砂石、砂砾石和粘土为主
古生界	奥陶系	ト 大湾 O1d 220~27 灰绿	灰绿、黄绿夹紫红色钙质泥页岩及薄至中厚层瘤状灰 岩、泥质灰岩及泥灰岩。			
	奥	_	红花 园组	O ₁ h	20~50	灰、深灰中厚层夹薄层微至粗晶生物碎屑灰岩,常含 燧石结核或条带,下部偶夹页岩。
古	陶系	下统	桐梓组	Oıt	110~26 6	灰一深灰色中一厚层夹薄层微一细晶白云岩和细一粗 晶灰岩,夹砾屑、鲕豆粒白云岩,常含燧石团块或结 核,顶及下部夹灰、灰绿色页岩或钙质页岩。
生界	寒		追屯 组	∈ _{3Z}	400	浅灰、灰白色厚层块状细至粗晶白云岩,易风化松碎 为砂状。
	武系	上统	比条组	∈ ₃ b	263	灰色薄一中厚层纹层状细晶白云岩及薄层泥质条带灰岩组成,由下向上白云岩逐渐增多,至上部以中层细晶白云岩为主。

表 3.1-1 场地区域地层岩性简表

3.1.4 水文特征

(1) 地表水

本项目附近地表水体主要是后锁小溪、车坝河及舞阳河

玉屏县河流属于长江流域洞庭湖沅江水系,流域面积在 20km²以上的河流共计有 16 条,总长 174km,主要河流为舞阳河及其支流龙江河、车坝河等。最大为舞阳河干流,自南西向北东蜿蜒在县境边缘流过,是区内地表和地下水的排泄基准面。全县水资源总量 2.8 亿 m³,另有过境客水流量 37 亿 m³可以重复利用。

全年降雨径流多集中分布在4~8月,汛期水量占全年水量的2/3,由于降雨时空

分布不均造成河道年内分配差异较大,若遇大雨或暴雨,部分地区还会出现洪涝灾害;枯水期有的溪河断流,伏旱时有发生。

① 、后锁小溪

后锁小溪发源于堰塘湾,自西向东流经茶叶凸、项目西侧及后锁,在抚溪村处汇入车坝河,流经约 0.5km 后进入舞阳河。该溪沟最枯月平均流量 0.016m³/s。后锁小溪未划定水质类别,依据《关于加强水环境功能区水质目标管理有关问题的通知》(环办函 436 号),水环境质量功能区划为III类水体。

② 、车坝河

车坝河是舞阳河左岸一级支流,发源于石阡县青阳乡火麻地,由江口县东南部流入岑巩县北部,又入江口县南部经万山区东南角复入岑巩县东北部,入玉屏县中部后于抚溪汇入舞阳河干流,流域面积 1286km²,坝址以上流域面积 529 km²。干流河道流经石阡县火麻地,江口县江溪屯、泗渡、官和,岑巩县平牙,江口县艾坪、大塘,万山区地慢,岑巩县龙统、车坝、于河,玉屏县前龙、田新岩、抚溪,干流全长101km,河道比降 4.5‰,坝址以上干流长 64km,河道比降 6.2‰。

根据《贵州省水功能区划(2025年本)》和《玉屏侗族自治县水功能区划报告(报批稿)》(2018年4月),车坝河玉屏保留区(玉屏县马公塘~玉屏县白岩塘)水质目标为II类,车坝河(玉屏县白岩塘~躌阳河汇口)未划定水质类别,依据《关于加强水环境功能区水质目标管理有关问题的通知》(环办函 436号),执行《地表水环境质量标准》(GB3838-2002)III类标准。

③ 、舞阳河

舞阳河发源于贵州省瓮安县岚关乡,流经黄平、施秉、镇远、岑巩、玉屏及湖南省新晃、芷江、怀化,于黔城镇汇入沅江,干流自西向东南流贯县境。境内有大小河流多条,舞阳河是境内径流最大的河流,全长 248.6km,集水面积 1703km²,贵州枣子湾出境段多年平均流量 128.2 m³/s,最枯年径流量 19.8 亿 m³。最大洪峰流量 2180 m³/s,最枯月平均流量 12.5 m³/s,根据《贵州省水功能区划》(贵州省人民政府黔府函[2025]255 号),项目区舞阳河河段属"躌水黔湘缓冲区",水质目标属 II~III 类,项目区执行《地表水环境质量标准》(GB3838-2002)III类标准。

本项目舞阳河评价范围内不涉及饮用水源保护区。区域河流分布情况见图 3.1-1。

(2) 地下水

评价区域所在的玉屏县境内出露地层有元古代板溪群变余砂岩,板岩及古生代碳酸盐类岩石。按岩性及相对富水性,可将整个玉屏县分为非岩溶弱富水区、岩溶中等富水区和岩溶弱富水区。整个玉屏县地下水资源总量约 0.42 亿 m³。大龙属岩溶中等富水区,整个富水区面积达 188.95km²。岩溶发育强烈,受岩层及岩性控制明显。地下水主要为岩溶管道型水,其余为裂隙水,径流模数 3~5L/(s.km²),年量 0.251 亿 m³。大龙镇属岩溶中等富水区,整个富水区面积达 188.95km²。岩溶发育强烈,受岩层及岩性控制明显。地下水主要为岩溶管道型水,其余为裂隙水,径流模数 3~5L/s.km²,年总量为 0.251 亿 m³。

项目区地下水以岩溶水为主,埋藏较深,水质较好。经济开发区内出露地下水井 泉较多,是附近村民主要生活及农业生产主要用水水源。

区域水文地质情况见图 3.1-2。

3.1.5 气候、气象

玉屏县海拔高,纬度低,属中亚热带季风湿润气候区,具有亚热带高原山地季风湿润气候的特征:境内气候温和,冬无严寒,夏无酷暑,雨量较充沛,春季气候多变,夏季降雨集中,无霜期较长,水热基本同季。据玉屏县气象站 2004~2023 年累计气象观测资料,本地区多年最大日降水量为 80.62mm(极值为:191.90mm,出现时间:2007.07.26),多年最高气温为 38.2℃(极值为:39.8℃,出现时间:2023.06.26),多年最低气温为-2.3℃(极值为:-4.30℃,出现时间:2008.1.27),多年最大风速为 15.5m/s(极值为:23.10m/s,出现时间:2014.07.24),多年平均气压为 970.0,多年平均相对湿 78.2%,平均气温 17.1℃,平均风速为 1.3m/s。

3.1.6 土壤、植被

玉屏县土壤共划分为3个利用类型,既自然土、旱作土和水稻土,共计有6个土类,19个亚类,45个土属。6个土类分别为黄壤、红壤、石灰土、紫色土、潮土和水稻土,其中黄壤分布最广,其次是红壤,均呈酸性,有机质层深厚,缺磷,富钾,氮一般,紫色土、潮土、石灰土零星分布。经济开发区一带主要为红壤、黄壤和部分水

稻土。

玉屏县境内地带性次生植被为中亚热带湿润针叶林,目前境内森林植被类型多样,有森林物种 56 科,170 种。生物资源主要为各种林木、粮食和经济作物、果蔬、药材,以及人工养殖水产、畜禽种类等,其中有银杏、杜仲、厚朴、香檀、楠木等珍稀树种;用材林以松、柏、杉等为主,经济林主要为油桐、油茶;地方特产有杨梅、板栗、柑桔、油茶等。项目所在地区以农业生态系统为主,农作物主要有水稻、玉米、蔬菜,经济作物主要为果树。

项目周边林地丰富,主要为旱地作物植被和针叶人工林,间有竹林、水杉等本土树种,以及灌木丛、灌草丛等;农田植被主要是水稻、玉米、小麦及白菜、小葱等蔬菜。现有植被类型简单、次生性强。经现场调查,评价区无古老珍稀植物,不存在珍稀、濒危等受保护植物物种。

由于受人类干扰,适宜野生动物栖息的环境有限,动物区系结构组成较简单,动物类群基本上均为小型动物,近年来偶见的兽类动物有野兔、松鼠、田鼠、黄鼬等,主要分布于林区;爬行类动物主要为蛇、蛙类;鸟类主要有麻雀、喜鹊、斑鸠、画眉等。饲养动物有牛、羊、马、猪、鸡、鸭、鹅、兔、蜂等。根据收集的资料及现场踏勘,评价范围内除蛇和蛙属贵州省重点保护动物外,无其他保护性的珍稀动植物。

3.1.7 水土流失现状

根据《贵州省水土保持公报(2023年)》,2023年玉屏县水土流失面积161.83km²,其中,轻度流失面积131.25km²,中度流失面积24.83km²,强烈流失面积4.14km²,极强烈流失面积1.34km²,剧烈流失面积0.27km²。

玉屏县水土流失类型以水力侵蚀为主,水土流失侵蚀方式为面蚀,属轻度 流失区水土流失主要发生在陡坡耕地、荒山荒坡、低覆盖林地等地类和生产建 设活动区域。

3.1.8 周边环境敏感区

本项目评价区域内有廖溪河、舞阳河,廖溪河为舞阳河支流,该河流于麻音塘 处汇入舞阳河。经调查,廖溪河进入舞阳河后舞阳河河段属舞阳河特有鱼类国家级水 产种质资源保护区。舞阳河特有鱼类国家级水产种质资源保护区于2017年9月全面 完成实体划定建设,保护区范围以新店一碗水为起点,田坪抚溪江老桥为终点,流域全长 41km,总面积 932 公顷,其中,核心区(张家坪至抚溪江河段)498 公顷,实验区(新店一碗水至张家坪河段)434 公顷。地理坐标东经:108°50′20″至109°02′28″,北纬:27°11′11″至27°20′16″。

经搜集资料和现场调查,保护区内主要保护对象是鲶、大鳍鱯,其他保护物种包括泉水鱼、甲鱼、黄颡鱼、鲤、鳜、鲫、鰕琥鱼、花鱼骨、马口鱼、细鳞斜颌鲴等。本项目不在舞阳河特有鱼类国家级水产种质资源保护区范围内,且项目生产废水、地面清洁废水、初期雨水、废气治理废水进入污水处理设施处理后制取纯水回用于生产;纯水制备浓水外排园区管道最终汇入大龙经济开发区工业污水处理厂集中处理;生活污水接入园区管道,并随管网接入大龙经济开发区工业污水处理厂集中处理达标后排入舞阳河,不直接进入地表水体。

在项目切实做好厂区内污废水处理措施,加强管理,做好相应的防渗措施,避 免污水发生事故排放的情况下,项目对舞阳河特有鱼类种质资源保护区影响较小。本 项目与舞阳河特有鱼类国家级水产种质资源保护区位置关系见图 3.1-3。

3.2 环境空气质量现状调查与评价

3.2.1 区域环境空气质量现状

(1) 达标区判定

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)6.2 项目所在区域达标判定,采用评价范围内国家或地方环境空气质量监测网中评价基准年连续1年的监测数据,或采用生态环境主管部门公开发布的环境空气质量现状数据。评价范围内没有环境空气质量监测网数据或公开发布的环境空气质量现状数据的,可选择符合《环境空气质量监测点位布设技术规范》HJ664 规定,并且与评价范围地理位置邻近,地形、气候条件相近的环境空气质量城市点或区域点监测数据。

根据生态环境部环境工程评估中心环境空气质量模型技术支持服务系统,本项目大气评价范围内没有环境空气质量监测网数据或公开发布的环境空气质量现状数据。本次评价达标区判定数据选取项目所在行政区域铜仁市国控监测点数据作为达标区判定依据,铜仁市大气国控监测点符合《环境空气质量监测点位布设技术规范》

(HJ664-2013) 规定,且地形、气候条件均与项目所在地一致。

根据《2023年铜仁市生态环境状况公报》,2023年,铜仁市10个区(县)环境空气质量均达到《环境空气质量标准》(GB3095-2012)二级标准,全市环境空气质量平均优良天数比例为97.9%; 玉屏县环境空气质量综合指数为2.66,优良天数比例为97.0%,首要污染物为PM_{2.5}。项目所在区域环境空气质量可达到《环境空气质量标准》(GB 3095-2012)及其2018年修改单二级标准。因此,评价区域属于达标区域。

(2) 基本污染物达标情况

根据生态环境部环境工程评估中心环境空气质量模型技术支持服务系统,距离本项目最近的国控监测点位为铜仁七中站点(国控站点),铜仁七中站点 2023 年环境空气基本因子 SO₂、NO₂、PM₁₀、PM_{2.5}、CO、O_{3-8H}的浓度见表 3.2-1。并按照《环境空气质量标准》(GB3095-2012)评价,达标分析见表 3.2-1。

污染物	评价指标	现状浓度 (μg/m³)	标准值 (µg/m³)	占标率 (%)	达标情 祝
00	年平均质量浓度	4	60	6.67	达标
SO ₂	98 百分位数日均值	7	150	4.67	达标
NO	年平均质量浓度	13	40	32.50	达标
NO ₂	98 百分位数日均值	31	80	38.75	达标
2014	年平均质量浓度	37	70	52.86	达标
PM ₁₀	95 百分位数日均值	80	150	54.00	达标
D3.4	年平均质量浓度	23	35	65.71	达标
PM _{2.5}	95 百分位数日均值	66	75	90.67	达标
CO	24 小时平均值 95 百分位数 (mg/m³)	0.8	4	20.00	达标
O _{3-8H}	8 小时均值第 90 百分位数	110	160	68.75	达标

表 3.2-1 铜仁七中站点 2023 年环境空气质量总体状况统计表

根据表 3.2-1 可知,铜仁市 2023 年空气质量 6 项监测物中,二氧化硫年平均浓度及 98 百分位数日均值、二氧化氮年平均浓度及 98 百分位数日均值、可吸入颗粒物年平均浓度及 95 百分位数日均值、细颗粒物年平均浓度及 95 百分位数日均值、一氧化碳第 95 百分位数浓度、臭氧日最大 8 小时平均第 90 百分位数浓度均可达到《环境空气质量标准》(GB3095-2012)及其 2018 年修改单二级标准。

3.2.2 环境空气质量现状补充监测

3.2.2.1 监测布点

根据《环境影响评价技术导则大气环境》(HJ2.2-2018)"6.3.2 补充监测:以近20年统计的当地主导风向为轴向,在厂址及主导风向下风向5km范围内设置1~2个监测点"。本次评价引用《废旧锂电池综合回收体系建设项目(变更)检测报告》(报告编号:RC2412186-12021H)于2024年12月27日~2025年1月2日对下其厂区处及下廖溪硫化氢、氯化氢、非甲烷总烃、氮氧化物、氟化物、锰、甲醇、五氧化二磷的监测结果,《废旧锂电池综合回收体系建设项目(变更)检测报告》(编号:ZK2412201501C)于2025年1月5日~2025年1月11日对下其厂区处二噁英的监测结果。同时,本次评价在本项目厂址和下廖溪开展补充监测。因此,本次环境空气质量现状监测点位布置在厂址及其附近、下廖溪,区域近20年主导风向不明显,最大风频风向为NE(11%),下廖溪位于本项目所在厂区最大风频风向的下风向约1633m,监测点位满足《环境影响评价技术导则大气环境》(HJ2.2-2018)在厂址及主导风向下风向5km范围内设置1~2个监测点的要求。

具体监测点位置详见表 3.2-2 和图 3.2-1。

编号	名称	监测点	至極标	以田吹湖田之	相对厂址方	相对厂界距离
狮雪	右桥	X	Y	引用监测因子	位	(m)
GI	贵州中伟资源循环 公司厂址	-286.7	-262.29	NOx、硫化氢、硫酸雾、氯化氢、 非甲烷总烃、锰、氟化物、二噁英	sw	102
G2	广址	-146.01	-130.29	TSP、氨气、氯气、镍、钴、铜、铅、砷、铬、锡及其化合物、汞及 其化合物、镉、硒及其化合物、甲 醛、TVOC		
G3	下廖溪	-2033.72	-1519.75	TSP、NOx、氨气、硫化氢、硫酸雾、氯化氢、非甲烷总烃、氯气、氟化物、镍、钴、铜、铅、砷、铬、锡及其化合物、汞及其化合物、锰、镉、硒及其化合物、甲醛、TVOC、二噁英	sw	1633

表 3.2-2 其他污染物补充监测点位基本信息表

注: 坐标系与大气环境影响预测与评价章节坐标系一致。

3.2.2.2 监测因子

根据大气导则要求,污染物环境质量标准,以及结合项目排污情况项目环境空气现状调查选取以下补充监测因子: NOx、硫酸雾、硫化氢、氯化氢、非甲烷总烃、氟化物、五氧化二磷、甲醇、镍、锰、钴、二噁英。

在监测期间,同步对温度、气压、风向、风速进行观测、天气情况。

3.2.2.3 监测单位

二噁英检测单位为江西志科检测技术有限公司,其余因子监测单位为贵州蓉测环 保科技有限公司。

3.2.2.4 监测时间

引用监测数据监测时间分别为 2024 年 12 月 27 日~2025 年 1 月 2 日、2025 年 1 月 5 日~2025 年 1 月 11 日,补充监测时间为 2025 年 6 月 9 日~2025 年 6 月 15 日、2025 年 8 月 7 日~2025 年 8 月 13 日。

3.2.2.5 监测采样频率

连续7天进行,监测频次见表 3.2-3。

 监测因子
 频次要求
 结果类型

 TSP、NOx、硫酸雾、氯化氢、氟化物、五氧化二磷、甲醇、氯气、二噁英、镍、钴、铜、铅、砷、铬、锡、锰、镉、硒、汞及其化合物
 连续7天,连续监测20h
 24 小时均值

 NOx、非甲烷总烃、硫化氢、硫酸雾、氯化氢、甲醇、五氧化二磷、氟化物、氨、氯气、甲醛、TVOC
 连续7天,每天2:00、8:00、14:00、20:00 共四个时段小时值,每次不少于45 分钟
 小时平均值

表 3.2-3 监测因子及监测频次一览表

3.2.2.6 分析方法与依据

按照《环境空气质量标准》(GB3095-2012)和《空气和废气监测分析方法》 (第四版)中要求的技术标准及规范进行样品采集和分析。

3.2.2.7 评价标准及评价方法

(1) 评价标准

《环境空气质量标准》(GB3095-2012)、《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D、《大气污染物综合排放标准详解》。

(2) 评价方法

采用单项评价指数法:

Ii = Ci / Csi

式中: CI——污染物 i 的不同取样时间监测浓度, mg/m3;

Csi——污染物 i 的评价标准浓度限值, mg/m³。

当 Ii≥1 时为超标, Ii<1 时为未超标。

3.2.2.8 环境空气质量现状监测结果分析及评价

环境空气质量现状监测结果详见附件监测报告,统计结果见表 3.2-4。

表 3.2-4 环境空气质量现状临测及评价结果统计表

時測占份	批測	监测点坐标	沿江地	平均时间	医温浓度结固110/m3	评价标准	最大浓度值	最大占标率	超标率	
加 659 5六 125	×	Y	27×12	ा स्थाप	m 6845/文/在西岸罗川	µg/m³	µg/m³	%	%	
			硫化氢	1小时		10	7	70.00	0	
			加沙斯	1 小时		50	10	20.00	0	
			美石屋	24 小时*		15	10	0.67	0	
			非甲烷总烃	1小时		2000	480	0.24	0	
			O.A.	1 小时		250	22	8.80	0	
			NOX	24 小时		100	24	24.00	0	
			個北極	1小时		20	3.2	16.0	0	
C 电 田干 在 公 沿海			新化物	24 小时		7	0.62	8.86	0	
OI 以外十一节以降信 中人三二十	-286.7	-262.29	TAN SER SE	1小时		300	2.5	0.83	0	
大公司 相			高 股炎	24 小时*		100	2.5	2.5	0	
			H	1 小时		3000	860	28.67	0	
			抽上	24 小时*		1000	550	0.55	0	
			红	24 小时		10	0.0001	0.00001	0	
			五年八二縣	1 小时		150	0.01	0.007	0	
			II 40 12 194	24 小时*		50	0.1	0.2	0	
			二陽英	24 小时		0.6 pgTEQ/Nm³	0.057	9.50	0	
			TSP	24 小时		300	183	19.0	0	
G2 厂址	-146.01	-130.29	加加	1 小时		100	15	0.15	1	
			386	24 小时*		30	15	0.5	1	

稀贵金属资源循环利用项目环境影响报告书

1000年度	展組	监测点坐标	- F	TO HOST OF	医制性表现当	评价标准	最大浓度值	最大占标率	超标率	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
面侧点型	X	Y	17米4	मि जिल्लि म	而创怀及沿田山野町	µg/m³	µg/m³	%	%	公你用仍
			薁	1小时		200	120	9.0	0	达标
			锁	24 小时		30	1.51×10 ⁻³	0.00	0	达标
			华	24 小时		1	1.23×10 ⁻³	1	1	1
			锏	24 小时		1	1.03×10 ⁻³	1	1	1
			铅	24 小时		1	1.07×10-2	1	1	1
			毒	24 小时		1	0.7L×10 ⁻³	1	1	1
			锦	24 小时		,	3.20×10 ⁻³	1	J	1
			鵨	24 小时		-	1.38×10 ⁻³	/	1	1
			鲁	24 小时		1	3.37×10 ⁻⁴	1	1	/
			硒	24 小时		1	0.8L×10 ⁻³	1	1	1
			汞及其化合物	24 小时		1	3×10-3L	1	I	1
			超曲	1小时		50	19	39.0	1	达标
			TV0C*	8 小时		009	未检出	/	I	达标
			頭化氮	1小时		10	7	70.00	1	达标
			TALL	1 小时		90	10	20.00	0	达标
			美乙姓	24 小时*		15	10	0.67	0	达标
			非甲烷总烃	1 小时		2000	430	21.5	0	达标
			- OX	1小时		250	24	09.6	0	达标
G3 下廖溪	-2033.72	-1519.75	NOX	24 小时		100	25	25.00	0	达标
			TSP	24 小时		300	175	0.58	0	达标
			for 12 thm	1 小时		20	3.0	15.0	0	达标
			東石刻	24 小时		7	19.0	8.71	0	达标
			22年 86 25	1小时		300	2.5	3.39×10 ⁻⁴	0	达标
			9年日文 方	SA ALBERT		100	3 6	3 6	0	4.

稀贵金属资源循环利用项目环境影响报告书

100 年	影组	监测点坐标	13	W.450+671	11771日林田龙原名	评价标准	最大浓度值	最大占标率	超标率	以新公式
世紀を担	×	Y	12 X 42	मि जिल्लि म	面码水及沿回μgm	µg/m³	µg/m³	%	%	公协用の
			H	1小时		3000	880	39.33	0	达标
			in I	24 小时*		1000	550	0.55	0	达标
			计加计	1小时		150	0.01	0.007	0	达标
			11. 机化一醇	24 小时*		50	0.1	0.2	0	达标
			1	1小时		100	15	0.15	1	达标
			T _K	24 小时*		30	15	0.5	1	达标
			溪	1小时		200	120	9.0	0	达标
			袋	24 小时		30	0.25	8.33	0	达标
			铁	24 小时		/	4.07×10 ⁻⁴	1	1	1
			ఱ	24 小时		1	1.18×10 ⁻³	1	1	1
			铝	24 小时		,	4.05×10 ⁻²	1	1	1
			患	24 小时		/	0.7L×10 ⁻³	_	1	1
			铅	24 小时		/	3.26×10 ⁻³	1	1	1
			鵨	24 小时		/	1.34×10 ⁻³	,	1	1
			題	24 小时		/	6.8×10-4	,	1	1
			憂	24 小时		/	0.8L×10 ⁻³	1	1	1
			鞣	24 小时		10	0.0001	0.00001	0	达标
			汞及其化合物	24 小时		1	3×10-3L	1	1	1
			二陽英	24 小时		0.6 pgTEQ/Nm³	0.057	9.50	0	达标
			糧田	1小时		50	91	32.0	1	达标
			TVOC	8 小时*		009	未检出	1	1	达标

注:1、低于方法检出限,用"检出限+L"表示。2、带"*"表示由于该因子目前尚无日均值的国标检测标准和检测方法,检测单位不能将非标检测标准和检测方法的检测数 据出具中 CMA 检测报告中,仅能以测试报告给出。

由表 3.2-4 现状评价结果可知,各监测点 TSP、NOx、氟化物 1 小时平均浓度和 24 小时均值浓度监测结果满足《环境空气质量标准》(GB3095-2012)二级标准要 求,硫酸雾、氯化氢、硫化氢、五氧化二磷、氯气、氨气、甲醇、甲醛的 1 小时平均 浓度或 24 小时均值浓度监测结果及 TVOC 的 8 小时平均浓度均满足《环境影响评价 技术导则-大气环境》(HJ2.2-2018)附录 D 标准限值,非甲烷总烃、镍及其化合物满足《大气污染物综合排放标准详解》中的标准值,二噁英满足日本环境厅环境标准年平均值 0.6Pg-TEQ/m³。

综上所述,项目所在区域环境空气质量现状较好,各污染物均可满足相关质量 标准的要求。

3.3 地表水环境质量现状调查与评价

3.3.1 地表水功能区划

项目自然排水及事故排水进入后锁小溪,自西北向东南径流约 2.75km 后,于跳墩居民点处汇入车坝河,而后自北向南径流约 350m,于抚溪村汇入舞阳河。经查阅《贵州省水功能区划(2025 年本)》和《玉屏侗族自治县水功能区划报告(报批稿)》(2018 年 4 月),车坝河玉屏保留区(玉屏县马公塘~玉屏县白岩塘)水质目标为II类,车坝河(玉屏县白岩塘~舞阳河汇口)未划定水质类别,后锁小溪未划定类别;舞水湘黔缓冲区(玉屏县打鼓磉~湖南省新晃鱼市水电站大坝坝址)水质目标为II~III类。对于未划定水功能区划的河流河段根据《关于加强水环境功能区水质目标管理有关问题的通知》(环办函 436 号,2003 年 8 月 28 日)中"凡没有划定水环境功能区的河流湖库,各地环保部门在测算水环境容量、排污许可证发放、老污染源管理和审批新、改、扩建项目时,河流按照《地表水环境质量标准》(GB3838-2002)III类水质标准、湖库按照II类水质标准执行。"因此,车坝河(玉屏县白岩塘~舞阳河汇口)和后锁小溪均按照III类水质标准执行。"因此,车坝河(玉屏县白岩塘~舞阳河汇

综上所述,本项目所涉及的舞水(舞阳河)湘黔缓冲区(玉屏县打鼓磉~湖南省新晃鱼市水电站大坝坝址)河段、车坝河(玉屏县白岩塘~舞阳河汇口)及后锁小溪均为《地表水环境质量标准》(GB3838-2002)Ⅲ类水功能区。

3.3.2 地表水环境质量现状调查

3.3.2.1 监测断面设置

本次评价引用《中伟股份电池材料中试研发车间改扩建项目环境影响评价环境 质量现状监测报告》(报告编号 GZQSBG20240527019)于 2024 年 5 月 31 日~2024 年 6 月 2 日对后锁小溪、车坝河、海阳河设置的 6 个地表水监测断面采样监测结果, 引用断面均处于本项目事故排放口的下游,且在 3 年有效期内,引用监测数据可行。 同时本项目在后锁小溪支流增设 1 个监测断面。断面具体监测点位见表 3.3-1 和图 3.2-1 所示。

编号	河流	监测取样点位置	备注
W1	C 598 J. 397	中伟新材料公司厂区上游 200m	对照断面
W2	后锁小溪	中伟新材料公司厂区下游 500m	削减断面
W3	Ar Ameri	车坝河与后锁小溪交汇口上游 500m	对照断面
W4	- 车坝河	车坝河与躌阳河交汇口上游 50m	削减断面
W5	Mark Phys Start	大龙经开区污水厂排污口上游 500m	对照断面
W6	海阳河	大龙经开区污水厂排污口下游 1000m	控制断面
W7	后锁小溪	蔡溪屯附近	对照断面

表 3.3-1 地表水环境质量监测断面布置一览表

3.3.2.2 监测因子

pH 值、COD、BOD₅、NH₃-N、SS、DO、石油类、TP、挥发酚、氟化物、氰化物、钴、镍、铜、镉、硫酸盐、砷、铅、铁、锌、锰、汞、六价铬、硫化物、氯化物、粪大肠菌群共 26 项。同步监测各河流断面的河宽、河深、流量、流速、水温。

3.3.2.3 监测单位

贵州求实检测技术有限公司。

3.3.2.4 监测时间及频率

2024年5月31日~2024年6月2日,2025年6月9日~2025年6月11日,连续监测三天,每天一次。

3.3.2.5 分析方法及依据

地表水环境质量现状监测按照《环境监测技术规范》(地表水环境部分)和

《水和废水监测分析方法》 (第四版)的要求进行。

3.3.2.6 监测结果统计

地表水环境水质现状监测结果见表 3.3-2 及附件。

3.3.3 地表水环境质量现状评价

3.3.3.1 评价方法

采用单项水质参数标准指数法进行评价, 计算公式如下:

(1) 一般污染物的标准指数

Si = Ci/Cs

式中: Si---某污染物的标准指数;

Ci——某污染物的实测平均浓度, mg/L;

Cs——某污染物的评价标准, mg/L。

(2) pH 的标准指数

$$S_{pH,j} = (7.0-pH_j) / (7.0-pH_{sd})$$
 pH_i \leq 7.0

$$S_{pH_i} = (pH_i - 7.0) / (pH_{s\mu} - 7.0)$$
 pH_i>7.0

式中: $S_{pH,i}$ ——pH 的标准指数;

 pH_i ——pH 的实测平均值;

 pH_{sd} ——pH 的标准下限值;

 pH_{su} ——pH 的标准上限值。

(3) DO 值的评价公式

$$S_{DO_s} = DO_s / DO_i$$

 $DO_i \leq DO_f$

$$S_{pH, j} = | DO_f - DO_j | / (DO_f - DO_s) DO_j \ge DO_f$$

式中: SDO. _____溶解氧的标准指数, 大于1表明该水质因子超标;

 DO_j ——溶解氧在j点的实测统计代表值,mg/L:

DO。——溶解氧的水质评价标准限值, mg/L;

DOf---饱和溶解氧值,对于河流,DOf=468/(31.6+T);

T——水温, ℃。

水质参数的标准指数大于 1,表示该水质参数超过了规定的水质标准,已经 不能满足使用要求。

3.3.3.2 评价标准

执行《地表水环境质量标准》(GB3838-2002)Ⅲ类标准。

3.3.3.3 现状评价结果

地表水评价标准指数见表 3.3-2。

根据表 3.3-4 评价结果可知,后锁小溪、车坝河、濒阳河布设的 7 个监测断面的各监测项目标准指数均小于 1,水质均可达到《地表水环境质量标准》(GB3838-2002)中III类标准要求,说明后锁小溪、车坝河、濒阳河水质状况良好。

稀贵金属资源循环利用项目环境影响报告书

表 3.3-2 地表水环境质量现状监测结果统计表

i i		WI			W2			W3		AN TANAMA
州目	平均值	标准指数	超标倍数	平均值	标准指数	超标倍数	平均值	标准指数	超标倍数	计竹体准(mg/L)
pH 值 (无量纲)	7.3~7.4	0,15~0.2	/	7.3	0.15	1	7.4	0.2	1	6~9
溶解氧 (mg/L)	6.7	0.75	1	9.9	0.75	1	6.7	0.75	1	S
悬浮物 (mg/L)	00	0.26	1	11	0.38	1	8	0.27	/	30
化学需氧量 (mg/L)	13	0.63	1	12	0.62	1	13	0.65	1	20
五日生化需氧量 (mg/L)	2.8	0.71	1	2.8	0.71	1	2.8	0.70	1	4
氨氮 (mg/L)	0.160	91.0	1	0.165	0.16	1	0.150	0.15	1	_
心囊 (mg/L)	0.02	80.0	1	0.04	0.18	1	0.03	0,13	1	0.2
粪大肠菌群 (MPN/L)	643	90.0	/	583	90.0	1	653	0.07	1	10000
氟化物 (mg/L)	0.35	0.35	1	0.34	0.34	1	0.38	0.38	1	-
硫酸盐 (mg/L)	61	80.0	/	18	0.07	1	91	90.0	1	250
氮化物 (mg/L)	8.2	0.03	/	11.5	0.05	1	5.7	0.02	1	250
挥发酚 (mg/L)	0.0003L	0.030	1	0.0003L	0.030	1	0.0003L	0.030	1	0.05
氰化物 (mg/L)	0,004L	0.010	/	0.004L	0.010	1	0.004L	0.010	1	0.2
石油类 (mg/L)	0.01L	0.100	1	0.01L	0.100	1	0.01L	0.100	1	0.05
硫化物 (mg/L)	0.01L	0.025	1	0.01L	0.025	1	0,01L	0.025	1	0.2
六价格 (mg/L)	0.004L	0.040	1	0.004L	0.040	1	0.004L	0.040	1	0.05
汞 (mg/L)	0.00004L	0.200	/	0.00004L	0.200	/	0.00004L	0.200	1	0.0001
(mg/L)	0.0008	0.016	1	0.0005	0.011	1	0.0009	0.017	1	0.05
铅 (mg/L)	0.0025L	0.025	1	0.0025L	0.025	1	0.0025L	0.025	1	0.05
飆 (mg/L)	0.001L	0.100	1	0.001L	0.100	1	0.001L	0.100	1	0.005
铜 (mg/L)	0.006L	0.003	1	0.006L	0.003	1	0.00GL	0.003	1	1
铁 (mg/L)	0.02L	0.033	1	0.02L	0.033	1	0.02L	0.033	1	0.3
锰 (mg/L)	0.004L	0.020	1	0.004L	0.020	1	0.004L	0.020	1	0.1
锌 (mg/L)	0.004L	0.002	/	0.004L	0.002	1	0.004L	0.002	1	1
钴 (mg/L)	0.01L	0.005	/	0.01L	0.005	1	0.01L	0.005	1	1
(mo/L)	0.0061	0.150	1	0.0061	0.150	1	1900 0	0.150	1	000

注:"悬浮物"标准限值为《地表水资源质量标准》(SL63-94)三级标准;"镍、钴"参照《地表水环境质量标准》(GB3838-2002)表3标准;"低于检出限的浓度,用检出限+"L"表示,未检出评价按检出限的1/2 计算。

稀贵金属资源循环利用项目环境影响报告书

续表 3.3-3 地表水环境质量现状监测结果统计表

Ĭ		W4			WS			9M			W7		评价标篇 (mg/L)
州田	平均值	标准指数	标准指数超标倍数	平均值	标准指数	超标倍数	平均值	数	超标倍数	平均值	标准指数超标倍数	超标倍数	III 桊
pH 值 (无量纲)	7.4	0.2	/	7.4~7.6	0.2~0.3	1	7.4	0.2	7	7.9~8.0	0.45~0.5	1	6~9
溶解氣 (mg/L)	8.9	0.74	1	6.7	0.75	1	2.9	0.74	1	5.3	0.54	1	S
悬浮物 (mg/L)	6	0.29	_	8	0.27	/	7	0.23	1	19.6	0.32	/	30
化学需氧量 (mg/L)	12	0.62	1	12	0.62	/	12	09.0	1	12.33	0.62	1	20
五日生化需氣量 (mg/L)	2,9	0.73		2,8	0.70	1	2.8	0.71	1	2.9	0.73	_	4.0
氨氮 (mg/L)	0.151	0.15	1	0.175	0.18	1	0.166	0.17	1	0.186	0.19	1	1.0
心囊 (mg/L)	0.05	0.12	1	0.02	0.12	1	0.04	0.22	1	90.0	0.30	1	0.2
粪大肠菌群 (MPN/L)	069	0.07	1	757	80.0	/	089	0.07	1	573	90.0	1	10000
氟化物 (mg/L)	0.34	0.34	1	0.36	0.36	,	0.35	0.35	1	0.40	0.40	1	T
硫酸盐 (mg/L)	18	0.07	1	15	90.0	1	18	0.07	1	157	0.63	1	250
氯化物 (mg/L)	6.7	0.03	1	13.1	0.05	1	7.8	0.03	1	24	0.10	1	250
挥发酚 (mg/L)	0.0003L	0.030	1	0.0003L	0.030	-	0.0003L	0.030	1	0.0003L	0.003	/	0.05
氰化物 (mg/L)	0.004L	0.010	1	0.004L	0.010	1	0.004L	0.010	1	0.001L	0.003	1	0.2
石油类 (mg/L)	0.01L	0.100	1	0.01L	0.100	1	0.01L	0.100	1	0.01L	0.1	1	0.05
硫化物 (mg/L)	0.01L	0.025	1	0.01L	0.025	1	0.01L	0.025	1	0.01L	0.025	1	0.2
六价格 (mg/L)	0.004L	0.040	_	0.004L	0.040	1	0.004L	0.040	1	0.004L	0.04	1	0.05
汞 (mg/L)	0.00004L	0.200	1	0.00004L	0.200	1	0.00004L	0.200	1	0.00004L	0.2	1	0.0001
确 (mg/L)	0.001	0.019	,	0.0007	0.014	1	0.0007	0.014	1	0.0003L	0.003	1	0.05
铅(mg/L)	0.0025L	0.025	/	0.0025L	0.025	1	0.0025L	0.025	1	0.01L	0.1	1	0.05
镊 (mg/L)	0.001L	0.100	1	0.001L	0.100	7	0.001L	0.100	1	0.001L	0.1	1	0.005
铜 (mg/L)	0.006L	0.003	1	0.00GL	0.003	1	D:000T	0.003	1	0.05L	0.025	1	1.0
铁 (mg/L)	0.02L	0.033	1	0.02L	0.033	1	0.02L	0.033	1	0.03L	0.05	1	0.3
锰 (mg/L)	0.004L	0.020	1	0.004L	0.020	1	0.004L	0.020	1	0.01L	0.05	/	0.1
锌 (mg/L)	0,004L	0.002	1	0.004L	0.002	1	0.004L	0.002	/	0.05L	0.025	1	1.0
崭 (mg/L)	0.01L	0.005	1	0.01L	0.005	1	0.01L	0.005	1	0.05L	0.025	J	1.0
袋 (mg/L)	1900.0	0.150	1	0.00AT	0.150	1	1500 O	0.150	5	0.011	30.0		CUU

注:"悬浮物"标准限值为《地表水资源质量标准》(SL63-94)三级标准;"镍、钴"参照《地表水环境质量标准》(GB3838-2002)表 3 标准;"低于检出限的浓度,用检出限+"L"表示,未检出评价按检出限的 1/2 计算。

3.4 地下水环境质量现状调查与评价

3.4.1 污染源调查

3.4.1.1 周边地下水污染源调查

调查区属于岩溶台地地貌,项目位于贵州大龙经开区,本项目主要地下水污染特征因子为硫酸盐、总磷、氨氮、铁、锰等。根据调查,地下水评价范围内与本项目产生及排放同种特征因子的企业主要有中伟新材料股份有限公司、贵州能矿锰业集团有限公司、贵州中伟资源循环产业发展有限公司、贵州重力科技环保有限公司、贵州银科环境资源有限公司、贵州大龙汇成新材料有限公司、贵州长虹鹏程新材料有限公司等工业企业,影响较大的地下水污染途径均为非正常情况下的渗漏。同时,评价区农用地、居民点分布较多,地下水可能存在的污染源主要有工业和居民生活污染源。

3.4.1.2 场地包气带污染现状调查

包气带在水文地质剖面中位于潜水的上方,是污染物质进入地下水含水层的必经通道,由于包气带及其表层土壤部分含有极为丰富的有机质、粘粒组分、微生物以及活泼的反应物质如 CO₂、O₂等,在污染物质进入地下水之前会在包气带中经历众多的物理、化学及生物化学过程,将会在很大程度上影响污染物质进入地下水的速度与数量,因此,了解场地包气带性质,调查包气带内特征元素的现状分布特征,对于了解污染物质(重金属)在包气带内的迁移及进入地下水的可能性具有重要意义。

按照《环境影响评价技术导则 地下水环境》(HJ601-2016)要求,本次评价对现 状区域的包气带岩土进行了取样,根据《固体废物浸出毒性浸出方法水平振荡法》(HJ557-2010)对包气带土壤浸溶后对该批土样中的重金属进行了测定。

采样位置	采样深度 m	备注
富集吹炼车间南侧	0~0.2m 取一个样	后期设计调整为富集车间
铑铱精炼车间西侧	0~0.2 m 取一个样	
钯铂金提纯车间南侧	0~0.2 m 取一个样	后期设计调整为铂钯精炼车间

表 3.4-1 扰动土样采样一览表

贵州蓉测环保科技有限公司于 2025 年 6 月 12 日在厂区开展包气带土壤采样工作,并对样品进行了检测,检测结果见表 3.4-2。

表 3.4-2 土壤包气带检测结果统计表

检测项目	富集吹炼车间南侧	铑铱精炼车间西侧	钯铂金提纯车间南侧	标准值
包 例 切 日	0~0.2m	0~0.2m	0~0.2m	0~0.2m
pH 值	7.37	6.52	7.11	6.5~8.5

铜 (mg/L)	0.0025L	0.0025L	0.0025L	1.0
锌 (mg/L)	0.0064L	0.0263	0.0064L	1.0
镉 (mg/L)	0.0012L	0.0012L	0.0012L	0.005
铅 (mg/L)	0.0042L	0.0042L	0.0042L	0.01
六价铬 (mg/L)	0.004L	0.004L	0.004L	0.05
汞 (mg/L)	0.00014	0.00012	0.00019	0.001
镍 (mg/L)	0.0038L	0.379	0.0127	0.02
砷 (mg/L)	0.001L	0.001L	0.001L	0.01
钴 (mg/L)	0.0022L	0,105	0.0044	0.05
锰 (mg/L)	0.0036L	0.0693	0.0036L	0.10

根据表 3.4-2,本次包气带检测结果均满足《地下水质量标准》(GB/T14848-2017)III类标准要求,说明厂区包气带未受污染。

3.4.2 地下水现状及开发利用情况

(1) 岩溶泉

依据下降泉出露的地势高低、流量大小及距离远近、交通等条件,采取的开发利用方式各不相同,多在泉口处修建蓄水池或简易拦水坝,以泵提、自流管引、挑抬等方式利用。

(2) 机井

调查评价区地下水开发利用现状见表 3.4-3。

编号	图上编	地下水	出露地	£3, 100	坐	际	泉流量	工业利用面排
対制力	号	类型	层	位置	经度户	纬度/°	(L/s)	开发利用现状
1	SI	泉	€3Z	大龙镇胜利村北东 侧 1000m	109.02794079	27,35592042	0,2	通过管道供20户120人饮用
2	S2	泉	€3Z	大龙镇胜利村	109.03324082	27.35023508	0.5	通过泵抽供800人饮用
3	S3	泉	€ ₃ z	大龙镇胜利村	109.02900295	27.33752765	0.2	通过泵抽供50人饮用
4	S4	泉	€₃z	大龙镇辽家湾村东 侧 50m	109.02524528	27.34179500	1	通过泵抽供 400 人饮用
5	S5	泉	€3Z	玉屏县大龙	109.01976675	27.33901590	0.6	未利用
6	S6	泉	€3Z	大龙镇麻音塘村	109.00830000	27.32370000	1	通过泵抽管引供50人饮用
7	S7	泉	€3Z	大龙镇麻音塘村	109.00346696	27.32362549	5	无人饮用
8	S8	泉	€3Z	大龙镇麻音塘村	108.99810000	27.31880000	0,2	无人饮用
9	59	泉	€ ₃ z	大龙镇三寨村	108.98840000	27.32970000	0.5	通过泵抽供 200 人饮用
10	S10	泉	€3Z	大龙镇三寨村	108.98920000	27.32950000	0.1	通过泵抽管引供50人饮用
11	S11	泉	€₃z	大龙镇三寨村	108.98940000	27.32930000	0,5	通过管引供 200 人饮用
12	S12	泉	€ ₃ z	大龙镇三寨村	108.97989169	27.33639260	0.1	供 50 人紧急饮用
13	S13	泉	€3Z	大龙镇三寨村	108.98801342	27.34832797	0.2	通过管引供30人饮用
14	S14	泉	€3Z	大龙镇龙眼村	108.98605004	27.35012192	0.5	通过泵抽供 100 人饮用
15	S15	泉	C ₃ Z	大龙镇蔡溪村白猫冲	108.99153918	27.35044116	0.2	通过泵抽供 100 人饮用
16	S16	泉	€₃z	大龙镇三寨村白家庄	109.00345696	27.33776622	0.5	全厂用地范围内,已填埋
17	S17	泉	€3Z	大龙镇三寨村白家庄	109.00280000	27.33860000	0.1	全厂用地范围内, 己填埋
18	S18	泉	€3Z	人龙镇蔡溪村竹山溪	108.99350524	27.35743678	4.5	通过泵抽供 400 人饮用
19	S19	泉	C ₃ z	前龙村上寨	109.015412	27.370470	0.1	无人饮用
20	S20	泉	€3Z	前龙村下寨	109.021089	27.373580	0.1	通过泵抽供 15 人饮用
21	S21	泉	€3Z	前龙村马公塘	109.020366	27.378685	0.1	通过泵抽供8人饮用

表 3.4-3 调查评价区地下水开发利用现状表

100.20	图上编	地下水	出露地	24-100	45	标	泉流量	ar HG valveryer An
编号	号	类型	层	位置	经度/9	纬度/9	(L/s)	开发利用现状
22	522	泉	€₃z	前龙村马公塘	109.016726	27.380717	1.0	无人饮用
23	S44	泉	€3Z	道坪场	108,955829	27.336103	3,0	无人饮用
24	\$45	泉	€₃z	张家	108.975916	27.341800	1.0	无人饮用
25	S46	泉	€3Z	舒家湾	108.964013	27.347327	0,2	通过泵抽供 40 人饮用
26	S47	泉	E3Z	老屋	108.970462	27,360175	2.0	通过泵抽供 12 人饮用
27	S48	泉	E3Z	老屋	108.971512	27.360955	2.0	通过泵抽供35人饮用
28	S49	泉	€3Z	龙王溪	108,984975	27,377550	0.5	通过泵抽供 10 人饮用
29	S50	泉	€3Z	龙王溪	108.985878	27.379764	2.0	通过泵抽供20人饮用
30	S5)	泉	Esz	牛栏冲	108.997351	27.388707	0,1	通过泵抽供30人饮用
31	552	泉	€3Z	杨家	108.994536	27.405304	1.0	无人饮用
32	ZKI	机井	€3Z	大龙胜利村	109.03360963	27.34571562	1	通过泵抽供葡萄园灌溉及 供100人饮用
33	ZK2	机炸	€₃z	大龙胜利村	109.02203590	27.34808377	L	已开发利用, 泵抽供 200 人饮用
34	ZK3	机井	€3Z	大龙胜利村洞上	109.01974797	27.34919398	1	通过泵抽供50人饮用
35	ZK4	机井	€3Z	抚溪村	109.01650000	27.33770000	1	无人饮用
36	ZK5	机井	€₃z	抚溪村	109.02074844	27.33870616	1	已废弃, 无人饮用
37	ZK6	机井	€ ₃ z	抚溪村	109.02411595	27.33595657	1	已废弃, 无人饮用
38	ZK7	机井	€3Z	抚溪村	109.03804064	27.32968517	1	泵抽供10人饮用
39	ZK8	机井	€3Z	抚溪村	109.03669953	27.32617760	1	管引供 10 人饮用
40	ZK9	机井	Ciz	麻音塘村	109.01371300	27.31892384	1	无人饮用,已废弃
41	ZK10	机井	€3Z	三番村	108,98252159	27.33501660	λ	泵抽供 130 人及 3000 头 猪饮用
42	ZK11	机井	C ₃ z	三寨村三脚岩	108.98810000	27.34310000	1.	泵抽供100人饮用
43	ZK12	机井	€3Z	三寨村	108.98780000	27.34880000	1	周边农田, 泵抽供 100 人 饮用
44	ZK13	机井	C ₃ z	龙眼村	108.98488998	27.35264840	1	泵抽供 100 人饮用
45	ZK14	机井	Esz	蔡溪村	108.99270326	27.34936551	Z	周边农田, 泵抽供 100 人 饮用
46	ZK15	机井	C ₃ z	三寨村大坪	108.99062991	27.33579217	1	泵抽供 250 人饮用
47	ZK16	机井	€3Z	蔡溪村竹林嘴	109.00190726	27.35410400	1	泉抽供100人饮用
48	ZK17	机井	€3Z	蔡溪村	109.01240000	27.34600000	1	现己无人饮用
49	ZK18	机井	€ ₃ z	蔡溪村	109.00973797	27.34856026	1	已废弃, 无人饮用
50	ZK19	机井	C3Z	蔡溪村岩下	109.00773168	27.36276568	1	泵抽供800人饮用
51	ZK38	机井	€3Z	抚溪村	109.01201248	27,33002830	1	供1户5人饮用(管引)
52	ZK39	机井	€3Z	抚溪村	109.02159333	27.32396626	1	未利用
53	ZK40	机炸	€3Z	抚溪村分洲	109.02287006	27.32475501	1.	泵抽供 30 人饮用
54	ZK41	机井	€ ₃ z	抚溪村	109.032352331	27.334580229	1	泵抽供 8 人饮用
55	ZK44	机井	€3Z	王家	108.9628765	27.34091309	1	泵抽供 20 人饮用
56	ZK45	机井	C ₃ z	水竹林	108.9679384	27,35730444	1	泵抽供 6 人饮用

3.4.3 地下水调查范围

北起陈金坳高地一带,向东以车坝河为界,南接舞阳河,西至廖溪河为一相对独立的水文地质单元,围成67.7km²的区域,包含项目所在的完整的水文地质单元。

3.4.4 地下水水位监测

按照《环境影响评价技术导则 地下水环境》(HJ601-2016)要求,本次评价需对评价区域内主要排泄点及机(民)井地下水位标高做两次观察,在取水样的过程中

同时观测地下水位标高,另外地下水位标高观测点数大于水质取样点的2倍。本次评价期间未做地下水位长期监测,主要通过收集周边主要排泄点及机(民)井地下水水位标高观测数据,根据现场调查及走访,本项目所在区域未发现大量开采地下水,总体来说地下水水文条件变化不大,本次评价引用的周边观测数据用于本项目评价期间地下水位分析可行。地下水水水位观测数据见表3.4-4。

编号	经度	纬度	丰水期地下水水位 (m)	枯水期地下水水位 (m)
S1	109.02794079	27.35592042	337	337
S3	109.029003	27.337527	330.5	329.7
S6	109.00830000	27.32370000	345.7	345.7
ZK17	109.01240000	27.34600000	330	329
ZK15	108.99062991	27.33579217	389	387
ZK12	108.98780000	27.34880000	417	413
ZK11	108.98810000	27.34310000	393	392.6
ZK10	108.98252159	27,33501660	377	375
S8	108.99810000	27.31880000	352	352
S7	109.00346696	27.32362549	358	358
S13	108.98801342	27.34832797	416	416
S10	108.98920000	27,32950000	363	363
真琪 ZKI	109.00253356	27.33160571	355	350
真琪 ZK2	108.99974942	27,33287810	381	347
真琪 ZK3	109.00094032	27.33444594	372	349
循环公司 JC01	109.0118263	27.34038784	1	351.2
循环公司 JC02	109.0096431	27.33834163	1	353.8
循环公司 JC03	109.0049586	27.33775122	1	352.8
循环公司 JC04	109.0054362	27.33633007	1	350.1
循环公司 JC05	109.0011313	27.33527596	1	353.5
循环公司 JC06	109.0004553	27.33705695	1	354.2
厂区 JC01	109.0116032	27.3380683	352.0	1
厂区 JC02	109.0141372	27.33900331	356.0	1

表 3.4-4 评价区地下水水位监测点统计表

3.4.5 地下水环境质量现状监测

3.4.5.1 水质监测点位设置

(1) 地下水监测布点

本次评价引用与本项目处于同一水文地质单元的地下水监测数据,在现有厂区及周边共引用枯水期水质检测点7个,其中,地下水流场上游监测点位1个(ZK16),下游监测点位3个(S3、S5),场地两侧3个(S4、S6、S12);本次评价共引用丰水期水质检测点7个,其中,地下水流场上游监测点位1个

(ZK16),下游监测点位2个(S3、S5、ZK39),场地两侧1个(S6、S8、S12、S4);本次评价开展枯水期水质检测点3个,其中,地下水流场上游监测点位1个(厂区 JC01 监测井),下游监测点位1个(厂区 JC02 监测井),场地两侧1个(循环公司 JC03 监测井);引用时期和点位数量均满足《环境影响评价技术导则地下水环境》(HJ610-2016)中的"一级评价项目潜水含水层的水质监测点应不少于7个,可能受建设项目影响且具有饮用水开发利用价值的含水层3~5个。原则上建设项目场地上游和两侧的地下水水质监测点均不得少于1个,建设项目场地及其下游影响区的地下水水质监测点不得少于3个。"的要求。

具体监测点位见表 3.4-5 和图 3.4-1 所示。

3.4.5.2 监测因子

监测因子详见表 3.4-5。

表 3.4-5 评价区地下水监测点统计表

序号	点位名称	井泉編号	监测报告编号	采样时间	与项目地下 水径流关系	引用监测报告	检测因子
-	蒋家湾	9S	SY230047U2	2023.2.27~2023.2.28	海上	10个四张班还人也	pH 值、耗氧量、溶解性总固体、总硬度、氦氦、
74	三寨村	ZKI5	SY230047UI	2023.2.27~2023.2.28	海遊	《音程资源综合利用技改项目检测报告》(水陆源报告SY230047)	硫化物、硫酸盐、拌及即、氧化物、氧化物、铁、锰、铜、锌、氧化物、硝酸盐氮、亚硝酸盐氮、砷、汞、六价铬、铅、镉、铁、锰、总大肠菌群、K [*] 、Na、Ca ²⁺ 、Mg ²⁺ 、Cl [*] 、SO ₄ ² 、碳酸盐、重碳酸盐、锂、镍、钴
3	杉木林	\$5	ίδ	2024.12.27~2024.12.28	下游	《房旧细电池综合	pH值、耗氧量、溶解性总固体、总硬度、氨氮、
4	蔡溪村	ZK16	92	2024.12.27~2024.12.28	為山	回收体系建设项目	硫化物、硫酸铅、氧化物、锌发性酚类(以苯酚:) 個分類 個分類 超粉料 (以下) 形理
10	抚上抚下	83	63	2024.12.27~2024.12.28	排上	(变更)检测报告》	17、 N.C.V. N.C.V. SEKE (2.1.1.) 是 酸盐(以N计)、总大肠菌群、菌落总数、铁、
9	辽家湾	S4	49	2024.12.27~2024.12.28	指軍	号:RC2412186-	锰、铜、锌、砷、汞、六价铬、铝、镅、锂、镍、 、
7	抚溪村分洲	ZK39	65	2024.12.27~2024.12.28	游上	12021H)	中、用、联、明、K、Na、Ca"、Mg"、CO3-HCO3-、CI、SO42-
-	華家灣	98	蒋家湾 (01	2024.6.28~2024.6.29	4.4	The state of the s	
2	下廖溪	88	下廖溪 02	2024.6.28~2024.6.29	遊遊	《锂电池废料综合	pH值、耗氣量、溶解性总固体、总硬度、氮氮、
3	凡溪屯	S12	三寨村 03	2024.6.28~2024.6.29	海影	利用产线提供改制	高化物、硫酸盐、锌灰酚、氰化物、氯化物、铁、矿 和 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4	杉木林	\$5	杉木林 04	2024.6.28~2024.6.29	下游	通坝口校凯拔口》 "超代绝	· 语、辞、影化物、唐殷祖聚、史唐殷福聚、 语 · 是 · 多 · · · · · · · · · · · · · · · ·
S	蔡溪村	ZK16	蔡溪村 05	2024.6.28~2024.6.29	上游	号·RC7406128。	字、久、くごお、B、B、B、B、B、B、B、ABE、B、B、B、B、B、B、B、B、B、B、B
9	抚上抚下	S3	抚上抚下 Q6	2024.6.28~2024.6.29	指出	(H01090	HCO ² . Cl., SO ₄ ²
7	辽家湾	S4	近家湾 07	2024.6.28~2024.6.29	侧游		
œ	厂区钻井	JC01	10	2025.6.14~2025.6.15	指山		pH值、耗氧量、溶解性总固体、总硬度、氦氦、
6	厂区钻井	JC02	65	2025.6.14~2025.6.15	海上		硫化物、硫酸盐、氯化物、挥发性酚类(以苯酚
01	循环公司監測并	循环 JC03	ξÒ	2025.6.14~2025.6.15	瑦覊	本次评价补测	 計)、氰化物、氟化物、硝酸盐(以N計)、亚硝酸盐(以N计)、总大肠菌群、菌落总数、铁、锰、铜、锌、砷、汞、六价格、铅、镉、镍、钴、钼、银、硒、K*、Nat、Ca²*、Mg²*、CO₂²、HCO²、Cl、SO₂²、

3.4.5.3 监测单位、监测频率

监测单位:贵州蓉测环保科技有限公司、贵州水陆源生态环境咨询有限公司、贵州求实检测技术有限公司。

监测频率: 监测2天,每天1次。

3.4.5.4 分析方法及依据

按照《地下水环境监测技术规范》(HJ164-2020)要求,采用纯净水塑料瓶、无菌瓶等容器,现场抽水一定时间后采集水样,采集完水样立即送回实验室测试;样品处理和化学分析方法严格按照《地下水环境监测技术规范》(HJ164-2020)进行,满足《环境影响评价技术导则 地下水环境》(HJ610-2016)要求。

3.4.5.5 监测结果统计

地表水水质现状监测结果见表 3.4-5。

3.4.6 地下水环境质量现状评价

3.4.6.1 评价因子

现状监测参数均作为评价因子。

3.4.6.2 评价方法

采用单项水质参数标准指数法进行评价, 计算公式如下:

(1) 一般污染物的标准指数

Si=Ci/Cs

式中: Si---某污染物的标准指数:

Ci——某污染物的实测平均浓度, mg/L;

Cs——某污染物的评价标准, mg//L。

(2) pH 的标准指数

 $S_{pH, j} = (7.0 - pH_j) / (7.0 - pH_{sd}) \quad pH_j \le 7.0$

 $S_{pH,j} = (pH_j - 7.0) / (pH_{s\mu} - 7.0) \quad pH_j > 7.0$

式中: $S_{pH, f}$ ——pH 的标准指数:

 pH_i —pH 的实测平均值:

 pH_{sd} ——pH 的标准下限值;

 $pH_{s\mu}$ ——pH 的标准上限值。

水质参数的标准指数大于 1,表示该水质参数超过了规定的水质标准,已经 不能满足使用要求。

3.4.6.3 环境质量标准

本次评价选用《地下水质量标准》 (GB/T 14848-2017) Ⅲ类指标作为标准。

3.4.6.4 现状评价结果

地下水评价标准指数见表 3.4-6。

由表 3.4-6 可知丰水期监测的 10 个地下水监测所有水质指标均可达到《地下水质量标准》(GB/T14848-2017)中的III类标准要求。

由表 3.4-6 可知枯水期引用的 2 个地下水监测采样点 S6、S12 除总大肠杆菌群超标外,S6、S12 点位其余水质指标及其他点位全部水质指标均可达到《地下水质量标准》(GB/T14848-2017)中的III类标准要求,总大肠杆菌群超标率均为100%。

总大肠杆菌群超标原因主要是受当地农田施肥及部分居民生活污染源的无序 排放以及人畜粪便的污染所引起的。

本次评价采用的枯水期7个地下水样和丰水期10个地下水样中其他监测因子,所有检测指标均未超标,符合《地下水质量标准》(GB/T14848-2017)III 类标准,未见特征因子和重金属指标超标,水质总体表现较好。

稀贵金属资源循环利用项目环境影响报告书

表 3.4-6 地下水水质现状监测结果及评价统计表(丰水期)

で	米加	H oc H >	THE RESERVE THE PERSON NAMED IN			XX.	一 ※ 1 (2)	かな	杉木林 04	拉安以
		D 87 H 9	6月29日	6月28日	6月29日	6月28日	6月29日	6月28日	6月29日	MARIE
	检测值									
-	污染指数	0.20	0.27	0.27	0.27	0.33	0.33	0.27	0.27	0 -37
нф	超标率	,	/	1	1	1	/	,	/	0.5~8.5
	超标倍数	1	1	1	1	1	/	1	1	
	检测值									
自馬舞	污染指数	0.40	0.47	0.33	0.33	0.27	0.37	0.37	0.43	
TO WITH	超标率	/	/	/	1	1	1	/	1	0
	超标倍数	1	1	/	1	1	1	/	1	
	检测值									
And American	污染指数	90.0	60.0	0.23	0.23	90.0	80.0	60.0	0.11	40
変数	超标率	1	1	/	1	1	1	1	1	0.0
	超标倍数	1	1	1	1	1	1	1	1	
	检测值	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	
H	污染指数	1	1	1	1	1	/	1	/	,
區	超标率	1	1	/	1	1	/	/	1	-
	超标倍数	-	1	1	1	1	/	1	/	
	检测值	0.0003L	0.0003L	0.0003L	0.0003L	0.0004	0.0004	0.0003L	0.0003L	
Tide.	污染指数	/	1	1	1	+	1	/	/	100
1	超标率	1	1	1	1	1	/	1	1	0.01
	超标倍数	1	1	1	1	1	1	1	1	
	检测值	0.00004L	0.00004L	9000000	0.00006	0.00004L	0.00004L	0.00004L	0.00004L	
H	污染指数	/	/	1	1	1	1	1	1	1000
A.	超标率	1	1	1	1	1	1	1	1	0.001
	超标倍数	1	1	1	1	1	1	1	1	
	检测值	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	
ALC.	污染指数	1	/	1	1	1	1	/	1	2000
TAN-	超标率	1	1	1	1	1	1	1	1	0.00
	超标倍数	1	1	/	1	1	1	/	1	
	检测值	0.001L	0.001L	0,001L	0.001L	0.001L	0.001L	0.001L	0.001L	
10.00	污染指数	1	1	1	1	1	1	1	1	30.0
田山	超标率	1	1	1	1	1	1	1	1	0.02
	超标倍数	1	1	1	1	1	1	1	1	
H	检测值	0.010L	0.010L	0.010L	0.010L	0.010L	0.010L	0.010L	0.010L	100
H	污染指数	1	1	1	1	1	1	1	1	0.01

三寨村 (93 杉木林 (94	6月28日 6月29日 6月28日 6月29日			0.0003L 0.0003L 0.0003L 0.0003L		7 / / / 0.002		0.0005L 0.0005L 0.0005L 0.0005L		0.00		0.003L 0.003L 0.003L 0.003L		1 1 1 0.02		0.03L 0.03L 0.03L 0.03L		1 1 1		0.01L 0.01L 0.01L 0.01L	1 1 1	1 1 1 1		0.05L 0.05L 0.05L 0.05L				11 11 11 11 1T						1 1 1 1 1 1 1 1	
下廖溪 02	6月28日 6月29日	1 1	1	0.0003L 0.0003L	1 1	1	1	0.0005L 0.0005L	1 1	1 1	1 1	0.003L 0.003L	1 1	1 1	1 1	0.03L 0.03L	1 1	1 1	1	0.01L 0.01L	1 1	1	1 1	0.05L 0.05L	1 1	1 1	1	IL IL	1 1	1 1	1 1			1 1	,
蔡家湾 Q1	6月28日 6月29日	1 1	1 1	0.0003L 0.0003L	1 1	1 1	/ /	0.0005L 0.0005L	1 1	1 1	1 1	0.003L 0.003L	1 1	1 1	1 1	0.03L 0.03L	1 1	1 1	1 1	0.01L 0.01L	1 1	1 1	1 1	0.05L 0.05L	1 1	1 1	1 1	IL IL	1 1	1 1	1 1			1 1	,
	- 一	超标率	超标倍数	检测值	拓中影 污染指数	件 及 助 超标率	超标倍数	检测值	● 小	耐化物 超标率	超标倍数	检测值	成 上 京 上 京 北 五 五 五 五 五 五 五 五 五 五 五 五 五	凱化物 超标率	超标倍数	检测值	好 污染指数	ty 超标率	超标倍数	检测值	5	a 超标率	超标倍数	检测值	污染指数	群	超标倍数	检测值	总大肠菌群	(MPN/100mL) 超标率	超标倍数	检测值	※知此 公田休 污染指数	各所 工 心 回 体 超 标 率	和与位别

类别	将系 6月28日	将条/高 QI 日 6月29日	6月28日	ト廖漢 Q2 日 6月29日	6月28日	二条件 U3 日 6月29日	6月28日	杉木林 Q4 目 6月29日	标准值
污染指数									
超标率	1	1	1	1	1	1	1	1	
超标倍数	1	1	1	1	1	1	1	/	
检测值									
污染指数									120
超标率	1	1	1	1	1	1	1	1	250
超标倍数	1	1	1	1	1	/	1	1	
检测值									
污染指数	0.03	0.03	0.13	0.13	0.03	0.03	90.0	90.0	030
超标率	1	1	1	1	1	1	1	1	720
超标倍数	/	1	1	1	/	/	1	1	
检测值									
污染指数	0.25	0.23	0.24	0.24	0.24	0.21	0.31	0.32	,
超标率	1	1	1	1	1	1	/	1	-
超标倍数	1	1	1	/	1	1	1	1	
检测值									
污染指数	0.05	0.05	0.03	0.03	60.0	80.0	60.0	0.10	00
超标率	1	1	1	1	1	1	1	1	707
超标倍数	1	1	1	1	1	1	1	/	
检测值	0.003L	0.003L	0.003L	0.003L	0.003L	0.003L	0.003L	0.003L	
污染指数	1	1	1	1	1	/	1	1	
超标率	1	1	1	1	1	1	1	1	-
超标倍数	1	/	1	/	/	1	1	1	
检测值	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	
污染指数	1	1	1	1	1	1	1	1	50.0
超标率	/	/	1	1	1	/	1	/	0.0
超标倍数	/	/	1	1	1	1	1	1	
检测值	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	
污染指数	1	1	1	1	1	1	1	1	0
超标率	1	1	1	1	1	1	1	1	0.00
超标倍数	1	1	1	1	1	1	1	1	
检测值	0.00033L	0.00033L	0.00045	0.00045	0.00033L	0.00033L	0.00313	0.00283	
污染指数	1	1	1	1	/	1	/	/	,
超标率	/	1	/	/	1	1	1	1	_
机七位粉									

	34- Dil	将家湾 (01	\$Q1	下廖溪 02	爰 Q2		三寨村 03	杉木林 Q4	* Q4	A1 45 CA
4	光加	6月28日	6月29日	6月28日	6月29日	6月28日	6月29日	6月28日	6月29日	你任頂
100	检测值									
	污染指数	0.00	0.00	0.01	0.01	0.02	0.02	0.01	0.01	000
Ma	超标率	1	1	1	1	1	1	1	1	700
超	超标倍数	1	1	/	1	1	/	1	1	
刺	检测值									
	污染指数	1	1	/	1	1	1	1	1	
平	超标率	1	1	/	1	1	/	1	/	
期	超标倍数	1	1	/	1	1	1	1	1	
類	检测值									
	污染指数	1	1	1	1	1	1	1	1	
Mg-	超标率	1	/	/	1	/	/	1	,	_
超	超标倍数	1	1	1	1	1	1	1	1	
郊	检测值									
153	污染指数	1	1	1	1	1	1	1	1	,
	超标率	1	1	1	1	1	1	1	1	,
超	超标倍数	1	1	1	1	1	1	/	1	
極	检测值									
	污染指数	1	1	1	1	1	1	1	1	,
型 S S S S S	超标率	1	1	1	1	1	1	1	1	,
超	超标倍数	1	1	1	1	1	1	/	1	
類	检测值	0	0	0	0	0	0	0	0	
	污染指数	1	1	1	1	1	1	1	1	1
理	超标率	1	1	/	1	1	/	1	1	,
超	超标倍数	1	1	1	1	/	/	/	/	

(丰水期)
统计表
果及评价统计
现状监测结
水质
6 地下水
续表 3.4-

超日	10 3/4	莱溪村	村 Q5	抚上抚下 Q6	F Q6	辽家湾 07	今 07	世帯は
州日	关机	6月28日	6月29日	6月28日	6月29日	6月28日	6月29日	松田田
	检测值							
II.	污染指数	0.13	0.13	0.33	0,33	0.40	0.40	30-37
hr	超标率	1	/	1	1	1	1	0.5 0.5
	超标倍数	1	1	1	J	1	1	
	检测值	8.0	6.0	1	8.0	6.0	1	
耗氣量	污染指数	0.27	0.30	0.33	0.27	0.30	0.33	6
	超标率	1	1	/	f	1	1	

福日	- 13	米淡	米淡村 Q5	17 L L	TALTA P VO	工参与の	100	打茶店
-WH	K.K.	6月28日	6月29日	6月28日	6月29日	6月28日	6月29日	松作用
	超标倍数	1	1	1	f	1	1	
	检测值							
And And	污染指数	0.14	0.17	0.16	0.19	0.18	0.16	30
N. W.	超标率	1	1	/	1	1	/	0.5
	超标倍数	1	1	1	1	1	/	
	检测值	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	
	污染指数	1	1	1	1	1	/	٠
111	超标率	1	1	1	1	1	/	-
	超标倍数	/	/	1	1	/	/	
	检测值	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	
zdr	污染指数	1	1	1	1	/	1	100
H	超标率	1	1	1	1	1	1	0.01
	超标倍数	1	1	1	1	1	1	
	检测值	0.00004L	0.00004L	9000000	0.00006	0.00004L	0.00004L	
17	污染指数	1	1	1	1	1	1	1000
¥	超标率	1	1	1	1	/	1	0.001
	超标倍数	J	1	1	1	1	1	
	检测值	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	
114	污染指数	1	1	/	1	1	1	2000
THE	超标率	1	1	/	1	1	1	0.003
	超标倍数	1	1	/	J	1	/	
	检测值	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	
3-10-14	污染指数	1	1	/	· I	1	/	300
A DI NI	超标率	1	1	/	1	/	/	0.03
	超标倍数	1	1	1	· I	1	/	
	检测值	0.010L	0.010L	0.010L	0.010L	0.010L	0.010L	
4n	污染指数	1	/	1	f	1	/	100
H	超标率	1	1	1	1	1	/	0.01
	超标倍数	1	1	1	1	1	1	
	检测值	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	
1957 华·高小	污染指数	1	1	1	1	1	1	0000
14.久即	超标率	/	1	1	1	1	1	0.002
	超标倍数	1	1	1	1	/	1	
the Alb Adm	检测值	0.0005L	0.0005L	0.0005L	0.0005L	0.0005L	0.0005L	300
11、12十分	いた。古孝							

拉米伊	你任頂				000	0.02				0.3			10	0.1				-			c	n			0001	1000			150	430			050	067		050
等 Q7	6月29日	1	/	0.003L	1	1	/	0.03L	1	1	1	0.01L	/	/	1	0.05L	1	1	1	11	1	1	1		0.46	1	/	313	0.70	1	/		0.01	1	/	0 00
江家湾 07	6月28日	1	1	0.003L	1	1	1	0.03L	1	1	1	0.01L	1	1	1	0.05L	/	1	/	II.	1	1	/		0.53	1	1	416	0.92	1	1		0.01	/	/	11.0
5 Q6	6月29日	1	J	0.003L	1	1	I	0.03L	1	1	1	0.01L	1	1	1	0.05L	1	/	1	1L	1	J	1		0.44	1	1	306	89.0	1	1		0.02	1	1	120
法上先トQ6	6月28日	1	/	0.003L	1	1	1	0.03L	1	1	1	0.01L	/	1	1	0.05L	1	1	1	1L	/	1	J		0.46	/	1	397	88.0	1	1		0.02	1	1	
3 03	6月29日	1	1	0.003L	1	1	/	0.03L	1	/	1	0.01L	1	1	1	0.05L	1	1	1	1L	1	/	1		0.47	/	1	384	0.85	1	1		0.01	/	/	4
米淡村 Q5	6月28日	1	1	0.003L	1	1	/	0.03L	1	1	1	0.01L	1	/	1	0.05L	1	1	1	IL	1	1	1		0.44	1	1	391	0.87	1	1		0.01	1	1	
米尼	矢加	超标率	超标倍数	检测值	污染指数	超标率	超标倍数	检测值	污染指数	超标率	超标倍数	检测值	污染指数	超标率	超标倍数	检测值	污染指数	超标率	超标倍数	检测值	污染指数	超标率	超标倍数	检测值	污染指数	超标率	超标倍数	检测值	污染指数	超标率	超标倍数	检测值	污染指数	超标率	超标倍数	1人30 任
加田	州田				The Ib then	第1242			+47	¥			44	提			200	+			总大肠菌群	(MPN/100mL)			367 M2 M4: 15 133 A+	中国与日本中			在 四 元	以及反			Ė	3		200

项目 尖加 6月28日 6月29日 污染指数 0.02 0.02 超标倍数 / / 海湖值 0.24 0.22 超标率 / / 超标管数 / / 超标倍数 / / 超标倍数 / / 超标倍数 / / 溶剂值 0.06 0.06 超标常数 / / 污染指数 / / 溶液指数 / / 溶液溶物 / / 溶液粘数 / / / / / / / / / / / / / / / / / 超标率 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /	6.月28日 0.05 / / 0.29 / / / / / / / / / / / / / / / / / / /	6月29日 0.06	6月28日 0.04	6月29日 0.04	松年間
	0.05	90.0	0.04	0.04	
超标審 // 超标倍数 // 超标倍数 // 超标倍数 // 超标倍数 // 超标零 // 超标倍数 // 检测值 0.003L 污染指数 // 超标率 // 超标率 // 超标容 //	0.29	1	/	,	
超标倍数 // 检测值 // // // // // // // // // // // // //	0.29			,	
検測値 Pix # Wind #	0.29	1	1	1	
污染指数 0.24 超标倍数 / 检测值 0.06 污染指数 / 超标倍数 / 检测值 0.003L 污染指数 / 超标率 / 超标倍数 / 超标常数 /	0.29				
超标審 // 超标倍数 // 污染指数 0.06 超标常数 // 检测值 0.003L 污染指数 // 超标率 //	0.12	0.33	0.33	0.32	
超标倍数 // 检测值 污染指数 0.06 超标倍数 // 检测值 0.003L 污染指数 //	0.12	1	/	1	1
検測値 汚染指数 0.06 超标率	0.12	1	1	/	
汚染指数 0.06 超标密数 / 检测值 0.003L 汚染指数 / 超标率 /	0.12				
超标帝数 / 超标倍数 / 检测值 0.003L 污染指数 / 超标率 / /	,	0.12	90.0	90.0	96
超标倍数 / E	1	1	1	1	70
检测值 0.003L 污染指数 / 超标率 /		1	/	1	
	0.003L	0.003L	0.003L	0.003L	
	/	1	/	/	٠
	1	1	1	1	-
超标倍数 /	1	/	/	/	
检测值 0.01L 0.01L	0.01L	0.01L	0.01L	0.01L	
	1	1	1	1	000
	1	1	/	1	0.02
1	,	/	1	1	
检测值 0.05L 0.05L	0.05L	0.05L	0.05L	0.05L	
特 污染指数 // //	1	1	1	/	300
田 超标率	1	1	/	1	0.03
超标倍数 / /	/	· ·	1	/	
检测值 0.00033 0.00033L	0.00044	0.00051	0.00033L	0.00033L	
阿	1	· I	1	1	,
	1	1	/	1	,
超标倍数 / /	1	1	1	/	
检测值					
Nc+ 污染指数 0.005 0.005	0.04	0.04	0.03	0.03	000
	/	1	1	1	7007
超标倍数 // //	1	1	1	1	
检测值					
F	l	1	/	1	`
和标率 /	1	1	1	/	

1000	- W- D-1	来漢	来漢村 05	抚上扔	抚上抚下 Q6	江巡	辽家湾 07	打事件
州田	光利	6月28日	6月29日	6月28日	6月29日	6月28日	6月29日	松低值
	检测值							
77.34	污染指数	1	/	/	J	1	/	
Mg	超标率	1	1	1	1	1	1	
	超标倍数	1	1	1	1	1	/	
	检测值							
4	污染指数	1	1	1	· I	1	1	
Ca	超标率	1	1	1	ł	/	/	,
	超标倍数	1	1	/	1	1	/	
	检测值							
TOO.	污染指数	1	1	1	f	1	/	
HCO3	超标率	,	1	1	1	/	1	,
	超标倍数	1	1	/	1	/	1	
	检测值	0	0	0	0	0	0	
200	污染指数	1	1	1	1	1	1	,
-603	超标率	1	1	1	1	/	1	,
	超标倍数	1	1	1	1	/	1	

(丰水期)
广统计表
果及评价统计表
下水水质现状监测结
k水质现:
型
续表 3.4-6

164	I'II effe	厂区钻井	W 医钻井 (JC01) Q1	厂区钻井	厂区钻井 (JC02) Q2	循环公司监测	循环公司监测井 (JC03) Q3	七举任
州田	光光	6月13日	6月14日	6月13日	6月14日	6月13日	6月14日	你年但
	检测值							
17	污染指数	09'0	0.53	080	0.73	0.67	0.73	20.27
н	超标率	/	/	/	/	1	1	0.3
	超标倍数	1	1	/	1	1	1	
	检测值	8.0	8.0	1.2	1.1	1.0	6.0	
古典共	污染指数							
代判里	超标率	1	1	1	1	1	1	0
	超标倍数	1	/	1	1	/	/	
	检测值							
Aug Aug	污染指数	0.18	0.29	08.0	19.0	0.39	0.48	90
发	超标率	/	/	1	1	/	1	C.0
	超标倍数	,	/	1	1	/	/	
	检测值	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	
村田	污染指数	/	1	1	1	1	1	-
	超标率	,	1	1	,	1	,	

西田	* 6	区铅井 (JC01	(JC01) Q1	人位的开	区粒井 (JC02) Q2	個本公司組織	個本公司組織井(JCOS)(S	力等任
WH	米加	6月13日	6月14日	6月13日	6月14日	6月13日	6月14日	你性用
	超标倍数	1	1	1	1	1	1	
	检测值	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	
42	污染指数	1	1	1	1	1	1	100
曲	超标率	1	1	/	1	1	1	0.01
	超标倍数	1	I	1	1	1	1	
	检测值	0.00004L	0.00004L	900000	900000	0.00004L	0.00004L	
H	污染指数	/	1	/	1	/	1	1000
米	超标率	1	1	/	1	/	1	0.001
	超标倍数	1	/	/	1	/	1	
	检测值	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	
A	污染指数	1	1	1	/	/	1	2000
E	超标率	1	1	/	1	1	1	0.002
	超标倍数	1	/	1	/	/	1	
	检测值	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	
A-17.66	污染指数	/	1	/	1	1	1	900
77 TI 40	超标率	1	1	1	/	/	1	0.00
	超标倍数	1	1	1	1	1	1	
	检测值	0.010L	0.01L	0.01L	0.01L	0.01L	0.01L	
A.T.	污染指数	1	1	1	/	1	/	100
Ħ	超标率	1	1	1	1	1	1	0.01
	超标倍数	1	1	1	1	1	1	
	检测值	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	
2000年	污染指数	1	1	/	1	1	1	2000
1+(XH)	超标率	/	1	1	1	1	/	0.002
	超标倍数	1	1	/	1	1	1	
	检测值	0.0005L	0.0005L	0.0005L	0.0005L	0.0005L	0.0005L	
OF All Abba	污染指数	1	1	1	1	/	1	300
W1-12-42	超标率	1	1	1	1	1	1	50.0
	超标倍数	1	1	/	J	1	1	
	检测值	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	
本小衛	污染指数	1	1	1	1	1	/	000
Mr. 15-150	超标率	1	1	1	1	/	1	70.0
	超标倍数	1	1	1	/	/	1	
种	检测值	0.03L	0.03L	0.03L	0.03L	0.03L	0.03L	0
大	A-1. 84s 415-492-							

西田		区铅开	区钻井 (JC01) Q1) 区铅开	X 拍升 (JC02) Q2	循外公司监测	值林公司监视开 (JC03) Q3	打掛任
TX I	XX	6月13日	6月14日	6月13日	6月14日	6月13日	6月14日	松田田
	超标率	1	1	1	· l	1	1	
	超标倍数	1	1	1	1	/	/	
	检测值	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	
P. S.	污染指数	/	1	1	1	1	1	
14	超标率	/	1	1	1	/	/	0.1
	超标倍数	/	1	/	1	1	,	
	检测值	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	
4	污染指数	/	1	/	1	1	/	
	超标率	/	/	/	/	/	1	-
	超标倍数	1	1	1	1	,	1	
	检测值	IL	11	11	П	1L	IL.	
总大肠菌群	污染指数	1	/	/	,	/	1	•
(MPN/100mL)	超标率	1	1	1	/	/	1	3
	超标倍数	1	1	1	1	/	1	
	检测值							
47 EU 57 197 C	污染指数	0.43	0.45	0.39	0.41	0.40	0.38	0001
中国均土监中	超标率	1	1	1	1	1	1	1000
	超标倍数	1	1	/	1	/	1	
	检测值							
祖 图2 5/	污染指数	0.81	0.84	0.70	0.71	0.74	89.0	450
心域及	超标率	/	1	1	1	/	/	420
	超标倍数	1	1	1	1	1	1	
	检测值							
Ter Ale Alm	污染指数	0.32	0.32	0.10	0.10	0.05	0.05	030
W.1543	超标率	1	1	1	1	1	1	720
	超标倍数	1	1	1	1	,	1	
	检测值	39.6	39.6	44.9	44.0	24.6	23.1	
24 服务 土人	污染指数	0.16	0.16	0.18	0.18	0.10	0.09	050
900日文10九	超标率	/	1	/	1	/	1	007
	超标倍数	1	1	1	1	1	/	
	检测值							
AT IL Him	污染指数	0.10	0.1	0.14	0.16	0.22	0.23	
美名参	超标率	1	1	1	1	1	1	-
	超标倍数	1	1	/	1	1	1	
2年 五位 十八年	お売べ			4 4 4	44.4	****	34	

191	- 13	EHALL SOUL AL	12000	/ E3 M47	CHAIL SOCIETY OF	CESCULET CA STREET	MILL CALL MILLER AND COLOR OF THE PARTY OF T	世典は
WIT.	矢加	6月13日	6月14日	6月13日	6月14日	6月13日	6月14日	你任用
	污染指数	0.15	0.16	0.43	0.43	0.25	0.25	
	超标率	1	1	1	1	1	1	
	超标倍数	1	1	1	1	1	1	
	检测值	0.003L	0.003L	0.003L	0.003L	0.003L	0.003L	
正 2年 五年 十八年	污染指数	1	1	/	/	1	/	
州 們 與 伯 数	超标率	1	1	/	1	1	1	-
	超标倍数	/	1	1	1	1	1	
	检测值	0.012L	0.012L	0.012L	0.012L	0.012L	0.012L	
561	污染指数	/	,	1	/	/	1	000
悉	超标率	1	1	1	1	1	1	0.02
	超标倍数	1	1	1	1	/	/	
	检测值	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	
4	污染指数	1	1	/	/	1	1	2000
th.	超标率	1	1	1	1	1	1	0.00
	超标倍数	/	/	/	1	1	/	
	检测值	0.0004L	0.0004L	0.0004L	0.0004L	0.0004L	0.0004L	
H	污染指数	1	1	1	1	1	1	100
E S	超标率	1	1	-	1	1	1	0.01
	超标倍数	1	1	1	/	1	/	
	检测值	0.0083	0.0085	0.00975	0.00988	0.00142	0.00144	
147	污染指数	0.12	0.12	0.14	0.14	0.02	0.02	200
H	超标率	/	1	1	1	1	1	0.07
	超标倍数	1	1	/	1	1	1	
	检测值	0.00004L	9000000	0.00005	0.00004L	0.00004L	0.00004L	
48	污染指数	1	0.01	0.01	1	1	1	90.0
AK.	超标率	/	1	1	1	1	1	50.0
	超标倍数	1	1	1	f	1	1	
	检测值							
公田に著	污染指数	0.85	98.0	0.91	96.0	89.0	0.79	100
74 M 105 94	超标率	1	1	1	1	1	1	001
	超标倍数	1	1	1	1	1	1	
	检测值							
ċ	污染指数	/	1	1	/	/	1	1
5	超标率	/	1	/	/	1	1	,
	A							

TI ST	石米		CLULY QI	/ CHT/	本町井 (JC02) Q2	個小公司面割井(うつう)(う	7 (2002) 73	计学任
一次日	米洲	6月13日	6月14日	6月13日	6月14日	6月13日	6月14日	你作用
	检测值							
	污染指数	1	1	/	1	/	/	٠
204-	超标率	1	1	1	1	1	1	
	超标倍数	1	1	,	1	1	1	
	检测值							
***	污染指数	0.20	0.18	0.18	0.18	0.02	0.02	000
Na.	超标率	1	1	1	1	1	1	700
	超标倍数	1	1	1	1	1	1	
	检测值							
+2	污染指数	1	1	1	f	1	1	`
4	超标率	1	1	1	1	1	,	`
	超标倍数	/	1	1	/	1	1	
	检测值							
75.34	污染指数	1	1	1	/	1	1	
Mg	超标率	1	1	1	/	1	1	
	超标倍数	1	1	1	/	1	1	
	检测值							
+75	污染指数	1	1	1	1	1	1	`
Ca-	超标率	1	1	1	/	1	1	`
	超标倍数	1	1	1	1	1	1	
	检测值							
.000	污染指数	1	1	1	1	1	1	`
500	超标率	1	1	1	1	1	1	`
	超标倍数	1	1	1	1	1	+	
	检测值	0	0	0	0	0	0	
	污染指数	1	1	1	1	1	1	•
503	超标率	1	1	1	1	1	1	,
	超标倍数	1	1	1	1	1	1	

续表 3.4-6 地下水水质现状监测结果及评价统计表(枯水期)

						The state of the s	100000000000000000000000000000000000000							
监测点位	項目) Hd	总硬度 (mg/L)	溶解性总 固体 (mg/L)	硫酸盐 (mg/L)	氧化物 (mg/L)	铁 (mg/L)	緒 (mg/L)	铜 (mg/L)	辞 (mg/L)	挥发酚 (mg/L)	耗氣量 (mg/L)	氮氮 (mg/L)	硫化物 (mg/L)
	标准限值	6.5≤pH<8.5	<450	≥1000	<250	<250	≤0.3	≤0.10	≤1.00	≥1.00	<0.002	≥3.0	<0.50	≤0.02
できながら	2023.2.27	7.7	364	422	10	6.6	0.03ND	0.01ND	0.05ND	0.05ND	0.0003ND	1.47	0.025ND	0.01ND
30 49 3013	2023.2.28	7.6	359	412	12	9.4	0.03ND	0.01ND	0.05ND	0.05ND	0.0003ND	1.55	0.025ND	0.01ND

-	项目	別 Hd	2000	溶解性总固体	発展株	氣化物	鉄	標	183	赫	解发酚	机氧量	100 M	能化物
能测点位			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	标准限值	6.5 <ph<8.5< td=""><td><450</td><td><1000</td><td><250</td><td><250</td><td>≤0.3</td><td>≤0.10</td><td>≥1.00</td><td>≤1.00</td><td>≤0.002</td><td><3.0</td><td><0.50</td><td>≤0.02</td></ph<8.5<>	<450	<1000	<250	<250	≤0.3	≤0.10	≥1.00	≤1.00	≤0.002	<3.0	<0.50	≤0.02
	平均值	7.65	361.5	417	=======================================	9.65	1	1	1	1	1	1.51	1	1
	超标率(%)	0	0	0	0	0	0	0	0	0	0	0	0	0
	单因子标准指数	0.43	08'0	0.42	0.04	0.04	1	1	,	1	1	0.50	1	1
	2023.2.27	7.4	366	443	30	6.6	0.03ND	0.01ND	0.05ND	0.05ND	0.0003ND	1.36	0.025ND	0.01ND
	2023.2.28	7.5	362	450	23	9.4	0.03ND	0.01ND	0.05ND	0.05ND	0.0003ND	1.43	0.025ND	0.01ND
ZK16 三寨	平均值	7.45	364	446.5	26.5	9.65	1	1	1	1	1	1.395	1	1
t	超标率(%)	0	0	0	0	0	0	0	0	0	0	0	0	0
	单因子标准指数	0.30	0.81	0.45	0.11	0.04	1	1	1	1	1	0.47	1	1

续表 3.4-6 地下水水质现状监测结果及评价统计表(枯水期)

		以上民語語	那群縣非	品能炸師	- OIT AV 55s	加小物	143	班	433	25 CO 55	1/4		44	明寺寺
	項目	- CO CAMPINET	SE, WHITEK MIL DON	PETHIC IN SEC.	MANUAL POR	30,1012	*		1	11111111	H .	银 (mg/L)	-	# 1
量額点位		(MPN/100mL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/L)	(mg/L)
	标准限值	≤3.0	≤1.00	\$20.0	≤0.0≥	≤1.0	<0.001	≤0.01	<0.005	<0.05	≤0.01	≤0.02	<0.05	1
	2023.2.27	14	0.005	0.5	0.002ND	0.21	0.00004ND	0.0003ND	0.0001ND	0.004ND	0.001ND	0.05ND	0.05ND	0.01ND
	2023.2.28	24	0.004	0.52	0.002ND	0.2	0.00004ND	0.0003ND	0.0001ND	0.004ND	0.001ND	0.05ND	0.05ND	0.01ND
the sto like	平均值	61	0.0045	0.51	1	0.205	/	1	1	1	1	1	1	1
定帐架 95	超标率(%)	%001	0	0	0	0	0	0	0	0	0	0	0	0
	单因子标 准指数	6.33	0.00	0.03	1	0.21	T	1	1	1	7	1	1	1
	2023.2.27	40	0.004	0.46	0.002ND	0.25	0.00004ND	0.0003ND	0.0001ND	0.004ND	0.001ND	0.05ND	0.05ND	0.01ND
	2023.2.28	33	0.003ND	0.48	0.002ND	0.26	0.00004ND	0.0003ND	0.0001ND	0.004ND	0.001ND	0.05ND	0.05ND	0.01ND
ZK16 三集	平均值	36.5	0.004	0.47	1	0.255	1	1	1	1	1	. 1	1	1
世	超标率(%)	100%	0	0	0	0	0	0	.0	0	0	0	0	0
	单因子标准指数	12.17	00.00	0.02	1	0.26	1	1	1	1	+	1	1	1

续表 3.4-6 地下水水质现状监测结果及评价统计表(枯水期)

监测点价	祖祖	K* (MPN/100mL)	Na+ (mg/L)	Ca ²⁺ (mg/L)	Mg2+ (mg/L)	Ct (mg/L)	SO ₄ 2 (mg/L)	CO ₃ ² · (mg/L)	HCO ₃ (mg/L)
	标准限值	1	<200	1	1	1	1	1	1
	2023.2.27	0.07	0.43	37.0	40.2	1.18	4.31	0	114
	2023.2.28	60'0	0.45	44.0	36.5	1.05	3.69	0	113
S6 株殊湾	平均值	1	0,44	1	1	1	1	1	1
	(%) 素 4 層	1	1	1	1	1	1	1	1
	单因子标准指数	1	0.002	1	1	1.	1	/	1.
	2023,2.27	0.31	2.63	41.8	8.60	8.6	6.82	0	106
ZKI6三寨村	2023.2.28	0.47	2.52	42.3	7.46	7.46	5.60	0	105
	平均值	4	2.56	1	1	1	1	1	1

	N CIME	K. (MFN/100mL)	Na. (mg/L)		Ca villigital	Mg (mg/L)	CI (mg/L)	SO4" CMg/L)		CO3- cmg/L)	(mg/L)
标准限值		1	<200	0	1	1	1	/		1	1
超标率(%)		1	1		1	1	1	1		1	1
单因子标准指数		1	10.0		1	1	1	1		1	1
		续表	续表 3.4-6 地下水水质现状监测结果及评价统计表	水水质现状	监测结果及注		(枯水期)				
No Chi	01 杉木	Q1 杉木林水井	02 抚上	抚上抚下井水	03 蔡珍	Q3 蔡溪村井水	04 辽家湾泉点	海泉点	05 抚溪	Q5 抚溪村分洲井水	AN HILANCH
矢刑	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	7 2024.12.28	你在限加
检测值	7.5	7.5	7.4	7.5	7.6	7.6	7.6	7.5	7.6	7.6	
污染指数	0.33	0.33	0.27	0.33	0.40	0.40	0.40	0.33	0.40	0.40	0 11 10 1
超标率	1	-	1	1	1	1	1	1	-	1	6.55pH
超标倍数	1	1	1	1	1	1	1	1	1	1	
检测值	412	390	366	370	381	387	397	394	405	411	
污染指数	0.92	0.87	18.0	0.82	0.85	98.0	88.0	88.0	0.90	16.0	1980
超标率	1	/	1	1	1	/	1	1	1	/	2450
超标倍数	1	/	1	1	/	1	1	1	-	/	
检测值	510	494	446	430	497	482	485	487	473	200	
污染指数	0.51	0.49	0.45	0.43	0.50	0.48	0.49	0.49	0.47	0.50	0001-
超标率	1	1	1	1	1	1	/	1	/	1	>1000
超标倍数	1	1	1	/	1	1	1	1	1	1	
检测值	180	180	18.5	13.5	13.6	13.6	21.5	21.5	45.6	47.5	
污染指数	0.72	0.72	0.07	0.05	0.05	0.05	60.0	60.0	0.18	0.19	
超标率	1	1	1	1	1	1	1	1	1	1	
超标倍数	1	1	1	1	1	1	1	1	1	1	950
检测值	26.0	26.3	6.75	6.20	6.54	6.38	2.88	2.70	10.8	10.8	0675
污染指数	0.10	0.11	0.03	0.02	0.03	0.03	0.01	0.01	0.04	0.04	
超标率	1	1	1	1	1	1	1	1	1	1	
超标倍数	1	1	1	1	1	1	1	1	1	1	
检测值	0.03L	0.03L	0.03L	0.03L	0.03L	0.03L	0.03L	0.03L	0.03L	0.03L	
污染指数	1	1	1	1	1	1	1	1	J	1	0
超标率	1	1	1	1	I	1	1	1	1	1	50.3
超标倍数	1	1	1	1	1	1	1	1	1	1	
检测值	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	
污染指数	1	1	1	1	1	1	1	1	1	1	01.07
超标率	1	1	1	1	1	1	1	1	1	1	20.10
超标倍数	1	1	1	1	1	1	1	1	1	1	
李崇母	1200				1000000	2000				1000	100

11 50	386 [31]	01 亿元	01 杉木林水井	02 抚上抚下井水	九十千水	03 祭溪村井水	和开水	参えち	など参加を記	US 抗液化分面并不	ガ門井本	45.4E/IH //F
利口	米加	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	PAYTE PRIE
	污染指数	1	1	1	1	1	1	1	1	1	1	
	超标率	1	1	1	1	1	1	1	1	1	1	
	超标倍数	1	1	1	1	+	1	1	1	1	1	
	检测值	0.05L										
1 100	污染指数	1	1	1	1	1	1	1	1	1	1	
tt (mg/L)	超标率	1	1	1	1	1	1	1	1	1	1	
	超标倍数	1	,	1	1	/	1	/	/	/	1	
	检测值	0.0003L										
C March All Charles	污染指数	1	1	1	1	1	1	1	1	1	1	0000
件及时(mgr)	超标率	1	1	1	1	1	/	1	1	1	1	20.002
	超标倍数	1	1	1	1	1	1	1	1	1	1	
	检测值	8.0	8.0	1.2	1.3	1.1	1.2	6.0	6.0	1.0	1.1	
安何是 / man / 3	污染指数	0.27	0.27	0.40	0.43	0.37	0.40	0.30	0.30	0.33	0.37	200
和利用(mgr)	超标率	1	1	1	1	1	1	1	1	1	ł	>3.0
	超标倍数	1	1	1	1	1	1	1	1	1	1	
	检测值	0.036	0.042	0.061	0.076	0.079	0.097	0.045	0.064	0.052	0.070	
to the Course of	污染指数	0.07	80.0	0.12	0.15	0.16	0.19	60.0	0.13	0.10	0.14	0207
N. W. (mgl.)	超标率	1	1	1	1	1	/	+	+	1	1	50.50
	超标倍数	1	1	1	1	1	1	1	1	1	1	
	检测值	0.003L										
各12 · 601 (100)	污染指数	1	1	1	1	1	1	1	1	1	1	000
MENTAN (MINIST)	超标率	1	1	1	1	1	1	1	1	1	1	20.02
	超标倍数	+	1	1	1	1	1	1	1	/	1	
	检测值	1.0L										
总大肠菌群	污染指数	1	1	1	1	1	1	1	1	1	1	200
(MPN/100mL)	超标率	1	1	1	1.	1	1	4	1	1	1	25.0
	超标倍数	1	1	1	1	1	1	1	1	J.	+	
	检测值	0.003L										
亚硝酸盐氮	污染指数	1	1	1	1	1	1	1	1	1	1	90 57
(mg/L)	超标率	1	1	1	1	1	1	1	1	1	1	21.00
	超标倍数	1	1	1	1	1	1	1	1	1	1	
	检测值	91.9	6.12	2.33	2.22	3.63	3.69	1.16	1.11	5.47	5.49	
硝酸盐氮	污染指数	0.31	0.31	0.12	0.11	0.18	0.18	90.0	90.0	0.27	0.27	000
(mg/L)	超标率	1	1	1	1	1	1	1	1	I	1	250.0
	招标体数	1	1	1	1	1	-	,	2			

彩配	01 杉木	01 杉木林水井	Q2 抚上抚下并水	九 ト 开 水	Q3 祭谈柯开水	和开水	参える	04 儿系消泉点	Q5 抗淡杯	05 抚溪村分洲开水	标准限值
7113	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	WILLIAM IN
检测值	0.0005L	0.0005L	0.0005L	0.0005L	0.0005L	0.0005L	0.0005L	0.0005L	0.0005L	0.0005L	
污染指数	1	1	1	1	1	1	1	1	1	1	50.00
超标率	1	1	1	1	1	/	1	1	1	1	50,05
超标倍数	1	1	1	1	1	1	1	1	1	/	
检测值	0.042	0.040	0.054	0.050	0.055	0.044	0,537	0.406	0.044	0.075	
污染指数	0.04	0.04	0.05	0.05	90.0	0.04	0.54	0.41	0.04	80.0	7
超标率	1	1	/	1	/	1	1	1			21.0
超标倍数	1	1	1	1	1	1	1	1			
检测值	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	
污染指数	1	1	1	1	1	1	1	1	1	1	10000
超标率	1	1	1	/	1	1	1	1	1	1	100.001
超标倍数	1	1	1	1	1	1	1	1			
检测值	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	0.0003L	
污染指数	1	1	1	1	1	1	1	1	1	ł	1000
超标率	1	1	1	1	/	1	1	1	1	1	10.01
超标倍数	1	1	1	1	1	1	1	1	1	1	
检测值	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	
污染指数	1	1	1	1	1	1	1	1	f	1	30000
超标率	1	/	1	1	1	1	1	1	1	1	50,000
超标倍数	1	1	1	1	1	1	1	1	1	1	
检测值	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	0.001L	
污染指数	1	1	1	/	/	1	1	1	1	1	3000
超标率	1	1	1	1	1	1	1	1	/	1	50.05
超标倍数	1	1	1	1	1	1	1	1	1	/	
检测值	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	0.01L	
污染指数	1	1	1	1	J	1	1	1	1	1	1007
超标率	1	1	1	1	1	1	1	1	F	1	10.02
超标倍数	1	/	1	1	1	1	1	/	/	1	
检测值	0.012L	0.012L	0.012L	0.012L	0.012L	0.012L	0.012L	0.012L	0.012L	0.012L	
污染指数	1	1	1	1	1	1	1 -	1	1	1	000
超标率	1	1	1	1	1	1	1	1	1	1	20.02
超标倍数	1	1	1	1	1	1	1	1	1	1	
检测值	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	0.05L	
污染指数	1	1	1	1	1	1	4	1	f	1	<0.05
都标案	1	1	1		1	,		3	,	-	

II 550	346 (24)	01 杉木	Q1 杉木林水井	Q2 抚上抚下并水	无下并水	03 蔡溪村井水	村井水	04 辽家	04 辽家湾泉点	05 抚溪村	05 抚溪村分洲井水	45 AB IN A
A T	矢加	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	外任政軍
	超标倍数	1	1	1	1	1	1	1	1	1	1	
	检测值	88	92	75	82	93	79	79	98	82	94	
en the At age.	污染指数											<100
新国心教	超标率	1	1	1	1	1	1	1	1	1	/	CFU/mL
	超标倍数	1	1	1	1	1	1	7	1	1	1	
	检测值	0.0004L	0.0004L	0.0004L	0.0004L	0.0004L	0.0004L	0.0004L	0.0004L	0.0004L	0.0004L	
30.7	污染指数	1	1	1	1	/	1	1	1	1	/	1000
	超标率	1	1	1	1	1	1	1	1	1	1	20.01
	超标倍数	1	1	1	1	1	1	1	1	1	1	
	检测值	0.00025	0.00023	0.00019	810000	0.00019	0.00022	0.00017	0.00019	0.00063	0.00067	
441	污染指数											2007
₩	超标率	1	1	1	1	1	1	1	1	1	1	70.07
	超标倍数	1	1	1	1	1	1	1	1	F	1	
	检测值	0.00033L	0.00033L	0.00033L	0.00033L	0.00033L	0.00033L	0.00033L	0.00033L	0.00033L	0.00033L	
1177	污染指数	1	1	1	1	1	1	1	1	1	1	
世	超标率	1	1	1	1	1	1	1	1	1	1	,
	超标倍数	1	1	1	1	1	1	J	1	1	1	
	检测值	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	0.00004L	
199	污染指数	1	/	1	1	1	1	1	1	1	1	3000
H	超标率	1	1	1	1	1	1	1	1	1	1	50.05
	超标倍数	1	1	1	1	1	1	1	1	I	+	
	检测值	61.2	64.2	96.0	0.94	2.47	2.36	5.16	5.20	10.5	9.01	
No.+	污染指数	0.31	0.32	0.005	0.005	0.01	0.01	0.03	0.03	0.05	0.05	000
ENI	超标率	1	1	1	1	1	1	1	1	1	1	7007
	超标倍数	1	1	1	1	1	1	1	1	1	1	
	检测值	0.38	0.47	0.35	0.35	06.0	16.0	0.21	0.23	0.40	0.42	
+4	污染指数	1	1	1	1	1	1	1	1	F	1	,
4	超标率	1	1	1	1	1	1	1	1	1	1	-
	超标倍数	1	1	1	1	1	1	1	1	1	+	
	检测值	48.7	52.0	22.5	22.8	23.7	25.5	24.9	25.2	48.3	48.3	
Ma2+	污染指数	1	1	1	1	1	1	1	1	1	1	,
SIMI	超标率	1	1	1	1	1	1	1	1	1	1	1
	超标倍数	1	1	1	1	1	1	1	1	1	1	
Ca2+	检测值	82.5	104	45.2	51.7	49.1	54.8	52.5	57.3	67.2	72.7	,
Car	完结特勒	1	1	1	1	1	/	./	1	/	1	1

世紀	* 51	01 杉木	Q1 杉木林水井	Q2 抚上抚下并水	先下并水	Q3 蔡溪村井水	村井水	04 辽家	04 辽家湾泉点	05 抚溪村分洲井水	1分洲井水	标准阻估
- WI	米加	2024.12.27	2024.12.28	20		2024.12.28 2024.12.27	2024.12.28	2024.12.27	2024.12.28	2024.12.27	2024.12.28	WITHING
	超标率	1	1	1	J	1	1	1	1	J	1	
	超标倍数	1	1	/	1	1	1	1	/	1	Ì	
	检测值	292	281	248	252	256	260	265	259	272	275	
. 054	污染指数	1	1	1	1	1	1	/	1	1	/	1
50	超标率	/	1	1	1	1	1	1	1	1	1	-
	超标倍数	1	1	/	1	1	1	1	1	1	1	
	检测值	0	0	0	0	0	0	0	0	0	0	
2003	污染指数	1	1	1	1	1	1	1	1	1	1	,
-603	超标率	1	1	/	/	/	/	/	/	/	/	-
	超标倍数	1	1	/	/	/	/	/	/	/	/	

3.5 声环境质量现状调查与评价

3.5.1 声环境现状调查

拟建项目贵州大龙经开区,周边 200m 范围内主要分布有贵州能矿锰业集团有限公司、中伟新材料股份有限公司、贵州重力科技环保有限公司、贵州大龙汇成新材料有限公司、贵州华宏正元交通工程有限公司等企业,另 200m 范围内小部分零散居民点分布,厂区南侧有大龙经开区一号主管道。因此,项目场地周边噪声源主要为交通噪声、施工噪声、工业企业噪声及居民社会生活噪声。

3.5.2 监测布点

为了声评价范围内的声环境质量现状,本次评价在项目厂界及敏感点共设4个厂界噪声现状监测点,在循环厂区布设3个大厂界噪声现状监测点,布设1个声环境质量现状监测点,监测点分布见表3.5-1及图3.5-1。

序号	监测点位置	位置	备注
N1	厂区西北侧边界	厂界外 1m, 距离地面 1.2m	厂界噪声
N2	厂区西南侧边界	厂界外 1m, 距离地面 1.2m	厂界噪声
N3	厂区东南侧边界	厂界外 1m, 距离地面 1.2m	厂界噪声
N4	厂区东北侧边界	厂界外 1m, 距离地面 1.2m	厂界噪声
N5	循环公司厂界西北边界	厂界外 1m, 距离地面 1.2m	厂界噪声
N6	循环公司厂界西南边界	厂界外 1m, 距离地面 1.2m	厂界噪声
N7	循环公司厂界东南边界	厂界外 1m, 距离地面 1.2m	厂界噪声
N8	陆家湾村民点	距离墙壁或窗户外 1m, 距离地面 1,2m	环境噪声

表 3.5-1 声环境质量现状监测布点信息表

3.5.3 监测方法、监测时段

- (1) 监测方法: 监测方法严格按《环境监测技术规范》和《声环境质量标准》(GB3096-2008)中有关规定执行。
- (2) 监测时段:由贵州蓉测环保科技有限公司完成,监测时间为 2025 年 6 月 9 日~2025 年 6 月 10 日连续监测两天。测量时段为白天 06:00~22:00,夜间 22:00~次日 6:00,各监测一次。
- (3) 监测工况:监测期间,贵州中伟资源循环公司本项目购置的厂房均停运,其余生产车间均正常生产。

3.5.4 监测结果及评价

(1) 评价方法

采用标准比较法,将噪声监测结果(Leq值)直接与评价标准对照进行分析。

(2) 评价标准

声环境敏感点执行《声环境质量标准》(GB3096-2008)2类标准,厂界测点执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3类。

(3) 监测结果统计及达标情况见表 3.5-2 及表 3.5-3。

		表 3.5-2	厂界噪声现状监	监测及评价一览表		
监测点位	編号	监测日期	监测时段	检测结果 Leq	标准值	超标情况
		2024 (0	是间	47.3	65	达标
厂区西北侧	NT.	2024.6.9	夜间	57.5	55	达标
边界	NI	2024 6 10	昼间	47.4	65	达标
		2024.6.10	夜间	55.3	55	达标
		2024 6 0	昼间	47.2	65	达标
厂区西南侧	NO	2024.6.9	夜间	55.5	55	达标
边界界	N2	2024 6 10	昼间	47.5	65	达标
		2024,6.10	夜间	53.6	55	达标
		2024.6.0	昼间	48.2	65	达标
厂区东南侧	NIZ	2024.6,9	夜间	56.1	55	达标
边界	N3	2024 6 10	昼间	49.5	65	达标
1,467		2024.6.10	夜间	51.5	55	达标
		2024 6.0	昼间	49.4	65	达标
厂区东北侧		2024.6.9	夜间	53.0	55	达标
边界	N4	2021 610	昼间	49.1	65	达标
1.77		2024.6.10	夜间	54.3	55	达标
		2027.5	昼间	49.0	65	达标
循环公司厂		2024.6.9	夜间	55.0	55	达标
界西北边界	N5	2024610	昼间	48.3	65	达标
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2024,6.10	夜间	55.8	55	达标
		202550	昼间	48.2	65	达标
循环公司厂	516	2024.6.9	夜间	52.8	55	达标
界西南边界	N6	2024612	昼间	46.7	65	达标
		2024.6.10	夜间	52.6	55	达标
		2021.6	昼间	47.7	65	达标
循环公司厂	210	2024.6.9	夜间	54.0	55	达标
界东南边界	N7	2021 6 12	昼间	48.3	65	达标
		2024.6.10	夜间	47.3	55	达标

表 3.5-2 厂界噪声现状监测及评价一览表

表 3.5-3 声环境质量现状监测及评价一览表

监测点位	编号	监测日期	监测时段	检测结果 Leq	标准值	超标情况
		2024.60	昼间	53.0	60	达标
陆家湾村民	110	2024.6.9	夜间	46.1	50	达标
点	N8	2024 7 10	昼间	52,3	60	达标
,		2024.6.10	夜间	47.1	50	达标

由表 3.5-2 和表 3.5-3 可知,本项目厂区各方位昼间、夜间厂界噪声值满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准要求,本项目所在的贵州

中伟资源循环有限公司厂界各方位昼间、夜间厂界噪声值满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准要求。厂界周边居民点环境噪声昼间、夜间噪声值均能满足《声环境质量标准》(GB3096-2008)2 类标准要求,说明厂界四周声环境质量较好。

3.6 土壤环境现状调查与评价

3.6.1 评价区土壤环境概况

3.6.1.1 土壤类型分布调查

玉屏县土壤共划分为3个利用类型,既自然土、旱作土和水稻土,共计有6个土类,19个亚类,45个土属。6个土类分别为黄壤、红壤、石灰土、紫色土、潮土和水稻土,其中黄壤分布最广,其次是红壤,均呈酸性,有机质层深厚,缺磷,富钾,氮一般,紫色土、潮土、石灰土零星分布。经济开发区一带主要为红壤、黄壤和部分水稻土。

3.6.1.2 土壤理化性质调查

本次评价在进行土壤环境质量调查时,同时对土壤的理化性质进行了调查,土壤 理化性质调查结果见表 3.6-1。

项目	指标	pН	阳离子交换量 (cmol/kg)	氧化还原电位 (mV)	饱和导水率 (mm/min)	土壤容重 (g/cm³)	孔隙度 (%)
TI	0~0.2m	6.83	7.1	335	1.53	1.08	46.9
T4	0~0.2m	6.09	9.0	349	1.61	1.04	45.0
T6	0~0.2m	7.02	8.7	341	1.66	1.11	51.4
T7	0~0.15m	7.10	8.2	333	1.43	1.08	49.5
T8	0~0.15m	6.93	7.6	336	1.47	1.06	46.5
T9	0~0.5m	6.84	8.5	355	1.53	1.08	48.6

表 3.6-1 土壤理化性质调查结果一览表

(1) 土壤空隙度

根据本次调查的结果,土壤孔隙度在 45.0%~51.4%,本项目所在区域的土壤容重在 1.04~1.08g/cm³之间,一般情况下,土壤的容重介于 1.1~1.5g/cm³之间,土壤容重偏低,说明土壤孔隙度较高,透气性较强,土壤容重偏高说明土壤紧实度偏高,透气性较弱。根据本次评价对项目区及周边土壤环境的调查结果,说明土壤本项目占地范围内及周边的土壤孔隙度较高,透气性较强。

(2) 阳离子交换量

土壤阳离子交换量是指土壤胶体所能吸附各种阳离子的总量,不同土壤的阳离子交换量不同,主要影响因素有:

- ①、土壤胶体类型,不同类型的土壤胶体其阳离子交换量差异较大。例如,有机 胶体>蒙脱石>水化云母>高岭石>含水氧化铁、铝。
 - ②、土壤质地越细, 其阳离子交换量越高。
 - ③、对于实际的土壤而言,土壤黏土矿物的SiO2/R2O3比率越高,其交换量就越大。
- ④、土壤溶液 pH 值,因为土壤胶体微粒表面的羟基(OH)的解离受介质 pH 值的影响,当介质 pH 值降低时,土壤胶体微粒表面所负电荷也减少,其阳离子交换量也降低,反之就增大。土壤阳离子交换量是影响土壤缓冲能力高低,也是评价土壤保肥能力、改良土壤和合理施肥的重要依据。
- 一般来说,阳离子交换量小于 10,保肥能力弱,阳离子交换量 10~20 之间的土壤保肥能力中等,阳离子交换量大于 20 的保肥能力强,阳离子交换量小于 10 的土壤保肥能力差,根据调查,评价区土壤的阳离子交换量在,7.1~9.0 之间,由此可见,调查区域的土壤保肥能力弱。

3.6.2 监测点布设

本项目土壤环境影响评价为一级评价,根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018)的布点要求,污染类项目一级评价占地范围内最少需设置5个柱状样点和2个表层样点,占地范围外最少需设置4个表层样点。根据一级评价监测布点的要求并结合项目特征,本次评价引用《锂电池废料综合利用产线提质改扩建项目检测报告》(报告编号:RC2406128-06010H)中的在蔡溪村、循环储罐附近及厂区外西南190m厂区外西南190m的3个表层样,2024年6月30日贵州蓉测环保科技有限公司开采了采样检测;同时引用《废旧锂电池综合回收体系建设项目(变更)检测报告》(报告编号:编号:ZK2412201501C)中的在蔡溪村、循环储罐附近及厂区外西南190m厂区外西南190m的3个表层样,2025年1月6日江西志科检测技术有限公司开展了二噁英的采样检测。本次评价对点位及因子进行了相应的补充监测。土壤监测点位见表 3.6-2 及图 3.5-1。

3.6.3 监测频次

监测频次: 监测1天,各点采样1次。

表 3.6-2 土壤监测点位一览表

7				田井田		检测用子	
Ę	占价久称	即样价置	取样光刑	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田		12.65 E	
位	W LE LINE		WILVE	类型	引用检测报告及点位	引用检测因子	本次补测因子
F	‡ 9		1 1 1	1	《锂电池废料综合利用产线提质改扩建项目检测报告》(报告编号:RC2406128-06010H)	pH、镉、汞、砷、铅、铬、铜、镍、锌、锰、钴、锂、石油烃、氟化物	
=	条条个		农居件	出	《废旧锂电池综合回收体系建设项目(变更)检测报告》(编号:ZK2412201501C)	二陽英	三 。
13	厂区外西南 920m		表层样	早地			pH、镉、汞、砷、 铅、铬、铜、镍、锌、 氟化物、镍、钴、石油 烃、二噁英
1	厂区外西南	在 0~0.2m 取样	1 1	出	《锂电池废料综合利用产线提质改扩建项目检测报告》(报告编号:RC2406128-06010H)	pH、总砷、镉、铜、铅、镍、汞、六价铬、石油烃、氟化物、锰、钴、锂、锡、硒、二噁英	
2	约 957m		农居件	用加	《废旧锂电池综合回收体系建设项目(变更)检测报告》(编号:ZK2412201501C)	二陽英	
Ē	循环公司降		1 1 4	H	《锂电池废料综合利用产线提质改 扩建项目检测报告》(报告编号:RC2406128-06010H)	pH、总砷、镉、铜、铅、镍、汞、六价铬、石油烃、氟化物、氟化物、锰、钴、锂	3123 47
4	压站附近		衣房件	用加	《废旧锂电池综合回收体系建设项目(变更)检测报告》(编号:ZK2412201501C)	二陽英	No.
1	循环储罐附	4	1 1	料日	《锂电池废料综合利用产线提质改扩建项目检测报告》(报告编号:RC2406128-06010H) 0~50	GB36600-2018 基本项目 45 项+pH、石油烃、氟化物、钴、锂	
2	五	在 0~0.2m 取样	女居件	用加	《废旧锂电池综合回收体系建设项目(变更)检测报告》(编号:ZK2412201501C)	二陽英	
9L	用地红线西		表层样	工业	1	1	GB36600-2018 基本项

_							
	本次补测因子	目 45 项+pH、硒、	钴、锡、氟化物、石油 烃、二噁英				
	旭子		/	,	,	/	/
	引用检测报告及点位		/	,	,	,	,
用地	类型	用地	工业用地	工业用地	工用地	工业用地	工業田海
14米米班	收件关至		柱状样	柱状样	柱状样	柱状样	柱状样
田林林田	取件 业		分别在	0~0.5m, 0.5~1.5m,	1.5~3m 取样, 土层不足时 1.5m	时,按实际上层深度分	层取样
上户办书	居以石砂	闽	富集吹炼车 间南侧	氮气站北侧	生产综合配 套车间东北 附近	铑铱精炼车 间南侧	钯铂金提纯 车间南侧
世	位		17	T8	61	T10	T11

3.6.4 监测单位及采样时间

监测单位: 二噁英检测单位为江西志科检测技术有限公司, 其余因子监测单位均 为贵州蓉测环保科技有限公司

采样时间:《废旧锂电池综合回收体系建设项目(变更)检测报告》(报告编号:编号:ZK2412201501C)二噁英采样时间为2025年1月6日,《锂电池废料综合利用产线提质改扩建项目检测报告》(报告编号:RC2406128-06010H)采样时间均为2024年6月30日,本次补充监测采样时间为2025年6月12日。

3.6.5 评价标准

T3~T11 执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018) 筛选值第二类用地标准。T1~T2 执行《土壤环境质量 农用地土壤 污染风险管控标准(试行)》(GB15618-2018)筛选值。

3.6.6 评价方法

本次评价采用单项污染指数法。单项污染指数法,反映土壤中各个重金属元素的 污染程度,以污染物含量实测值与评价标准相比来计算污染指数。

$$P_i = \frac{C_i}{S_i}$$

式中: Pi---土壤中污染物 i 的单项污染指数;

Ci——土壤中污染物 i 的实测数据, mg/kg;

Si——污染物 i 的土壤环境质量标准值,mg/kg。

3.6.7 监测结果

土壤环境质量监测结果见表 3.6-3 及 3.6-4。

松 测霉目	N4 1X-	Tr.	TO	GB15618-	2018
检测项目	单位	T1	T2	风险筛选值	管控制
pН	mg/kg	6.83	7.22	6.5 <ph:< td=""><td>≤7.5</td></ph:<>	≤7.5
辐	mg/kg	0.08	0.16	0.3	3.0
汞	mg/kg	0.602	0.797	2.4	4.0
砷	mg/kg	10.3	29.0	30	120
铅	mg/kg	48	50.1	120	700
铬	mg/kg	47	48	200	1000
铜	mg/kg	32	37	100	1
镍	mg/kg	39	43	100	1

表 3.6-3 农用地土壤环境质量监测结果统计表

锌	mg/kg	96	115	250	/
石油烃 (C10-C40)	mg/kg	56	16	/	1
钴	mg/kg	45.8	24.5	/	1
锰	mg/kg	278	1	1	1
锂	mg/kg	41.5	1	1	1
氟化物	mg/kg	651	647	/	1
二噁英	ngTEQ/kg	4.3	0.049	1	1
硒	mg/kg	0.75	1		
锡	mg/kg	3.78	1		

表 3.6-4 建设用地土壤环境质量监测结果统计表 单位; mg/kg

協測项目	T3-厂区外 西南 957m	T4-循环公司降 压站附近	TS-疆区	T6-用地 红线两侧	T7	富集吹炼车间南侧	可南侧	T8	8 氮气站北侧	(6)	GB36600-2018 師
	0-20cm	0-50cm	0-20cm	0-20cm	0-15cm	15~30cm	30~50cm	0-5cm	15~30cm	30~50cm	选值
缐 (mg/kg)	33	26	31	67	19	69	64	77	99	64	006
铅 (mg/kg)	74	45	19	61.1	68.4	81.0	7.7.7	73.4	9.79	9.19	800
铜 (mg/kg)	55	99	62	46	89	29	70	65	59	58	18000
镉 (mg/kg)	0.11	80.0	90.0	0.14	0.10	0.15	0.20	0.64	9.76	0.71	99
总汞 (mg/kg)	0.737	0.565	0.652	1.04	0.927	0.937	0.878	0.748	819.0	0.557	38
总砷 (mg/kg)	21.3	16.1	29.7	37.9	55.1	50.2	52.3	52.0	49.2	48.7	09
氧化物 (mg/kg)	787	129	717	803	630	682	805	648	735	692	ı
锰 (g/kg)	419	420	419	. /	4	/	1	+	1	1	1
(g/grl) 酮*	41.9	83.9	63.5	1	1	1	1	1	1	1	ij
*钴 (mg/kg)	41.4	26.2	55.7	29.8	23.5	33.6	34.8	29.9	29.1	26.2	20
*石油烃 (C10-C40) (mg/kg)	52	19	13	10	50	25	12	ī	14	12	4500
六价格 (mg/kg)	0.5L	0.5L	0.5L	0.5L	0.5L	0.5L	0.5L	0.5L	0.5L	0.5L	5.7
二噁英 (ngTEQ/kg)	1.6	1,4	4.2	0.17	2.9	0.84	0.12	0.18	0.23	0.18	4×10.5
硒 (mg/kg)	89'0	1.15	0.82	68'0	0.92	16:0	1.20	1.22	1.34	1.20	Î
锡 (mg/kg)	5.52	3.94	4.73	4.27	5.32	5.80	5.22	5.63	5.11	4.90	ì
*四氯化碳(ng/kg)	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	2.8
*氯仿 (µg/kg)	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	6.0
*氣甲烷 (µg/kg)	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	37
*1,1-二氯乙烷 (μg/kg)	0,0012L	0,0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	6
*1,2-二氟乙烷 (µg/kg)	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	S
*1,1-二氯乙烯 (µg/kg)	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	99
*顺-1, 2-二氯乙烯 (μg/kg)	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0,0013L	0.0013L	0.0013L	969
*反-1, 2-二氯乙烯 (μg/kg)	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	54
*二氯甲烷 (µg/kg)	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	919
*1,2-二氯丙烷 (µg/kg)	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	5
*1.1,1,2-四氯乙烷 (μg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	10
*1,1,2,2-四氯乙烷 (μg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	8.9
*四氯乙烯 (ng/kg)	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	53

监测项目	T3-厂区外 西南 957m	T4-循环公司降 压站附近	15-韓区	T6-用地 红线西侧	177	富集吹炼车间南侧	可南侧	F	T8 氦气站北侧	1000	GB36600-2018 筛
	0-20cm	0~50cm	0-20cm	0-20cm	0-15cm	15~30cm	30~50cm	0-5cm	15~30cm	30~50cm	位用
*1,1,1-三氯乙烷 (µg/kg)	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	840
*1,1,2-三氯乙烷 (µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	2.8
*三氯乙烯 (µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	2.8
*1,2,3-三氯丙烷 (µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.5
*氯乙烯 (µg/kg)	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0,0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.43
*苯 (µg/kg)	0.0019L	16100'0	0.0019L	0.0019L	0.0019L	0.0019L	0.0019L	0.0019L	0.0019L	0.0019L	4
*氯苯 (µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	270
*1,2-二氯苯 (µg/kg)	0.0015L	0.0015L	0.0015L	0,0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	560
*1,4二氯苯 (µg/kg)	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	20
*乙苯 (ng/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	28
*苯乙烯 (µg/kg)	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	1290
*甲苯 (µg/kg)	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	1200
*间二甲苯+对二甲苯 (μg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	570
*邻-二甲苯 (µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	640
* 请基苯 (mg/kg)	160'0	160.0	0.09L	160.0	160.0	0.09L	760'0	160'0	160'0	160'0	92
*苯胺 (mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	260
*2-氯酚 (mg/kg)	190'0	T90.0	0.06L	0.06L	0.06L	0.06L	T90'0	T90'0	T90'0	190'0	2256
*苯并(a) 蒽 (mg/kg)	0.1L	0.IL	0.1L	0.1L	0,1L	0.1L	0.1L	0,1L	0.1L	0.1L	15
* 农并 (a) 芘 (mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	1.5
** * * * * * * * * * * * * * * * * * *	0.2L	0.2L	0.2L	0.2L	0.2L	0.2L	0.2L	0.2L	0.2L	0.2L	15
* 苯并 (k) 荧蒽 (mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	151
*菌 (mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	1293
*三苯并 (a,h) 蔥 (mg/kg)	0.1L	0.1L	0.1L	0.11	0.IL	0.1L	0.1L	0.1L	0.1L	0.1L	1.5
*茚并 (1,2,3-cd) 芘 (mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	15
*禁 (mg/kg)	760'0	160'0	760'0	0.09L	160'0	0.09L	0.09L	160'0	760'0	160'0	70

续表 3.6-4 建设用地土壤环境质量监测结果统计表 单位: mg/kg

於劉而日	7 6.L	生产综合配套车间东北附近	间东北附近	TIO	10 铑钛精炼车间南侧	问的侧	T11	钯铂金提纯车间南侧	向南侧	GB36600-
124 AND 254 LT	0~50cm	50~150cm	150~300cm	0-13cm	13~26cm	26~40cm	0~15cm	15-30cm	30~50cm	2018 筛选值
键 (mg/kg)	02	77	93	734	87	84	112	62	109	006
铝 (mg/kg)	44.9	122	154	42,0	9.79	48.5	1,44	85.3	107	800
(h) (mg/kg)	\$	19	<u>~</u>	19	29	65	83	75	78	18000
辆 (mg/kg)	0.07	0.13	0.16	0.10	0.04	0.02	0.20	0.11	0.12	65
島永 (mg/kg)	699.0	269'0	0,676	2.29	0.835	0.596	0.684	0,576	0.538	38
总确 (mg/kg)	45.6	43.6	12.5	51.6	28.1	57.4	49.1	11.7	59.0	99
氟化物 (mg/kg)	857	786	677	754	965	570	704	629	702	1
*特 (mg/kg)	23.2	46.2	21.2	6.91	28.4	25.9	58.7	20.2	48.4	70
*石油烃 (C10-C40) (mg/kg)	16	13	œ	20	œ	14	32	16	13	4500
六价铬 (mg/kg)	0,5L	0.5L	0.5L	0.5L	0,5L	0.5L	0.5L	0.5L	0.5L	5.7
二幅英 (ngTEQ/kg)	2.2	0.24	0.17	0.34	0.27	0.18	6.9	0.36	0.30	4×10 ⁴
(個 (mg/kg)	1.22	1.18	1.50	0.74	1.23	1.51	1.26	1.55	1.40	1
锡 (mg/kg)	5,96	5,20	9,82	69.9	6.28	69.9	6.48	5,40	6.95	/
*四氯化碳 (µg/kg)	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0,0013L	0.0013L	0.0013L	2.8
*氯仿(ug/kg)	0.00111	0.0011L	0.0011L	0,00111,	0.0011L	0.0011L	0.0011L	0.0011L	0.00111,	6.0
*氣甲烷 (µg/kg)	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	37
*1,1-二氯乙烷 (μg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0,0012L	0.0012L	6
*1,2-二氯乙烷 (μg/kg)	0,0013L	0.0013L	0.0013L	0.0013L	0,0013L	0.0013L	0,0013L	0,0013L	0,0013L	40
*1,1-二氯乙烯 (µg/kg)	0.0010L	D:0010E	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.0010L	99
*顺-1, 2-二氯乙烯 (μg/kg)	0.00131.	0.0013L	0.0013L	0.0013L	0.00131.	0.0013L	0.00131.	0.0013L	0.0013L	596
*反-1, 2-二氯乙烯 (µg/kg)	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0,0014L	0.0014L	54
*二氯甲烷 (μg/kg)	0.0015L	0.0015L	0.0015L	0,0015L	0.0015L	0.0015L	0.0015L	0.0015L	0,0015L	919
*1,2-二氯丙烷 (μg/kg)	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	in
*1,1,1,2,四氯乙烷(μg/kg)	0.0012L	D.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	10
*1,1,2,2-四氯乙烷(µg/kg)	0,0012L	0.0012L	0.0012L	0.0012L	0.0012L	0,0012L	0,0012L	0.0012L	0.0012L	8.9
*四氯乙烯 (µg/kg)	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0.0014L	0,0014L	0,0014L	53
*1,1,1-三氯乙烷(µg/kg)	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	840
*1,1,2-三氯乙烷(pg/kg)	0.0012L	0.0012L	0.0012L	0.00121.	0.00121.	0.0012L	0.0012L	0.0012L	0.0012L	2.8
*三氯乙烯 (µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.00121	0.0012L	0.0012L	0,00121	2.8
*1,2,3-三氯丙烷(µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.00121.	0.0012L	0,0012L	0.0012L	0.5
* 佩乙烯 (µg/kg)	0.0010L	0.0010L	0.0010L	0.0010L	0,0010L	0.0010L	0.0010L	0.0010L	0.0010L	0.43
** ** (µg/kg)	0.0019L	0.0019L	0.0019L	0.0019L	0.0019L	- 0.0019L	0.0019L	0.0019L	0.0019L	4
*氪苯 (µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0,0012L	0.0012L	270
*1.2-二氯苯 (με/kg)	0.0015L	0.0015L	0.0015L	0.0015L	0,0015L	0.0015L	0.0015L	0,0015L	0,0015L	560

林 島府田	T9 4	T9 生产综合配套车间东北附近	司东北附近	T	T10 铑铱精炼车间南侧	间南侧	T11	钯铂金提纯车间南侧	间南侧	GB36600-
1年6379年	0~50cm	50~150cm	150~300cm	0~13cm	13~26cm	26~40cm	0~15cm	15~30cm	30~50cm	2018 筛选值
*1,4二氮苯 (µg/kg)	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	0.0015L	20
*乙苯 (µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	28
* 茶乙烯 (µg/kg)	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0.0011L	0,0011L	0.0011L	0.0011L	1290
*甲苯 (µg/kg)	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	0.0013L	1200
*间二甲苯+对二甲苯 (µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	570
*邻-二甲苯 (µg/kg)	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	0.0012L	640
*硝基苯 (mg/kg)	0.09L	760'0	160'0	160.0	760'0	T60'0	760'0	0.09L	160'0	92
*苯胺 (mg/kg)	0,1L	0.1L	0.1L	0.IL	0.1L	0.1L	0.IL	0.1L	0.1L	260
*2-氯酚 (mg/kg)	0.06L	T90'0	T90.0	0.06L	190'0	T90'0	T90'0	T90'0	T90.0	2256
*苯并(a) 蒽(mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0,1L	0.1L	0.1L	0.1L	15
*苯并(a) 芘(mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	1.5
*苯并(b) 荧蒽(mg/kg)	0.2L	0.2L	0.2L	0.2L	0.2L	0.2L	0.2L	0.2L	0.2L	15
*苯并(k) 荧题 (mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0,1L	151
* 苗 (mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	1293
*二苯并(a,h) 题(mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	1.5
*茚并 (1,2,3-cd) 芘 (mg/kg)	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	0.1L	15
*禁 (mg/kg)	160'0	160'0	160.0	160'0	760'0	160'0	0.09L	160.0	160'0	70

监测结果表明,T3~T11各监测点各项指标均能达到《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表1中第二类用地的风险筛选值标准,说明评价区域建设用地土壤污染风险低。T10点位表层样镍检测值较高,该点位取样位置处于铑铱精炼车间旁绿化带,原贵州中伟资源循环公司20#镍净化车间,采用镍豆加硫酸溶解生产硫酸镍,该点位表层镍检测值偏高,可能为产品洒漏导致。

监测结果表明,T1~T2监测点各项监测指标均可以满足《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB15618-2018)中风险筛选值标准要求,说明评价区域农用地土壤污染风险低。

3.7 生态环境现状调查与评价

3.7.1 评价工作等级

本项目工程占地面积远小于 20km²: 项目所处区域不涉及国家公园、自然保护区、世界自然遗产、重要生境区,不涉及生态红线、天然林、公益林,地表水评价等级为三级 A。同时,根据《环境影响评价技术导则 生态影响》(HJ19-2022)6.1.8 规定: "符合生态环境分区管控要求且位于原厂界(或永久用地)范围内的污染影响类改扩建项目,位于已批准规划环评的产业园区内且符合规划环评要求、不涉及生态敏感区的污染影响类建设项目,可不确定评价等级,直接进行生态影响简单分析"。本项目属于位于已批准规划环评的贵州大龙经开区内且符合贵州大龙经开区环评要求、不涉及生态敏感区的污染影响类建设项目,因此,本次评价生态不确定生态影响评价等级,按照简单分析评价。

3.7.2 植被现状调查

3.7.2.1 植被区划

根据《贵州植被》,评价区属于亚热带常绿阔叶林带——中亚热带常绿阔叶林亚带——贵州高原湿润性常绿阔叶林地带——黔东低山丘陵常绿樟栲林松杉林及油桐茶林地区——松桃铜仁丘陵低山樟栲林马尾松林油桐茶林小区。本小区原生植被为中亚热带常绿阔叶林,但由于评价区人为活动频繁,常绿阔叶林已被破坏,现状以次生植

被和人工植被为主。评价区植被主要包括以马尾松、青冈、油桐、黄连木等为主的乔木林,以及以槲栎、白栎、黄荆等为主的灌丛。

3.7.2.2 植被类型

根据对工程生态环境影响评价范围的卫星遥感图片解译的数据显示,评价区内植 被类型主要有针叶林、灌丛植被、灌草丛植被、农田植被、园地植被等。

(1) ······马 尾松群系

马尾松林是我国亚热带东部湿润地区分布最广、资源最丰富的森林群落, 在贵州的东部、中部广大地区都有大面积马尾松林分布,在垂直高度上,一般 不超过海拔1500m。

本项目评价范围中,以马尾松为主的植被群落,此类植被一般发育在碎屑岩风化壳形成的酸性黄壤上的山地丘陵地貌区。马尾松为评价区分布最广泛、最常见的针叶树种,在酸性土上分布广泛,林下灌丛多为栎类幼树,且集中分布在林窗处以及林地边缘地带,因马尾松生长密集,林地内部灌木生长稀少,种类单一。马尾松为评价区针叶林的重要组成部分之一,分布于山坡上。

本群落是常绿阔叶林遭到人为砍伐破坏后出现的一类次生群落,在贵州中部、东部地区有大面积分布,尤以黔东南、黔中和黔东北最为常见,评价区零散分布此群落类型。本群落的生境与常绿阔叶林比较,林内光线条件较好,但土层较干燥。分布地土壤主要为黄壤。群落垂直分层明显,乔木层种类较单一,以枫香和麻栎林、栓皮栎为主。

栗、白栎、槲栎群系

灌丛是指由灌木或灌木占优势所组成的植物群系。评价区内的灌丛,一般都是次生的,同时也有一些是相对稳定的群系。其形成,一种为森林严重破坏后的恢复阶段;一种是岩壁,由于环境条件恶劣,植物生长受到制约,只有一些能忍受严酷条件的灌木可在此生长;第三种是山顶,由于风大和土壤贫瘠,常生长一些灌丛。评价区内灌丛分布的面积一般,是评价区最为常见、最重要

的植被类型之一。

茅、芒、野古草草丛

灌草丛泛指草本植物(包括禾草与非禾草)群系,其在亚热带主要由于森林、灌丛植被被反复砍伐、火烧,导致水土流失,土壤日益贫瘠,生境趋于干旱化所形成的次生类型。灌草丛在评价区分布较少。

评价区灌草丛群落以白茅、芒、野古草为优势种,草本层除上述优势种外,常见的有海金沙、金茅、扭黄茅、黄背草、火棘、蒲公英、各类苔草等。

(5) ······以

玉米、油菜为主的一年两熟作物组合

此类作物组合在评价区分布较多,夏秋建群种以玉米为主,在玉米间常间种黄豆、四季豆等各种豆类,形成高矮不同的空间层片结构,冬春建群种以小麦、油菜、豌豆、胡豆、洋芋为主。形成"玉—麦"、"玉—油"、"玉—豆"等多种作物组合。

(6) ……以

水稻、油菜为主的一年两熟作物组合

由于水源及灌溉条件的差异,水田植被分为灌溉水田和望天水田,但两类水田的作物组合以及群落的季相层片结构均无明显差异,均为水稻和油菜为主要作物组合。以水稻、油菜为主的一年一熟或一年两熟水田植被夏秋建群种以水稻为主,冬春建群种以油菜为主,形成"稻—油"、"稻—豆"等多种作物组合。

3.7.2.3 野生保护植物

根据调查资料,项目占地范围内植被类型主要为马尾松群系、马尾松+枫香+香叶树或青冈群系、火棘、野蔷薇、悬钩子群系,在用地范围内未发现《国家重点保护野生植物名录》(2021年版)规定的野生保护植物。

3.7.3 陆生动物现状

本次评价区中,规划区位于云贵高原向湘西丘陵过渡的斜坡地带,评价区常见动物种类有:

哺乳纲: 社鼠(Rniviventer)、褐家鼠(Rnorvegicus)、黑线姬鼠(Apodemus

agraius)等啮齿目鼠科种类占优势;

鸟纲:白鹭(Egretta garzetta)、池鹭(Ardeola bacchus)、白鹡鸰(Motacilla alba)、棕背伯劳(Lanius schach)、棕噪鹛(Garrulax poecilorhynchus)等鸟类,其中鹭科种类在农田附近及河流、池塘旁较为常见;

爬行纲: 黑眉锦蛇(Elaphe taeniura)、王锦蛇(E. carinata)等蛇类在评价区内虽有分布但数量稀少;

两栖纲: 泽蛙 (Rana limnocharis)、大蟾蜍中华亚种 (Bufo bufo gargarizans)、青蛙 (Rana nigromaculata) 等生活在农田附近的常见种类,数量较多。

经走访相关村寨,大型野生动物已绝迹,仅存小型兽类和部分鸟类较为常见,且未发现国家重点保护兽类和两栖爬行类。

3.7.4 生态环境质量现状评价

项目区周围的生态环境是一个自然和人工干扰下的复合农业生态系统,其中既体现有自然生态系统特征,也体现了人工生态系统特征,环境主要由林地、农田、道路、村落、河流等组成,系统中体现有不同的物质、能量流动方式,在此区域内,主要体现自然状态下的物质和能量转换。区域森林类型大部分为阔叶纯林和针阔叶混交林,生态功能群落结构为单层林;森林群落结构简单,林相单一。

评价区属于农业生态系统和城市生态系统,森林和自然植被覆盖率相对较低,不能为野生动物提供良好的栖息环境。由于农业耕种对土地的垦殖,工业开发对土地的占用,受人为和自然因素干扰较大,又因农业生态系统具有波动性、选择性以及综合性等特点,各种自然和社会因素都会对其稳定性产生影响。

由于区内自然气候条件优越,雨量充沛,气候温和,生物及自然植被恢复 能力较强,在农业生态系统中,主要通过人类进行保护性恢复。

景观生态体系中,森林与灌丛草地是该区域自然生态环境质量的控制性组分,自然生态系统与外界仍具有较好的连通性,林地植被覆盖率相对较低,不能为野生动物提供良好的栖息环境,自然生态体系完整性较差。

4 环境影响预测与评价

4.1 大气环境影响预测与评价

4.1.1 评价区气象特征

4.1.1.1 累年气象特征

项目采用的是玉屏气象站(57739)资料,气象站位于贵州省铜仁市,地理坐标为 东经 108.904°,北纬 27.2347°,海拔高度 382 米。玉屏气象站距项目 15km,是距项目 最近的国家气象站之一,拥有长期的气象观测资料,以下资料根据 2004-2023 年气象 数据统计分析。玉屏气象站常规气象资料统计见表 4.1-1。

	统计项目	统计值	极值出现时间	极值
多年	F平均气温 (°C)	17,1		
多年平	立均最高气温 (℃)	38.2	2023-6-26	39.8
多年平	区均最低气温 (℃)	-2.3	2008-1-27	-4.3
多年	平均气压(hPa)	970.0		
多年	平均相对湿度(%)	78.2		
多年	平均降雨量(mm)	1211.9	2007-7-26	191.9
	多年平均沙暴日数(d)	0.0		
克尔工厂 佐江	多年平均雷暴日数(d)	39.8		
灾害天气统计一	多年平均冰雹日数(d)	0.5		
	多年平均大风日数(d)	0.4		
多年实测极	大风速(m/s)、相应风向	15.5	2014-7-24	23.1/NNW
多年	平均风速 (m/s)	1.3		
多年主	导风向、风向频率(%)	没有明显主导风向		
多年静风	频率(风速<=0.2m/s)(%)	14.3		

表 4.1-1 玉屏县象站常规气象项目统计表(2004~2023年)

(1) 月平均风速

玉屏气象站月平均风速如表 4.1-2, 8 月平均风速最大(1.4 米/秒), 12 月风最小(1.2 米/秒)。

表 4.1-2 玉屏气象站月平均(2004~2023年)风速统计表 单位: m/s

月份	1	2	3	4	5	6	7	8	9	10	-11	12
平均风速	1.3	1.4	1.3	1.4	1.4	1.3	1.4	1.4	1.3	1.2	1.3	1.2

(2) 风向特征

近 20 年资料分析的风向玫瑰图如图 4.1-1 所示, 玉屏气象站各风向相邻 2~3 个风向角范围之和最大风频为 26.9%(NNE、NE、ENE) <30%, 因此, 玉屏县近 20 年主导风向不明显。

表 4.1-3 玉屏气象站年风向频率 (2004~2023年) 统计表 单位: %

风向	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	C
频率	5.3	9.2	12.1	5.6	3.9	3.5	4.7	2.6	3.0	5.2	9.6	8.1	4.5	2.5	2.7	2.9	14.3

各月风向频率见图 4.1-2。

玉屏近二十年风向频率统计图

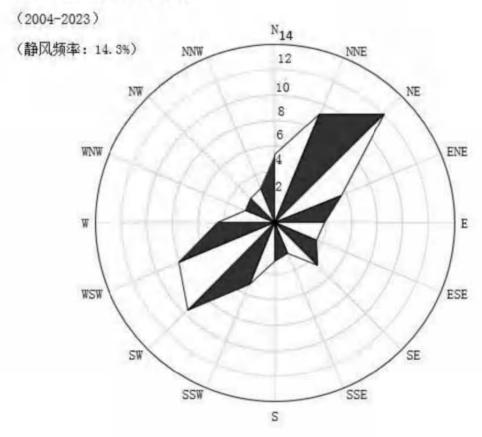


图 4.1-1 玉屏县近 20 年 (2004~2023) 风向玫瑰图

稀贵金属资源循环利用项目环境影响报告书

			17	表 4.1-4	大屏	气寒站风回频举	回類淨	(2004~2023年) 统计表	23年) 约	机表	单位:	%				
Z	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	WW	NNN	C
8.4	9.6	15.5	9.3	4.9	4.7	9.9	2.1	2.1	4.5	6.2	6.2	2.3	1.3	1.7	2.3	15.6
4.7	12.2	16.2	9.3	4.9	4.2	5.3	2	2.3	3	5.8	4.8	3.2	1.9	2.6	3.4	14.1
5.1	11.2	15.3	7.3	4.6	3.9	5.2	61	2.3	3.4	6.3	5.2	3.3	2.2	2.3	2.8	17.3
6.7	9.6	11.5	4.6	3.9	3.1	4.5	2,2	3	4.6	9.6	7.7	5.3	2.6	2.7	3.2	15.9
6.7	6.6	10.8	4.9	3.8	3.1	8.8	1.9	2.8	5.1	9.6	8.4	5.5	2.7	3	3.6	12.8
6.4	6.5	9.8	3.2	3.5	3.2	4.3	2.3	3.8	6.4	12.2	12.4	5.3	2.8	3.2	3.6	13,3
S	5.6	9	2	2.1	2	3.2	3.7	4.6	9.3	14.5	12.4	6.5	3.4	3.5	3.4	12.1
4.4	5.9	6.2	3,4	4	3.5	3.4	2.1	3.5	8	13.4	10.4	6.9	4.2	4.7	4.1	11.4
9	8.1	10.6	4.3	4	3.4	3.8	2.5	3.3	5	11.6	8.5	5.1	3.4	2.9	4.2	13.8
5.6	10.5	11.4	4.5	3.9	3.9	5.3	3.4	2.6	8.8	8.8	8.3	3.7	2.2	2.1	3.3	15.2
4.5	10	14.1	6.5	3.3	3.9	6.2	3.6	3.4	4.1	8.8	7.1	3.6	2	2.1	1.8	15.7
4.6	10.1	14.4	6.7	4.1	4	5.2	2.9	2.4	3.7	6	6.5	2.4	1.7	2.3	2.6	16.8
6.2	10.2	12.5	5.6	4.1	3,4	4.8	2.0	2.7	4.4	8.5	7,1	4.7	2.5	2.7	3.2	15.3
5.3	0.9	6.9	2.9	3.2	2.9	3.6	2.7	4.0	7.9	13.4	11.7	6.2	3.5	3.8	3.7	12.3
5.4	9.5	12.0	5.1	3.7	3.7	5.1	3.2	3.1	4.6	7.6	8.0	4.1	2.5	2.4	3,1	14.9
4.7	10.6	15.4	8.4	4.6	4.3	5.7	2.3	2.3	3.7	7.0	5.8	2.6	1.6	2.2	2.8	15.5

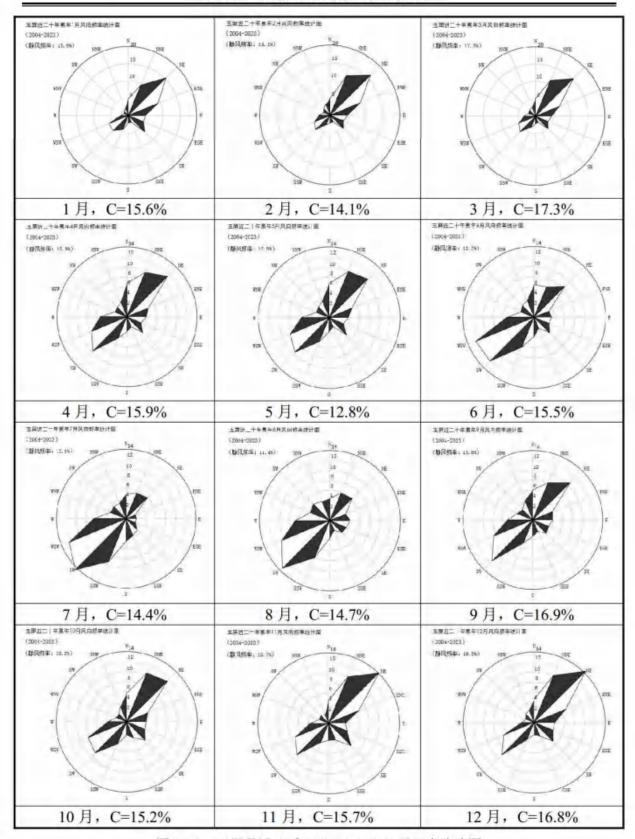


图 4.1-2 玉屏县近 20 年 (2004~2023) 月风向玫瑰图

4.1.1.2 评价基准年气象特征

根据项目所需环境空气质量现状、气象资料等数据的可获得性、数据质量、代表性等因素,选择 2023 年作为评价基准年。评价基准年气象资料采用玉屏气象站 2023 年观测资料。

(1) 温度

2023 年地面气象资料中每月平均温度的变化情况见表 4.1-5, 年平均温度月变化 曲线图见图 4.1-3。

月份 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 18.77 温度 (℃) 7.32 12.92 22.47 27.31 24.74 14.11 8.25 7.56 18.53 25.11 28.79

表 4.1-5 玉屏县 2023 年平均温度月变化

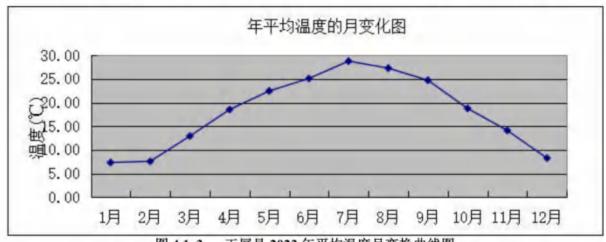


图 4.1-3 玉屏县 2023 年平均温度月变换曲线图

(2) 风速

2023年地面气象资料中每月平均风速见表 4.1-6, 月变换曲线见图 4.1-4。

1月 月 份 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 风速 (m/s) 1.66 1.70 1.77 1.99 1.92 1.79 1.96 1.66 1.89 1.64 1.77 1.84

表 4.1-6 玉屏县 2023 年年平均风速月变化

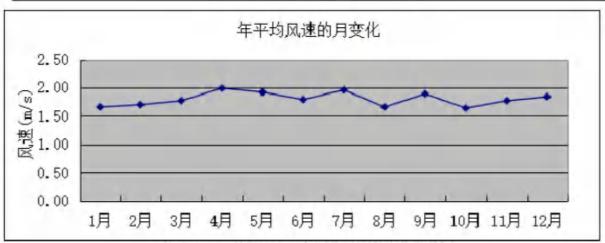


图 4.1-4 玉屏县 2023 年平均风速月变换曲线图

表 4.1-7 玉屏县 2023 年季小时平均风速的日变化

小时(h) 风速(m/s)	1	2	3	4	5	6	7	8	9	10	11	12
春季	1.62	1.71	1.56	1.56	1.52	1.55	1.44	1,58	1.61	1.68	1.91	2.21
夏季	1,37	1.36	1.38	1.40	1.28	1.33	1.28	1,35	1.47	1.69	2.22	2.25
秋季	1.76	1.58	1.53	1.53	1.59	1.56	1.51	1.57	1.57	1.54	1.72	1.86
冬季	1.68	1.62	1.58	1.59	1.57	1.48	1.50	1.45	1.40	1.46	1.61	1.72
小时(h) 风速(m/s)	13	14	15	16	17	18	19	20	21	22	23	24
春季	2.31	2.51	2.41	2.39	2.36	2.37	2.13	1.97	1.89	1.71	1.70	1.75
夏季	2,33	2.43	2.62	2.57	2.61	2.34	2.05	1.82	1.63	1,58	1.47	1.38
秋季	1.97	2.21	2.23	2.27	2.20	2.05	1.79	1.67	1.60	1.63	1.64	1.75
冬季	1.86	1.97	2.13	2.12	2.23	2.12	1.85	1.84	1.81	1.80	1.67	1.56

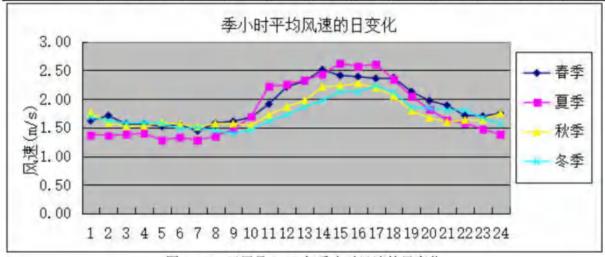
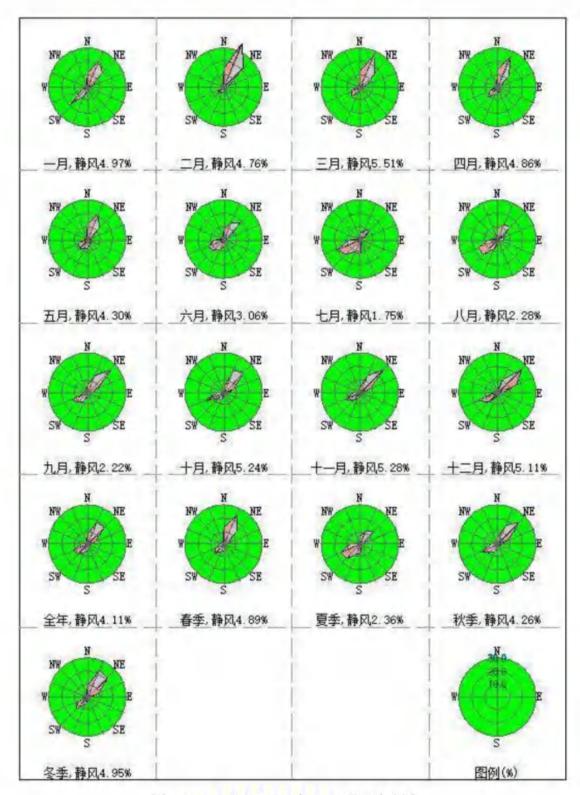


图 4.1-5 玉屏县 2023 年季小时风速的日变化

(3) 风频

玉屏县 2023 年均风频的月变化见表 4.1-8, 年均风频的季变化及年均风频见表 4.1-9, 年平均风频见图 4.1-6。



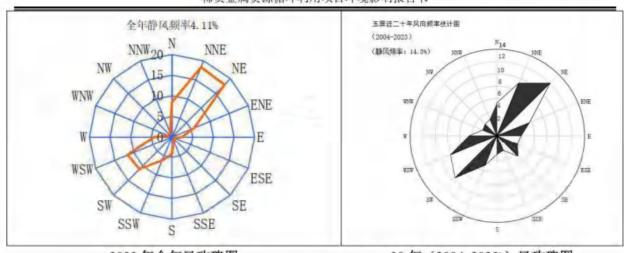

图 4.1-6 玉屏县 2023 年 1~12 月风玫瑰图

表 4.1-8 玉屏县 2023 年年均风频的月变化

风刻风刻	z	NNE	NE	ENE	ы	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNN	ç
H-H	11.29	22.72	15.99	4.57	19.1	0.13	00.00	29.0	2.96	6.72	18.82	5.24	1.48	1.08	0,40	1.34	4.97
月二	14.29	35.71	21.43	4.32	68.0	00.00	00.00	0.74	68.0	2.83	7.59	3.72	1.04	0.30	0.45	1.04	4.76
川	12.77	26.61	15.32	4.03	1.75	0.81	0.94	0.94	3.23	4.17	10.6	7.26	3.49	1.34	1.08	1.75	5.51
四月	14.03	25.00	12.36	2.64	2.64	0.42	1.81	2.50	5,83	5.00	10.42	18.9	2.36	1.25	0.56	1.53	4.86
五月	12.50	20.56	12.63	3.63	1.21	18.0	1.88	3.63	6.45	7.53	9.27	7.26	3.49	1.21	1.88	1.75	4.30
六月	7.64	14.03	18.19	4.31	1.39	0.83	0.42	1.25	5.14	8.47	11.53	13.61	18.9	1.39	69'0	1.25	3.06
七月	5.11	7.39	10.62	2.02	0.81	0.27	0.94	5.69	11.56	9.41	15.99	18.68	18.6	0.81	0.81	1.34	1.75
八月	8.06	12.10	13.84	4.17	4.97	0.40	0.27	0.94	3.63	7.12	15.73	15.99	6.72	0.67	1971	1,48	2.28
九月	6.25	14.31	23.89	8.47	2.78	1.39	16'0	0.56	3.19	7.36	10.28	12.36	3.19	69.0	76.0	11.11	2.22
十月	4.03	18.41	21.10	7.80	3.09	19.0	0.27	0.40	2.82	6.18	6.18	17.07	5.24	0.67	0.27	0.54	5.24
H-+	4.03	14.03	25.42	19.8	3.19	69.0	0.00	0.14	2.36	5.00	7.78	14.72	5.69	1.39	1.11	0.56	5.28
十二月	2.28	10.62	25.27	15.05	4.03	0.54	0,40	0.13	1.75	4.17	10.08	15.73	2.82	0.40	0.54	1.08	5.11

表 4.1-9 玉屏县 2023 年年均风频的季变化

					_
2	4.89	2.36	4.26	4.95	4.11
NNN	1.68	1.36	0.73	1.16	1.23
NW	1.18	1.04	0.78	0.46	0.87
WNW	1.27	0.95	0.92	09.0	0.94
W	3.13	7.79	4.72	1.81	4.37
wsw	7.11	16.12	14.74	8:38	11.60
MS	95.6	14.45	8.06	12.31	11.10
SSW	5.57	8.33	81.9	4.63	6.19
S	5.16	6.79	2.79	1.90	4.18
SSE	2.36	1.63	0.37	0.51	1.22
SE	1.54	0.54	0.41	0.14	99.0
ESE	89.0	0.50	0.92	0.23	0.58
Э	1.86	2.40	3.02	2.22	2.37
ENE	3.44	3.49	8.29	8.10	5.81
NE	13.45	14.18	23.44	20.88	17.96
NNE	24.05	11.14	15.61	22.59	18.33
Z	13.09	6.93	4.76	9.12	8.48
风频	春季	夏季	秋季	冬季	全年

2023年全年风玫瑰图

20年(2004~2023)) 风玫瑰图

图 4.1-7 玉屏气象站 2023 年与累年气象统计资料风玫瑰对照图

(4) 风向

由表 4.1-9 及图 4.1-7 可知, 玉屏县 2023 年全年静风频率为 4.11%, 主导风向角范 围风频之和 (NNE、NE) 最大值为 36.3>30%, 2023 年玉屏县主导风向为 NNE。

4.1.2 施工期大气环境影响分析

施工废气主要来自场地开挖,基础结构施工、机械车辆运输中产生的扬尘、施工 机械排放的烟气, 其中施工扬尘是主要污染源, 短期内将对施工作业区及其周边一定 范围内的大气环境产生不利影响。

(3) 场地施工扬尘影响分析

施工期对大气环境产生的影响主要是来自土方开挖、堆积清运及建筑材料如水 泥、石灰、砂子等装卸和交通运输引起的扬尘;运输车辆、工程设备的机动尾气; 挖、铲、推、捣等施工设备废气等,主要空气污染因子为施工扬尘。

施工扬尘的污染程度与风速、粉尘粒径、粉尘含湿量等因素有关, 其中风速对粉 尘的污染影响最大,风速增大起尘量呈正比增加,粉尘污染范围相应扩大。据有关统 计资料表明, 当风速为 1.52m/s 时建筑施工场地的扬尘污染情况如表 4.1-10。

表 4.1-10 施工场地扬尘污染类比情况 单位: mg/m3

监测点	工地内	工地上风向		L地下风向影响情况	2
THE GOLD YES	THEM	THE LANGE	50m	100m	150m
工地 1	0.759	0.328	0.502	0.367	0.336
工地 2	0.618	0.325	0.472	0,356	0.332
工地3	0.596	0.311	0.434	0.376	0.309
工地 4	0.509	0.303	0.538	0.465	0.314
平均值		0.316	0.486	0.390	0.322

由类比调查可以看出,一般情况下施工扬尘影响范围在 150m 之内, 150m 外 TSP 浓度一般可满足《环境空气质量标准》(GB3095-2012)二级标准的要求。

结合外环境分析,本项目施工区域 500m 范围内均无敏感点,施工将不会对周边敏感点造成较大的影响。根据调查,为降低施工扬尘对周围环境的影响,施工期间施工单位采取了减少露天堆放、减少裸露地面且及时清运等措施,极大的减少了施工扬尘对周围环境的影响。

(4) 材料运输扬尘影响分析

据有关文献资料介绍,车辆行驶产生的扬尘占总扬尘的60%以上。车辆行驶产生的扬尘,在完全干燥情况下,可按下列经验公式计算:

$$Q = 0.123(V/5)(W/6.8)^{0.85}(P/0.5)^{0.75}$$

式中: 0 --- 汽车行驶的扬尘, kg/km·辆;

V ____ 汽车速度, km/h;

W — 汽车载重量, t:

P — 道路表面粉尘量, kg/m²。

表 4.1-11 为一辆载重 5 吨的卡车,通过一段长度为 500m 的路面时,不同路面清洁程度,不同行驶速度情况下产生的扬尘量。

道路表面粉尘量车速	0.1 (kg/m²)	0.2(kg/m²)	0.3(kg/m²)	0.4(kg/m²)	0.5(kg/m²)	1.0(kg/m²)
5 (km/h)	0.0283	0.0476	0.0646	0.0801	0.0947	0.1593
10 (kmh)	0.0566	0.0953	0.1291	0,1602	0.1894	0.3186
15 (kmh)	0.0850	0.1429	0.1937	0.2403	0.2841	0.4778
20 (km/h)	0.1133	0.1905	0.2583	0,3204	0.3788	0.6371

表 4.1-11 不同车速和地面清洁程度时的汽车扬尘单位: kg/辆·公里

由此可见,在同样路面清洁情况下,车速越快,扬尘量越大;而在同样车速情况下,路面清洁度越差,则扬尘量越大。

表 4.1-12 为施工场地洒水抑尘的试验结果,表明在施工期间对车辆行驶的路面实施每天洒水 4~5 次进行抑尘,可使扬尘减少 70%左右,有效地控制施工扬尘,将粉尘污染距离缩小到 20~50m 范围。

表 4.1-12 施工场地洒水抑尘试验结果单位: mg/m3

距离 (m)		5	20	50	100
TSP 小时平均浓度	不洒水	10.14	2.89	1.15	0.86
(mg/m ³)	洒水	2.01	1.40	0.67	0.60

因此, 限速行驶及定时清扫道路、保持路面清洁, 同时适当洒水是减少汽车扬尘 的有效手段。

另外,在施工材料水泥、白灰、砂子等运输过程中,会造成物料沿路洒落或风吹起尘的二次扬尘,对运输道路两侧沿途环境空气造成一定影响。根据调查,施工期间施工单位运输车辆均加盖篷布,防止洒落,车辆未超高、超载运输,对施工区域及厂区运道路及时清扫和洒水,施工区域出入口设置了车轮清洗装置,最大限度减少运输过程交通扬尘产生量,降低了对沿线空气环境的扬尘影响。

(5) 汽车尾气

运输车辆及施工机械在运行中将产生机动车尾气,其中主要含有 CO、NOx、HC 等污染物。这些废气排放局限于施工现场和运输沿线,为非连续性的污染源。对周围 环境影响较小。

4.1.3 营运期大气环境影响预测与评价

4.1.3.1 污染源

(1) 正常工况

经调查,在评价基准年 2023 年 1 月至今,正常工况下,本项目源强见表 4.1-14 及表 4.1-15。

(2) 非正常排放

本项目废气非正常排放主要考虑污染控制措施达不到应有效率的情形。本项目废 气非正常排放主要考虑布袋除尘器布袋、活性炭装置活性炭未、喷淋塔完全失效的情 形,导致污染物治理效率下降为零后直接排放,污染源强见表 4.2-16。

(3) 评价范围内拟建或在建项目污染源排放清单

本项目大气评价范围内与本项目排放污染源颗粒物、SO₂的调查时间为2023年1月1日至今, 氯气、氨气、镍、锰、钴、铜、铅、砷、铬、锡及其化合物、汞及其化合物、镉、硒及其化合物调查时间为2024年6月至今, 二噁英调查时间为2025年1月至今, 硫化氢、氯化氢、非甲烷总烃、氮氧化物、氟化物、五氧化二磷调查时间为2025年1月至今。在区域污染源调查期间,评价范围内与本工程排放同类污染物(不处于污染源调查阶段内的不予列出)的已批复、拟建及在建企业见表4.1-17,污染源排放清单

见表4.1-18。

表 4.1-13 评价范围内排放同类污染物的在建及拟建项目统计表

序号	项目名称	与本项目位置 关系	批复情况	建设情况	投产时间	与项目相同 的基本污染 源	与项目相同的特 征污染物
1	年产8万吨热镀锌生产线 新建项目	NE/540m	已批复	已建成	2024.6	SO ₂ , NO ₂ , PM ₁₀ , PM _{2.5}	氟化物、HCl、 非甲烷总烃
2	90050 吨医药中间体新材料 项目	SW/765m	已批复	已建成	未投产	SO ₂ , NO ₂ , PM ₁₀ , PM _{2.5}	HCl、H ₂ S、硫酸雾、非甲烷总烃
3	锰基新型功能材料建设项 目	NE/2260m	已批复	已建成	未投产	SO ₂ , NO ₂ , PM ₁₀ , PM _{2,5}	镍、锰、非甲烷 总烃
4	大龙石阡产业园医药中间 体项目	NE/527m	已批复	已建成	未投产	PM ₁₀ , PM _{2.5}	氟化物、HCl、 非甲烷总烃
5	贵州大龙高端锂电材料产 业园项目	NE/1100m	已批复	在建	未投产	SO ₂ , NO ₂ , PM ₁₀ , PM _{2.5}	非甲烷总烃
6	含锂资源综合利用技改项 目	E/615m	已批复	在建	未投产	PM ₁₀ , PM _{2.5}	氟化物、镍、 锰、HCI、硫酸 雾、非甲烷总烃
7	中伟股份电池材料中试研 发车间改扩建项目	N/330m	已批复	已建成	2024.6	PM ₁₀ , PM _{2.5}	锰及其化合物
8	中伟西部基地镍锍精炼硫 酸镍项目	NW/440m (与 其全厂红线紧 邻)	已批复	火法线未 建,湿法线 已建成	部分 2024.6,部 分已未建	SO ₂ , NO ₂ , PM ₁₀ , PM _{2.5}	氟化物、镍、 HCI、H ₂ S、硫 酸雾、非甲烷总 烃
9	废旧锂电池综合回收体系 建设项目	N/100m (与其 全厂红线紧 邻)	已批复	已建成	2024.7, 2024.12	SO ₂ , NO ₂ , PM ₁₀ , PM _{2,5}	镍、钴、锰、非 甲烷总烃、氟化 物、硫酸雾、 HCI、二噁英

注: 在污染物调查时段内已投产的项目因子, 不予列出;

(4) 评价范围内区域削减污染源

本项目区域内无与本项目相同的削减污染源。

稀贵金属资源循环利用项目环境影响报告书

表 4.1-14 点源正常排放源强及参数一览表

	₩.				4									
	二層美 (ugTEQM)				1307									
	器	0.0000004												
	2	0.002												ľ
	W	0.011			0.00008								0,00058	
	Mn	0.00025												
	95	0.00007												
	00				0.342									ľ
	HES		0.004				0.002	0.007				0.0012		
/kg/h	出版							0.0005						ľ
污染物排放速率Agin	NHs						990'0	0.14			0.01	90.0	0.0002	
污染物	P ₂ O ₅	910000			0.01									ľ
	HCI	0.022			0.237		0.184	0.046		0.022			1000	
	硫酸等		0.095				0.001						0.000002	
	HF	0.021			0.002		0.00003						0.00005	
	非甲烷 总经			0.04	9000		0.029	0.148						20000
	C)						0.051			900'0				ŀ
	PM2.5	0.244	0.513	0.0007	0.000	0.013	0.00007		0.00006				0.00015	
	PMis	0.349	0.732	1000	0.114	610.0	0.0001		0.00008				0.0022	
	NO2	1.315			1.022	0.261	810000			6900'0			0.00014	
	SO	0.757			0.775	0.024								ľ
排放	1,50	出海	設出	正常	正常	出籍	総出	総出	総出	正常	正統	総出	經出	400.75
非	时数 Ab	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	7920	OFOL
加气器	(%)	09	09	40	190	120	.55	09	180	09	09	25.	25	35
個人部 樹	(m/s)	17.25	16.61	17.69	22.33	17.69	18.05	16.99	11.80	17.97	16.59	16.99	16.28	11.01
非人類	₩.E.	#.	7.0	-	0.3	0.2	**	0.5	0.3	8.0	8'0	0.5	I	21.12
計	ig/m ig/m	32	.15	32	35	32	25	32	32	23	15	15	15	10
5年中心	Y	13.76	+1236	42.75	20.72	25	4339	-1352	-90.87	-146.12	-627	1062	3481	21 00
排气筒底和中心 坐标加	×	51.04	-48.35	-19.15	-37.93	-27.96	-48.85	-129.5	-5951	-139,57	-88,75	92.1	-17.91	150.30
排气筒	要名	DA001	DA002	DA003	DA004	DA005	DA006	DA007	DA008	DA009	DA010	DAGII	DA012	410.444

4		
	文文	
	ĩ	
ij	ğ	
á	ス学の	
F	E S	
M	奴談用	
d	政	
5	ŧ	
H	国際作	
	0	
	4.	
	K	

-		_			
		靈	0.00000001		
		金	0.0005		
		母	0.0027		
		H	0.0000063		
		微	0.000017		
		非中烷总经	9000		
		HCI	0.005	0.012	
	非放逐率(kg/h)	硫酸等		0.000033	
30.00	污染物	P2O.	0.00004		
女 ★,1-13 国际计以际进入参数 见衣		HF	0.0053		The second of th
第7世以入48年 3		PM _{2.5}	0.209		The Personal Property
12 MI		PMIII	0.299		-
4 4		NO	0.005		
		SOz	9000		ľ
		有效高度(m)	14.4	11	
	矩形面線	変度(m)	56	18.6	
		长度(m)	106	32,7	
	And the stockers	神技術 度(m)	381	397	
	·坐标加	¥	-7.82	80.18	
	起点學	×	-55.41	-42.87	
	45 45 45 45	の発展名類	思集车间	雑区	

表 4.1-16 点源非正常排放源强及参数一览表

	二個英 ugTEQh				14.98									
Ì	羅	0.00004												
	數	9560												
	#	1.084 0			0.00007						-		0.0193	
					0.0				H		_		0.0	
	Mn	0.025							L					
	蘇	0.007												
	8				0.342									
	HiS		0.412				0.023	0.015				0.001		
/kg/fi	神殿	1						0.024						
污染物排放速率从gh	NE						0.132	1.402			1,876	0,3	0.0003	
が発売	P3O5	910'0			90.0									
	HCI	2.165			8 8		11.05	0.917		3.027			0.020	
	配數案	889'0	4.753				0.050						0.00002	
	HF	2.132			0.223		0.0005						0.001	
	# II 版			1.007	0.058		0.029	0.990						4000
	ť	T				Ī	68'91			1.68				
	PMzs	23,736	1.281	70.0	7.953	0.013	0.00014		9500000				0.00714	
	PM ₁₀	33,909	1.83	0.1	1361	610'0	0.0002		0.0008				0.0102	
	NO2	1.643			2.454	0.261	0.027			1.7532			0.00135	
	so.	7.572			3.876	0.024							0	
Se de c	¥ 96	- 正常	非正常	幸正常	- 正常	非正常	非正常	非正常	- 正然	非正常	非正常	4 正常	非正常	移出等
年/作校	小时级	7920	7920	7920	7920	7920	7920	7920		7920	7920	7920	7920	7000
· · · · · · · · · · · · · · · · · · ·	ů	09	09	-40	061	120	55	09	180	09	09	25	25	36
増加	s/m	17.25	19.91	17.69	22.33	17.69	18.05	16.99	08.11	17.97	16.59	16.99	16.28	11.00
批气	10000000000000000000000000000000000000	1.4	0.7	-	0.3	0.2	1.4	0.5	0.3	8.0	8.0	0.5	-	910
并气	海海	32	15	32	35	32	25	32	32	25	15	15	15	16
部中心	>	13.76	-1236	42.75	20.72	25	43.30	-1382	-50087	-146.12	-62.7	1062	3481	31.00
排气简底部中心 坐标m	×	51.04	48.35	-19.15	-37.93	-27,96	48.85	-129.5	-59.51	-139.57	-88.75	92.1	-1791	138.38
100 / 100	2 中	DA001	DA002	DA003	DA004	DA005	DA006	DA007	DA008	DA009	DA010	DA011	DA012	DAMES

稀贵金属资源循环利用项目环境影响报告书

表 4.1-17 评价范围内其他在建、拟建项目点源正常排放源强及参数一览表

	排放口	井气筒月	排气筒底磨中心坐 标	排化	華	華八湖	五位	在推游							污染物排	污染物排放速率/(kg/h)	(g/h)				
区域污染源	編 名 泰 名 泰	×	>	简高度加	20日子 20日子 20日子 20日子 20日子 20日子 20日子 20日子	(s/m)	温度 AC	小 中 中 数	中放工力	SO	NO	PMin	PM25	H ₃ S	60000000000000000000000000000000000000	H2SO4	镍及其化 合物	锰及其化 合物	植山	нст	非甲烷 总烃
年产8万	DA001	700.16	1029.98	20	8.0	11.06	25	7200	正常						0.025					0.0321	0.0327
吨热镀锌	DA002	692.67	1025.89	20	8.0	11.06	25	7200	田海			0.04	0.026							0.0286	
生产线新建项目	DA003	17.607	1033,38	15	0.2	44.23	80	7200	正海	0.031	0.218	0.018	0.0117								
年产	DA001	-667.42	-384.31	15	-	11.58	25	7200	田常					0.00065		0.00625					2.6307
90050 時	DA002	-696.11	-420.65	15	0.5	15.44	25	7200	正常	1.992									0.9864	0.2935	1.082
医药中间 体新材料 项目	DA003	-722.27	-466	15	0.3	12.96	25	7200	正常	0.0318	0.387	0.0384	0.0269								
	DA001	2126	2325.11	25	0.5	12.74	20	3600	田湯			0.0027	610000				0.00015	0.00058			
	DA002	2037.38	2165.81	25	9.0	12.77	20	3600	正第			0.0039	0.0027				0.00029	0.0011			
	DA003	2127	2326.21	25	1.4	12.63	160	7200	田第			9900'0	0.0046				0.00049	8100'0			
San ter occ mil	DA004	2038.39	2166.91	25	9.1	12.44	160	7200	正常			0.012	0.0084				600000	0.0032			
16. 16. 16. 16. 16. 16. 16. 16. 16. 16.	DA005	2128.01	2327.3	25	6.4	11.06	20	3600	批出			0.0019	0.0014				9000000	0.00051			
14 15 15 15	DA006	2039,4	2168	25	9.4	11.06	20	3600	正常			0.0028	0.002				0.00024	960000			
在政外日	DA007	2129.02	2328.39	25	1.0	14.15	160	7200	出海			0.0036	0.0025				0.00049	0.0018			
	DA008	2040.4	2169.09	25	1.0	14.15	160	7200	正常			8900.0	0.0048				600000	0.0032			
	DA009	2129.02	2328.39	25	0.5	14.15	160	7200	正常	0.0097	0.0693	0.012	0.0084								0.014
	DA010	2126	2325.11	25	0.5	14.15	160	7200	正常	810.0	0.126	0.022	0.015								0.027
大龙石阡 产业园医 药中间体 项目	DA001	6.52.9	979,27	15	-	13.38	40	7200	正常			0.006	0,004		0.061					0.0002	0.159
	DA001	637.12	1545.58	15	1.0	21.37	25	7200	起出			0.0221	0.0155								
贵州大龙	DA002	674,46	1633.87	15	0.1	21.37	25	7200	紀出			0.0027	6100.0								
高端锂电	DA003	1041.98	1912.3	15	1.0	21.37	25	7200	正常			0.0083	0.0058								
并礼女女	DA004	995.31	1305.13	15	1.0	21.37	25	7200	正常			0.0083	0.0058	7							
园项目	DA005	888.5	1670.47	55	9.1	21.84	160	7200	正常	2,3368	8.3775	2.0677	1.4474								0.5556
	DA006	1050.47	1519,15	55	9'1	21.84	160	7200	正常	2.2348	4.5900	1,8514	1.2960								
A-641 20: 300	DA001	1040.6	5'116	15	0,15	20	25	7920	出							0.198					
日報対解	DA002	1016.96	905.79	15	0.45	61	25	7920	田海							0.237				0.05	0.081
経り利用	DA003	1076.97	908.05	15	6.4	61	50	7920	正常			0.546	0.382		0.013	0.694	0.032	0.057			
1X1X-3XH	DA004	942.7	854.33	15	0.35	20	80	7920	正常			0.523	0.366								
	DA014	423	-250.91	15	6.4	11.06	25	7920	正常			0.026	0.0181								
中试车间	DA056	386,15	-215,3	15	0.4	11.06	25	7920	正常			0.031	0.0217					10.0			
	DA057	685.48	-226.72	15	0.3	11.80	09	7920				0,085	0.0595								

稀贵金属资源循环利用项目环境影响报告书

拟建项目点源正常排放源强及参数一览表
评价范围内其他在建、
续表 4.1-17

高 高 高 高 高 高 高 高 一 DA041 DA041 DA042 DA044 DA044	× ×		国一井一国	THE WORLD NOT THE		7	VI 100 100 100 100 100 100 100 100 100 10								1			
DA040 DA041 DA042 DA043 DA044		×	高度/m	14、IBE	(m/s)	MA CEL	时数加	11.22	80,	NO2	PM10	PM2.5	蟒	H ₂ S	H ₂ SO ₄	HCI	美	非甲烷总 格
DA041 DA043 DA044 DA044	78.78	78 42.05	15	0.5	14.15	25	7920	正统							890.0			
DA042 DA044 DA045	-209.82	.82 -406.97	20	0.75	12.58	35	7920	部						0.00038	961.0			
DA043 DA044 DA045	-219.49	.49 414.55	20	0.75	12.58	35	7920	正第						0.00051	0.17			
DA044	-185.79	.79 -232.56	20	I	12.38	35	7920	経出							0.056	600.0		0.019
DA045	-144.54	1.54 -276.62	20	-	12.38	35	7920	正常							690'0	0.013		0.023
	-300.14	.14 -476.87	25	1.5	п	35	7920	田常						0.00025	0.119			
DA046	-271.59	.59 -451.76	25	1.5	11	35	7920	正常						0.00013	0.112			
DA047	-287.63	.63 -520.4	20	6.0	13.10	25	7920	正第			0.1322	0.09254	0.0004					
中伟西部 DA048		-278.96 -529.19	20	6'0	13.10	25	7920	正常			0.1404	0.09828	0.0003					
基地镍锭 DA049	-344.99	1.99 -459.51	20	0.4	10.48	25	7920	田等							600.0			
精炼硫酸 DA050	-282.28	-323.17	20	8.0	5.41	35	7920	田線							0.119	810.0		
條項目 DA051	-320.54	.54 -358.23	20	8.0	11.05	35	7920	正常							0.218	0.032		
DA052	-345.38	.38 -383.99	20	0.7	8.81	35	7920	正常							0.141	0.027		
DA053	-271.67	.67 -389.93	20	8.0	18.68	35	7920	正常							0.131	0.00025		
粉煤制备	-285.14	5.14 -216.21	18	8.0	14.38	09	2640	正常	2.43	0.468	1.38	996.0						
制酸居气	464.26	1.26 -134.21	50	1.2	11.66	120	7920	正常	1.212	2.7	0.074	0.052	0.003		0.186		0.005	
化炉及环境集烟 混合烟气	長畑 446.78	.78 -185.91	90	1.5	20.61	120	7920	正常	9,494	3.872	0.082	0.058	0.002				0.052	
碎煤系统	-251.11	.11 -261.09	20	8.0	1.11	25	2640	正常			0.011	800.0						
配料排放口	318.15	3.15 -244.39	15	8.0	5.53	25	7920	正常			0.168	0.118						

稀贵金属资源循环利用项目环境影响报告书

续表 4.1-17 评价范围内其他在建、拟建项目点源正常排放源强及参数一览表

							80	废旧锂电池综合回收体系建设项目	也综合	回收体系	建设项目	ш								
排气筒	排气简度 标	排气简底部中心坐 标/m	井八郎	排气简出	強人部	雄气温度	车排放小	排放						治療	污染物排放速率Agh	E/kg/h				
音響	×	>	南奥/m	口内径/m	(w/s)	(₀ C)	时数加	T.22	SO ₂	NOs	РМъв	PM2.5	鉄	挺	が	非甲烷总经	美	鎮酸湯	HCI	二陽英 (ngTEQ/h)
DA054	-104.77	-251.46	25	0.4	5.53	25	7920	田線											0.03	
DA055	-81.43	-221.91	25	0.4	17.69	25	7920	田線			0.007	0.0049								
DA066	-328.11	89.61-	21	0.7	18.78	25	7920	批出		0.54	0.0023	0.0016	0.0002	0.0001	0.0001	0.88	0.07			93.37
DA070	-231.05	2.93	21	0.5	24.77	25	7920	田海			0.0126	8800.0	0.0028	0.0008	0.0013					
DA071	-220.83	-7.99	21	0.5	24.77	25	7920	正常			0.0126	0.0088								
DA073	4.24	-82.19	25	9.0	7.37	90	7920	出	0.211		0.0985	0.0689	0.0219	0.0063	0.0101		0.011	0.11		
DA072	21.97	-131,13	25	9.0	9.04	90	7920	出等		0,3157	0.0044	0.0031	0.0009	0.0002	0.0004	0.0203	0.0012			92.0
DA069	5.25	-0.74	15	0.4	24.88	25	7920	田籍										0.17		
DA065	-288.41	-61.99	21	9'0	14.74	25	7920	正常			0.0072	0.0051	900000	0.0003	0.0004					
DA074	158.76	-31.68	1.5	8.0	9.95	25	7920	正常										0.19		
DA076	101.07	-80.3	15	8.0	6.63	25	7920	田海								0.357		61.0	60'0	
DA077	180.06	18.96	25	0.3	14.94	35	7920	正常								0.023		0.018		
DA075	330.76	-2.06	15	0.3	11.8	25	7920	正常								0.02				

稀贵金属资源循环利用项目环境影响报告书

			举	表 4.1-18	评价	范围内3	评价范围内其他在建、		拟建项目面源正常排放源强及参数一览表	正常排放》	原强及参数	4一览表				
		原用	雕	面源初	年排放						排放速率kgA	報 kg/h				
所属项目名称	宣籌名祭	长度/m	変を	给排放 指度/m	小时数	SO2	NO2	H ₂ S	PM10	PM2.5	微	佐及其化 合物	氣化物	H ₂ SO ₄	HCI	非甲烷总 格
年产8万吨热镀锌 生产线桥建项目	生产车间	158	20	10	7200				0.0403	0.0262					0.0172	0.0022
THE SECTION AND ADDRESS.	中间体 1#厂房	42,3	18.2	10	7200				0.0000112	0.0000073			0.00000125		0.00000125	0.00017
人名石四十里四尼基西尼	中间体34厂房	42.3	18.2	10	7200				0.0000112	0.0000073			0.00000125		0.00000125	0.00017
以到十四年	污水处理站	9	œ	2	7200			0.00002								0.00215
	加车间	20	18	15	7200										600.0	0.37
de de opposit melle	2#年间	7.0	81	15	7200											0.18
在上面存在中间的	3#华间	0,4	18	15	7200									0.0027	0.07	0.15
2011年の中部を存成して、日 イー語・	4#华国	39.6	œ	15	7200										0.008	0.075
164 1 1	仓库3	48	15	15	7200											0.014
	仓库4	40	30	15	7200											0.02
镭基新型功能材料	车间一	158	100	20	7200				0.02717	610610'0	0.00115	0.013				
建设项目	幸间二	108	06	20	7200				0.0401	0.02807	0.0026	0.0111				
中试车间	中试车间	102	30	12,15	7920				0.0092	0.0065		0.002				
	吹炼车间	105	63.7	19.5	7920	1.244	0.154		0.811	0.567	0.011		0.0003			
of the all our till tak bits the	一次浸出车间	47.4	44	16.9	7920									0.0001		
地格斯斯斯斯斯斯斯	前处理车间	99	44	16.7	7920									0.0001		
THE PAR PAR PAR THE PAR THE	萃取车间	51.6	44	18.55	7920									0.0003	0.0007	
	制酸系统成品譜区	81	44	90	7920									0.0215		
	1#深度回收车间	175	23	13	7920			0.0063								
MS ICL 4田 ch 3h 4念	SO ₂ 結構区	21.5	16,9	3.5	7920	600.0										
公口禁治高深	电池顶处理车间	74.5	84.75	16.43	7920				0.127	0.089						
おいていた。	石灰仓	1	1	3.5	7920				0.001	0.0004						
1	中转仓库 (黑粉	57	32,3	12.1	7920				0.0011	0.0008	0.0003	0.0001				

4.1.3.2 环境空气保护目标

本项目环境空气保护目标见表 4.1-19。

表 4.1-19 环境空气保护目标一览表

			14 - 141 - 16	現工气体扩		见衣			
序	de the	46	你	Ord behaves the	保护		环境功	相对厂	相对厂界
号	名称	X	Y	保护对象	户数	人口	能区	址方位	距离/m
I	白家庄	-1088.23	-62.21	居民点	23	81	二类区	WNW	700
2	白猫冲	-1661.46	1243.72	居民点	16	56	二类区	NW	1689
3	自岩塘	2397.7	1345.33	居民点	18	63	二类区	ENE	2357
4	蔡溪村	-570.49	1381.34	居民点	12	42	二类区	NNW	949
5	菜园	-1030.94	-2656.54	居民点	52	182	二类区	SSW	2541
6	蔡溪屯	504.04	488.57	居民点	13	46	二类区	NE	411
7	洞脑上	1103.89	889.14	居民点	21	74	二类区	NE	1130
8	凡溪屯	-2482.3	-582.83	居民点	15	48	二类区	W	2323
9	分洲	1558.53	-1678,26	居民点	15	53	二类区	SE	2154
10	赶纸山	-1771.6	547:25	居民点	24	84	二类区	WNW	1699
11	高弓滩	2275.01	-160.17	居民点	16	56	二类区	SE	2041
12	观音滩	157.16	-2653,35	居民点	12	42	二类区	S	2414
13	后锁	785,19	-491.07	居民点	12	42	二类区	E	366
14	湖南田	658,97	-2207.05	居民点	23	81	二类区	SSE	1919
15	荒田	-2749.02	1272,49	居民点	12	38	二类区	WNW	2755
16	蒋家塆	-30.94	-2040.89	居民点	15	53	二类区	S	1759
17	并垮	-2351.86	1365.85	居民点	17	55	二类区	NW	2283
18	腊岩	-2216.36	-2493.51	居民点	21	67	二类区	SW	3073
19	辽家湾	1585.74	39.3	居民点	24	84	二类区	SE	1289
20	榴树井	1997.61	1063.52	居民点	3	11	二类区	ENE	2000
21	陆家塆	497.5	78.58	居民点	21	74	二类区	ENE	160
22	麻音塘	-735.43	-2738.86	居民点	35	123	二类区	SSW	2446
23	鲇鱼塘村	1642.52	-2621.56	居民点	16	56	二类区	SE	2850
24	彭家	113.96	838.53	居民点	26	91	二类区	NNE	460
25	三脚岩	-1876.39	183.22	居民点	18	63	二类区	WNW	1696
26	三寨村	-1889.26	-614.6	居民点	28	98	二类区	W	1755
27	杉木林	1276.21	-765.01	居民点	12	42	二类区	ESE	1283
28	上廖溪	-2097.25	-1242.9	居民点	23	18	二类区	WSW	2201
29	胜利村	1594.69	604.41	居民点	42	147	二类区	ENE	1287
30	田家	1842.28	-2502.95	居民点	18	63	二类区	SE	2906
31	跳破	1874.17	-486.35	居民点	19	67	二类区	SE	1546
32	下廖溪	-928,29	-2425,44	居民点	32	112	二类区	SSW	2138
33	斜滩	1949.6	-1972.57	居民点	18	63	二类区	SE	2566
34	岩坎上	1183.42	-331.24	居民点	14	49	二类区	SE	1020
35	堰塘塆	-1966.34	738.95	居民点	6	21	二类区	WNW	1953
36	羊庄	-531.03	-2332.02	居民点	45	158	二类区	S	1984
37	杨柳冲	2103.67	1516.13	居民点	20	70	二类区	NE	2108
38	中寨	-2120.85	-2705.6	居民点	23	74	二类区	SW	2965
39	竹山溪	-1353.53	1892.82	居民点	21	74	二类区	NNW	1855
40	张家	-1243.24	2600.28	居民点	12	38	二类区	NNW	2662
41	猫猫冲	-1043.18	2741.24	居民点	.5	16	二类区	NNW	2507
42	磨沟	2587.07	810.26	居民点	56	179	二类区	ENE	2033
43	田新岩	2809.34	2313.98	居民点	8	26	二类区	NE	3340
44	土湾	-1640.39	2551.29	居民点	13	42	二类区	NNW	2825
45	岩下	138.21	2356,37	居民点	23	74	二类区	N	1845

注: 以项目厂界中心为(0,0),相对距离为距离拟建项目厂界的最近距离。

4.1.3.3 预测因子及预测周期

(1) 预测因子

本次评价选取本项目产生的污染物在现有环境质量标准中有标准值的评价因子作 为预测因子,详见表 4.1-20。

预测时段	预测因子
1 小时平均浓度	SO ₂ 、NO ₂ 、CO、硫酸雾、H ₂ S、HCI、非甲烷总烃、氟化物、甲醛、氯气、 五氧化二磷、镍及其化合物
24 小时平均浓度	SO ₂ 、NO ₂ 、PM ₁₀ 、PM _{2.5} 、CO、硫酸雾、HCI、硫酸雾、氟化物、甲醛、氯气、锰及其化合物、五氧化二磷
年平均浓度	SO ₂ 、NO ₂ 、PM ₁₀ 、PM _{2.5} 、砷、镉、铅、二噁英

表 4.1-20 本项目环境空气预测因子一览表

(2) 预测周期

预测周期选取评价基准年 2023 年, 预测时段为连续一年, 即 365 天。

4.1.3.4 预测范围

预测范围为以厂址中心(0,0),厂界外延 2625m 的距离,边长分别为 5700mm 和 5700m,面积 32.49km²。

4.1.3.5 预测模式

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),本次预测采用导则推荐的进一步预测模式中的 AERMOD 模式。项目预测范围 < 50km,SO₂ 和 NO₂ 的排放量 < 500t/a,评价基准年(2023 年)风速 < 0.5m/s 的最大持续小时为 7h,未超过 72h;20 年统计的全年静风(风速 < 0.2m/s)频率为 14.3%,未超过 35%,因此,选择推荐的 AERMOD 预测模型进行进一步预测。

4.1.3.6 参数选取

(1) 气象参数

本评价采用玉屏县气象站 2023 年全年逐日逐时气象资料,高空探空数据来源于美国的MSGS 数据。模式采用美国国家环境预报中心(NCEP)的再分析数据作为模型输入场和边界场。本次高空数据气象模拟,以地面气象观测站位置为中心点,模拟27km×27km 范围内离地高度 0-5000m 内,不同等压面上的气压、离地高度和干球温度

等,其中离地高度 3000m 以内的有效数据层数不少于 10 层,总层数不少于 20 层,可以满足气象站点周边 50km 范围内的项目预测要求。

气象站名			华	标	海拔高度	相对距	数据年	
称	编号	等级	东经	北纬	(m)	离 (m)	份	气象要素
玉屏气象	57710	- 69	106 9075°	27.0858°	1276	3800	2023 年	风速、风向、干球温

表 4.1-21 观测气象数据信息一览表

表 4.1-22 模拟气象数据信息一览表

度、总云量、低云量

数据年份	气象要素		模拟方式
2023年	探空数据层数、每层的起亚、海拔高度	、气温、风速、风向	WRF

(2) 地形参数

地形数据源采用csi.cgiar.org提供的srtm免费数据,90m精度。地形参数见图 4.1-8。

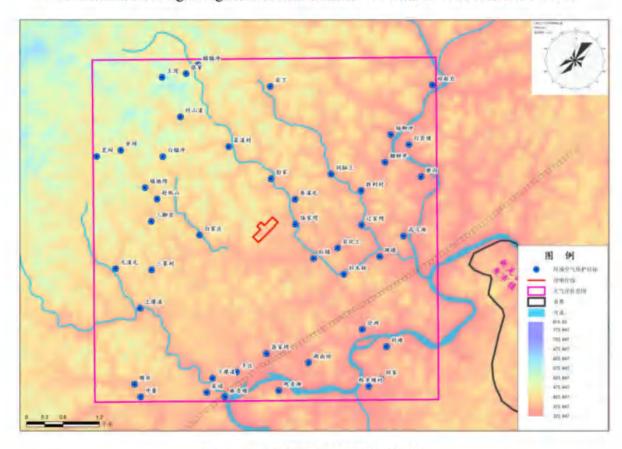


图 4.1-8 项目所在区域的地形特征

(3) 计算点及网格设置

计算点分别为:环境空气保护目标、预测范围内的网格点(精度为 100m)以及区域最大地面浓度点。

网格设置:本项目大气评价范围 5.7km×5.7km 的矩形范围, 网格点间距为 100m×100m。

(4) 气态污染物转化

本次预测参数 SO₂ 转化指数半衰期为 14400s, 不考虑 NO_x 转化, 直接输入 NO₂ 源强。

(5) 城市/农村选项

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)B.6.1 当项目周边 3km 半径范围内一半以上面积属于城市建成区或者规划区时,选择城市,否则选择农村。根据图 1.5-1 可知,3km 范围土地利用现状一般以上为林地。因此,选择农村。

(6) 地表参数

AERMET 通用地表类型选择针叶林(选项有:水面、落叶林、针叶林、湿地或沼泽地、农作地、草地、城市、沙漠化荒地);AERMET 通用地表湿度选择潮湿气候(选项有:干燥气候、中等湿度气候、潮湿气候);粗糙度按AERMET 通用地表类型选取;地面特征参数按地表类型生成。

4.1.3.7 预测内容

本次评价的评价基准年为 2023 年。根据前文分析可知,本项目区域环境质量可达到《环境空气质量标准》(GB3095-2012)二级标准要求,属于达标区域。因此,根据《环境影响评价技术导则 大气环境》(HJ2.2-2008),预测内容见表 4.1-23。

评价对象	污染源	污染源排放形式	预测内容	评价内容
	新增污染源	正常排放	短期浓度 长期浓度	最大浓度占标率
达标区评 价项目	新增污染源+其他在 建、拟建污染源-以 新带老污染源-区域 削减污染源	正常排放	短期浓度 长期浓度	叠加环境质量现状浓度后的保证率 日平均质量浓度和年平均质量浓度 的达标情况,或短期浓度的达标情 况
	新增污染源	非正常排放	1h 平均质量浓度	最大浓度占标率
大气环境 防护距离	新增污染源	正常排放	短期浓度	大气环境防护距离

表 4.1-23 大气影响预测内容一览表

4.1.3.8 贡献质量浓度预测结果及评价

2023年玉屏气象站全年气象条件下,本项目贡献浓度预测结果见表4.5-24~4.5-59。

(1) SO₂

SO₂ 对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.987μg/m³~12.431μg/m³之间,占标率为 0.197%~2.486%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 74.160μg/m³,占标率为 14.832%,均达标。

SO₂ 对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.075μg/m³~ 0.899μg/m³之间,占标率为 0.050%~0.599%之间,各敏感点 24 小时平均浓度贡献值均 达标;区域最大地面浓度点贡献值为 3.142μg/m³,占标率为 2.095%,均达标。

SO₂ 对评价区域内各环境敏感点的年平均浓度贡献值范围在 0.006μg/m³~0.125μg/m³之间,占标率为 0.010%~0.209%之间,各敏感点年平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.736μg/m³,占标率为 1.226%,均达标。

(2) NO₂

NO2 对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 1.539μg/m³~15.810μg/m³之间,占标率为 0.769%~7.905%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 91.513μg/m³,占标率为 45.757%,均达标。

对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.112µg/m³~1.258µg/m³之间,占标率为 0.140%~1.573%之间,各敏感点 24 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 4.298µg/m³,占标率为 5.372%,均达标。

NO2 对评价区域内各环境敏感点的年平均浓度贡献值范围在 0.010μg/m³~ 0.195μg/m³之间,占标率为 0.024%~0.487%之间,各敏感点年平均浓度贡献值均达标;区域最大地面浓度点贡献值为 1.153μg/m³,占标率为 2.881%,均达标。

(3) PM10

PM10 对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.116μg/m³~1.373μg/m³之间,占标率为 0.077%~0.915%之间,各敏感点 24 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 9.962μg/m³,占标率为 6.641%,均达标。

PM10 对评价区域内各环境敏感点的年平均浓度贡献值范围在 0.009µg/m3~

0.222μg/m³之间,占标率为 0.013%~0.318%之间,各敏感点年平均浓度贡献值均达标;区域最大地面浓度点贡献值为 1.734μg/m³,占标率为 2.477%,均达标。

(4) PM_{2.5}

PM2.5 对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.081μg/m³~ 0.959μg/m³之间,占标率为 0.108%~1.279%之间,各敏感点 24 小时平均浓度贡献值均 达标;区域最大地面浓度点贡献值为 6.963μg/m³,占标率为 9.284%,均达标。

PM2.5 对评价区域内各环境敏感点的年平均浓度贡献值范围在 0.006μg/m³~ 0.155μg/m³之间,占标率为 0.018%~0.444%之间,各敏感点年平均浓度贡献值均达标;区域最大地面浓度点贡献值为 1.213μg/m³,占标率为 3.466%,均达标。

(5) CO

CO 对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.327μg/m³~4.468μg/m³之间,占标率为 0.003%~0.045%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 28.645μg/m³,占标率为 0.286%,均达标。

CO 对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.021μg/m³~ 0.251μg/m³之间,占标率为 0.001%~0.006%之间,各敏感点 24 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 1.210μg/m³,占标率为 0.030%,均达标。

(6) 五氧化二磷

五氧化二磷对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.010μg/m³~0.131μg/m³之间,占标率为 0.007%~0.087%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.840μg/m³,占标率为 0.560%,均达标。

五氧化二磷对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.001μg/m³~0.007μg/m³之间,占标率为 0.001%~0.015%之间,各敏感点 24 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.035μg/m³,占标率为 0.071%,均达标。

(7) 氨气

NH3 对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.260μg/m³~2.934μg/m³之间,占标率为 0.130%~1.467%之间,各敏感点 1 小时平均浓度贡献值均

达标;区域最大地面浓度点贡献值为11.575μg/m³,占标率为5.788%,均达标。

(8) 甲醛

甲醛对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.00047µg/m³~ 0.00874µg/m³之间,占标率为 0.00094%~0.01748%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.04061µg/m³,占标率为 0.08122%,均达标。

甲醛对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.00003µg/m³~ 0.00040µg/m³之间,占标率为 0.00000%~0.00000%之间,各敏感点 24 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.00194µg/m³,占标率为 0.00000%,均达标。

(9) 氟化物

F 对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.011μg/m³~ 0.156μg/m³之间,占标率为 0.054%~0.778%之间,各敏感点 1 小时平均浓度贡献值均 达标;区域最大地面浓度点贡献值为 0.424μg/m³,占标率为 2.120%,均达标。

F 对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.001μg/m³~ 0.011μg/m³之间,占标率为 0.011%~0.153%之间,各敏感点 24 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.037μg/m³,占标率为 0.529%,均达标。

(10) 硫酸雾

硫酸对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.053μg/m³~1.403μg/m³之间,占标率为 0.018%~0.468%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 6.746μg/m³,占标率为 2.249%,均达标。

硫酸对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.004μg/m³~ 0.100μg/m³之间,占标率为 0.004%~0.100%之间,各敏感点 24 小时平均浓度贡献值均 达标;区域最大地面浓度点贡献值为 0.617μg/m³,占标率为 0.617%,均达标。

(11) 氯气

氯对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.037μg/m³~ 0.436μg/m³之间,占标率为 0.037%~0.436%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.908μg/m³,占标率为 0.908%,均达标。

氯对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.003μg/m³~0.029μg/m³之间,占标率为 0.009%~0.098%之间,各敏感点 24 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.128μg/m³,占标率为 0.427%,均达标。

(12) HCl

HCI 对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.475μg/m³~5.479μg/m³之间,占标率为 0.949%~10.958%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 20.145μg/m³,占标率为 40.290%,均达标。

HCI 对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.033μg/m³~ 0.328μg/m³之间,占标率为 0.222%~2.186%之间,各敏感点 24 小时平均浓度贡献值均 达标;区域最大地面浓度点贡献值为 1.614μg/m³,占标率为 10.763%,均达标。

(13) 非甲烷总烃

NMHC 对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.218μg/m³~3,274μg/m³之间,占标率为 0.011%~0.164%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 12.022μg/m³,占标率为 0.601%,均达标。

(14) 硫化氢

H₂S 对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.011μg/m³~ 0.149μg/m³之间,占标率为 0.110%~1.489%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.569μg/m³,占标率为 5.686%,均达标。

(15) 重金属及二噁英

Ni 对评价区域内各环境敏感点的 1 小时平均浓度贡献值范围在 0.00007μg/m³~ 0.00132μg/m³之间,占标率为 0.000%~0.004%之间,各敏感点 1 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.01348μg/m³,占标率为 0.045%,均达标。

锰及其化合物对评价区域内各环境敏感点的 24 小时平均浓度贡献值范围在 0.00002μg/m³~0.00022μg/m³之间,占标率为 0.000%~0.002%之间,各敏感点 24 小时平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.00208μg/m³,占标率为 0.021%,均达标。

Cd 对评价区域内各环境敏感点的年平均浓度贡献值范围在 0.000000002μg/m³~ 0.000000049μg/m³之间,占标率为 0.00004%~0.00099%之间,各敏感点年平均浓度贡

献值均达标:区域最大地面浓度点贡献值为 0.000000334μg/m³, 占标率为 0.00669%, 均达标。

Pb 对评价区域内各环境敏感点的年平均浓度贡献值范围在 0.00007μg/m³~0.00143μg/m³之间,占标率为 0.014%~0.285%之间,各敏感点年平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.00953μg/m³,占标率为 1.906%,均达标。

As 对评价区域内各环境敏感点的年平均浓度贡献值范围在 0.00001μg/m³~0.00025μg/m³之间,占标率为 0.185%~4.115%之间,各敏感点年平均浓度贡献值均达标;区域最大地面浓度点贡献值为 0.00167μg/m³,占标率为 27.857%,均达标。

综上所述,本项目所在区域属于达标区域,正常排放情况下,项目排放的 SO₂、NO₂、PM₁₀、PM_{2.5}、CO、五氧化二磷、氨气、氯气、硫化氢、甲醛、氟化物、HCI、硫酸雾、非甲烷总烃、锰及其化合物、镍及其化合物的短期浓度贡献值的最大浓度占标率小于 100%。SO₂、NO₂、PM_{2.5}、PM₁₀、Pb、As、Cd、二噁英的长期浓度贡献值的最大浓度占标率小于 30%。

5=34.46a	426 Stuff Jr	X/	Y/	平均	最大贡献值/	क्षा भाग गर्न हैं हैं है	占标率/	达标
污染物	预测点	m	m	时段	(μg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	1 小时	1.640	2023/03/26 07:00	0.328	达标
	蒋家塆	-31	-2,041	1 小时	1.866	2023/08/02 07:00	0.373	达标
	彭家	114	839	1小时	2.742	2023/06/19 06:00	0.548	达标
	岩下	138	2,356	1小时	1.610	2023/10/09 07:00	0.322	达标
	猫猫冲	-1,043	2,741	1小时	9.489	2023/02/25 02:00	1.898	达标
	麻音塘	-735	-2,739	1小时	1.675	2023/05/10 07:00	0.335	达标
	羊庄	-531	-2,332	1小时	1.777	2023/05/10 07:00	0.355	达标
	菜溪村	-570	1,381	1小时	1.933	2023/09/17 18:00	0.387	达标
	下廖溪	-928	-2,425	1小时	2,209	2023/05/10 07:00	0.442	达标
SO2	后锁	785	-491	1小时	2.720	2023/10/27 08:00	0.544	达标
1111	湖南田	659	-2,207	1 小时	1.125	2023/12/19 09:00	0.225	达标
	跳破	1,874	-486	1小时	1.725	2023/12/04 09:00	0.345	达标
	磨狗	2,587	810	1小时	2.129	2023/02/15 08:00	0.426	达标
	白岩塘	2,398	1,345	1小时	2.555	2023/02/15 08:00	0.511	达标
	岩坎上	1,183	-331	1 小时	2.174	2023/07/11 06:00	0.435	达标
	分洲	1,559	-1,678	1 小时	1.838	2023/06/23 06:00	0.368	达标
	田家	1,842	-2,503	1 小时	1.200	2023/06/23 06:00	0.240	达标
	辽家塆	1,586	39	1 小时	1.679	2023/12/23 09:00	0.336	达标
	榴树井	1,998	1,064	1小时	2.785	2023/02/15 08:00	0.557	达标

表 4.1-24 本项目 SO₂1 小时浓度贡献值预测结果表

稀贵金属资源循环利用项目环境影响报告书

杉木林	1,276	-765	1 小时	2.673	2023/01/23 10:00	0.535	达标
胜利村	1,595	604	1 小时	2.712	2023/03/29 07:00	0.542	达标
高弓滩	2,275	-160	1 小时	1.420	2023/12/04 09:00	0.284	达标
张家	-1,243	2,600	1 小时	12.431	2023/02/25 02:00	2.486	达标
上廖溪	-2,097	-1,243	1 小时	2.015	2023/02/25 08:00	0,403	达标
脂岩	-2,216	-2,494	1小时	1,225	2023/09/24 05:00	0,245	达标
中寨	-2,121	-2,706	1小时	1,284	2023/08/26 05:00	0.257	达标
观音滩	157	-2,653	1 小时	1,485	2023/08/02 07:00	0.297	达标
荒田	-2,749	1,272	1 小时	12.331	2023/12/30 03:00	2.466	达标
凡溪屯	-2,482	-583	1 小时	2.140	2023/12/26 09:00	0.428	达标
土湾	-1,640	2,551	1小时	3.059	2023/04/01 23:00	0.612	达标
三脚岩	-1,876	183	1小时	2,372	2023/10/21 18:00	0.474	达标
三寨村	-1,889	-615	1 小时	2.622	2023/12/26 09:00	0.524	达标
堰塘垮	-1,966	739	1 小时	2.900	2023/03/16 03:00	0.580	达标
白猫冲	-1,661	1,244	1 小时	4.889	2023/04/02 23:00	0.978	达标
竹山溪	-1,354	1,893	1小时	1.479	2023/05/28 22:00	0.296	达标
白家庄	-1,088	-62	1 小时	3.124	2023/12/26 09:00	0.625	达标
鲇鱼塘村	1,643	-2,622	1 小时	1.342	2023/12/19 09:00	0.268	达标
斜滩	1,950	-1,973	1 小时	1.838	2023/06/23 06:00	0.368	达标
陆家塆	498	79	1 小时	2,997	2023/06/30 06:00	0.599	达标
菜园	-1,031	-2,657	1 小时	2,131	2023/05/10 07:00	0.426	达标
杨柳冲	2,104	1,516	1小时	2.272	2023/12/03 08:00	0.454	达标
蔡溪屯	504	489	1小时	3,155	2023/10/14 07:00	0.631	达标
洞脑上	1,104	889	1 小时	2.918	2023/03/26 07:00	0.584	达标
赶纸山	-1,772	547	1 小时	0.987	2023/10/27 22:00	0.197	达标
井塆	-2,352	1,366	1 小时	7.092	2023/11/05 06:00	1.418	达标
区域最大值	-300	100	1 小时	74.160	2023/09/18 21:00	14.832	达标

表 4.1-25 本项目 SO224 小时浓度贡献值预测结果表

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
17.2		m	m	时段	(μg/m³)		%	情况
SO2	田新岩	2,809	2,314	24 小时	0.208	2023/01/30	0.138	达标
	蒋家塆	-31	-2,041	24 小时	0.152	2023/01/14	0.101	达标
	彭家	114	839	24 小时	0.363	2023/07/06	0.242	达标
	岩下	138	2,356	24 小时	0.174	2023/06/28	0.116	达标
	猫猫冲	-1,043	2,741	24 小时	0.447	2023/02/25	0.298	达标
	麻音塘	-735	-2,739	24 小时	0.267	2023/02/02	0.178	达标
	羊庄	-531	-2,332	24 小时	0.292	2023/02/02	0.195	达标
	菜溪村	-570	1,381	24 小时	0.224	2023/04/17	0.149	达标
	下廖溪	-928	-2,425	24 小时	0.331	2023/02/11	0.221	达标
	后锁	785	-491	24 小时	0,170	2023/10/27	0.114	达标
	湖南田	659	-2,207	24 小时	0.075	2023/12/19	0.050	达标
	跳破	1,874	-486	24 小时	0.098	2023/07/21	0.065	达标
	磨淘	2,587	810	24 小时	0.253	2023/12/07	0.168	达标
	白岩塘	2,398	1,345	24 小时	0.224	2023/07/04	0.149	达标
	岩坎上	1,183	-331	24 小时	0.151	2023/07/21	0.100	达标
	分洲	1,559	-1,678	24 小时	0.098	2023/12/19	0.065	达标
	田家	1,842	-2,503	24 小时	0.095	2023/12/19	0.064	达标
	辽家塆	1,586	39	24 小时	0.183	2023/07/21	0.122	达标
	榴树井	1,998	1,064	24 小时	0.271	2023/07/04	0.181	达标
	杉木林	1,276	-765	24 小时	0.126	2023/10/27	0.084	达标
	胜利村	1,595	604	24 小时	0.376	2023/12/07	0.251	达标
	高弓滩	2,275	-160	24 小时	0.109	2023/07/21	0.073	达标
	张家	-1,243	2,600	24 小时	0.899	2023/02/25	0.599	达标
	上廖溪	-2,097	-1,243	24 小时	0.326	2023/12/10	0.217	达标
	腊岩	-2,216	-2,494	24 小时	0.370	2023/09/24	0.246	达标
	中寨	-2,121	-2.706	24 小时	0.358	2023/02/12	0.239	达标

稀贵金属资源循环利用项目环境影响报告书

观音滩	157	-2,653	24 小时	0.102	2023/07/28	0.068	达标
荒田	-2,749	1,272	24 小时	0.604	2023/10/31	0.403	达标
凡溪屯	-2,482	-583	24 小时	0.171	2023/12/09	0.114	达标
土湾	-1,640	2,551	24 小时	0.249	2023/02/20	0.166	达标
三脚岩	-1,876	183	24 小时	0.122	2023/08/06	0.081	达标
三寨村	-1,889	-615	24 小时	0.280	2023/12/09	0.187	达标
堰塘塆	-1,966	739	24 小时	0.122	2023/03/16	0.082	达标
白猫冲	-1,661	1,244	24 小时	0.238	2023/04/02	0.159	达标
竹山溪	-1,354	1,893	24 小时	0.105	2023/05/01	0.070	达标
白家庄	-1,088	-62	24 小时	0.181	2023/04/01	0.121	达标
鲇鱼塘村	1,643	-2,622	24 小时	0.099	2023/12/19	0.066	达标
斜滩	1,950	-1,973	24 小时	0.081	2023/12/19	0.054	达标
陆家塆	498	79	24 小时	0.603	2023/07/04	0.402	达标
菜园	-1,031	-2,657	24 小时	0.325	2023/02/11	0.216	达标
杨柳冲	2,104	1,516	24 小时	0.250	2023/01/30	0.166	达标
蔡溪屯	504	489	24 小时	0.810	2023/07/04	0.540	达标
洞脑上	1,104	889	24 小时	0.431	2023/07/04	0.287	达标
赶纸山	-1,772	547	24 小时	0.083	2023/10/27	0.055	达标
井塆	-2,352	1,366	24 小时	0.299	2023/11/05	0.199	达标
区域最大值	-300	100	24 小时	3.142	2023/09/18	2.095	达标

表 4.1-26 本项目 SO2 年均浓度贡献值预测结果表

		表 4.1-26	平坝日 5	02年均18月	E 贝献值预测结果和	X	
污染物	预测点	X/	Y/	平均	最大贡献值/	占标率/	达标
行外的	15.605年	m	m	时段	(µg/m ³)	%	情况
	田新岩	2,809	2,314	年均	0.032	0.054	达标
	蒋家塆	-31	-2,041	年均	0.028	0.047	达标
	彭家	114	839	年均	0.051	0.085	达标
	岩下	138	2,356	年均	0.014	0.024	达标
	猫猫冲	-1,043	2,741	年均	0.023	0.038	达标
	麻音塘	-735	-2,739	年均	0.042	0.070	达标
	羊庄.	-531	-2,332	年均	0.047	0.079	达标
	菜溪村	-570	1,381	年均	0.018	0.031	达标
	下廖溪	-928	-2,425	年均	0.062	0.103	达标
	后锁	785	-491	年均	0.025	0.042	达标
	湖南田	659	-2,207	年均	0.012	0.020	达标
	跳破	1,874	-486	年均	0.013	0.021	达杨
	磨沟	2,587	810	年均	0.038	0.064	达柯
	白岩塘	2,398	1,345	年均	0.043	0.072	达标
	岩坎上	1.183	-331	年均	0.022	0.036	达杨
	分洲	1,559	-1,678	年均	0.008	0.014	达标
SO2	田家	1,842	-2,503	年均	0.006	0.010	达标
	辽家塆	1,586	39	年均	0.027	0.045	达标
	榴树井	1,998	1,064	年均	0.049	0.082	达杨
	杉木林	1,276	-765	年均	0.014	0.024	达标
	胜利村	1,595	604	年均	0.059	0.098	达标
	高弓滩	2,275	-160	年均	0.015	0.024	达标
	张家	-1,243	2,600	年均	0.035	0.058	达杨
	上廖溪	-2,097	-1,243	年均	0.047	0.078	达标
	腊岩	-2,216	-2,494	年均	0.060	0.099	达标
	中寨	-2,121	-2,706	年均	0.061	0.101	达标
	观音滩	157	-2,653	年均	0.017	0.028	达标
	荒田	-2,749	1,272	年均	0.024	0.041	达柯
	凡溪屯	-2,482	-583	年均	0.017	0.028	达柯
	土湾	-1,640	2,551	年均	0.017	0.029	达柯
	三脚岩	-1,876	183	年均	0.013	0.021	达标
	三寨村	-1,889	-615	年均	0.029	0.049	达标
	堰塘塆	-1.966	739	年均	0.009	0,015	达标

稀贵金属资源循环利用项目环境影响报告书

白猫冲	-1,661	1,244	年均	0.012	0.020	达标
竹山溪	-1,354	1,893	年均	0.009	0.015	达标
白家庄	-1,088	-62	年均	0.036	0.060	达标
鲇鱼塘村	1,643	-2,622	年均	0.006	0.011	达标
斜滩	1,950	-1,973	年均	0.007	0.012	达标
陆家塆	498	79	年均	0.125	0.209	达标
菜园 —	-1,031	-2,657	年均	0.058	0.096	达标
杨柳冲	2,104	1,516	年均	0.041	0.069	达标
蔡溪屯	504	489	年均	0.116	0.194	达标
洞脑上	1,104	889	年均	0.066	0.109	达标
赶纸山	-1,772	547	年均	0.009	0.015	达标
井塆	-2,352	1,366	年均	0.014	0.023	达标
区域最大值	-200	-200	年均	0.736	1.226	达标

表 4.1-27 本项目 NO₂1 小时浓度贡献值预测结果表

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
		m	m	时段	(μg/m³)		%	情况
NO2	田新岩	2,809	2,314	1小时	2.527	2023/03/26 07:00	1.264	达标
	蒋家塆	-31	-2,041	1小时	2.841	2023/08/02 07:00	1.421	达标
	彭家	114	839	1小时	4.323	2023/06/19 06:00	2,161	达标
	岩下	138	2,356	1小时	2.452	2023/10/09 07:00	1.226	达标
	猫猫冲	-1,043	2,741	1小时	13.746	2023/02/24 02:00	6.873	达标
	麻音塘	-735	-2,739	1小时	2.536	2023/05/10 07:00	1.268	达标
	羊庄	-531	-2,332	1小时	2.690	2023/05/10 07:00	1.345	达标
	菜溪村	-570	1,381	1小时	2.957	2023/09/17 18:00	1.478	达标
	下廖溪	-928	-2,425	1小时	3.349	2023/05/10 07:00	1.675	达标
	后锁	785	-491	1小时	4.058	2023/10/27 08:00	2.029	达标
	湖南田	659	-2,207	1小时	1.704	2023/09/22 05:00	0.852	达标
	跳磁	1,874	-486	1小时	2,633	2023/12/04 09:00	1.317	达标
	磨沟	2,587	810	1小时	3.255	2023/02/15 08:00	1.627	达标
	白岩塘	2,398	1,345	1小时	3.915	2023/02/15 08:00	1.957	达标
	岩坎上	1,183	-331	1小时	3,299	2023/01/23 10:00	1.649	达标
	分洲	1,559	-1,678	1小时	2.812	2023/06/23 06:00	1.406	达标
	田家	1,842	-2,503	1小时	1.821	2023/06/23 06:00	0.910	达标
	辽家塆	1,586	39	1 小时	2.536	2023/12/23 09:00	1.268	达标
	榴树井	1,998	1,064	1小时	4.275	2023/02/15 08:00	2,137	达标
	杉木林	1,276	-765	1小时	4.073	2023/01/23 10:00	2.037	达标
	胜利村	1,595	604	1小时	4.111	2023/03/29 07:00	2.055	达标
	高弓滩	2,275	-160	1小时	2.164	2023/12/04 09:00	1.082	达标
	张家	-1,243	2,600	1 小时	15.810	2023/02/25 02:00	7.905	达标
	上廖溪	-2,097	-1,243	1小时	3.091	2023/02/25 08:00	1.546	达标
	腊岩	-2,216	-2,494	1 小时	1.840	2023/09/24 05:00	0.920	达标
	中寨	-2,121	-2,706	1小时	1.933	2023/08/26 05:00	0.967	达标
	观音滩	157	-2,653	1小时	2,260	2023/08/02 07:00	1.130	达标
	荒田	-2,749	1,272	1小时	15.654	2023/12/30 03:00	7,827	达标
	凡溪屯	-2,482	-583	1小时	3,281	2023/12/26 09:00	1.640	达标
	土湾	-1,640	2,551	1小时	4.777	2023/04/01 23:00	2.388	达标
	三脚岩	-1,876	183	1小时	3.809	2023/10/21 18:00	1.904	达标
	三寨村	-1,889	-615	1小时	4.016	2023/12/26 09:00	2.008	达标
	堰塘塆	-1,966	739	1小时	4.457	2023/03/16 03:00	2.229	达标
	白猫冲	-1,661	1,244	1小时	7.185	2023/04/02 23:00	3.592	达标
	竹山溪	-1,354	1,893	1小时	2.419	2023/06/18 03:00	1,210	达标
	白家庄	-1,088	-62	1小时	4.743	2023/12/26 09:00	2.371	达标
1	鲇鱼塘村	1,643	-2,622	1小时	2.027	2023/12/19 09:00	1.013	达标
	斜滩	1,950	-1,973	1小时	2.800	2023/06/23 06:00	1.400	达标
-	陆家垮	498	79	1小时	4.592	2023/06/30 06:00	2.296	达标
	菜园	-1,031	-2,657	1小时	3.232	2023/05/10 07:00	1.616	达标

稀贵金属资源循环利用项目环境影响报告书

杨柳冲	2,104	1,516	1小时	3.523	2023/12/03 08:00	1.761	达标
蔡溪屯	504	489	1小时	5.011	2023/10/14 07:00	2,505	达标
洞脑上	1,104	889	1小时	4.499	2023/03/26 07:00	2.249	达标
赶纸山	-1,772	547	1小时	1.539	2023/10/27 22:00	0.769	达标
井塆	-2,352	1,366	1 小时	10.155	2023/11/05 06:00	5.078	达标
区域最大值	-300	100	1小时	91.513	2023/09/18 21:00	45.757	达标

表 4.1-28 本项目 NO₂24 小时浓度贡献值预测结果表

污染物	预测点 -	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
127610	136,083,734	m	m	时段	(µg/m³)	ITT SACHE LEG	%	情况
	田新岩	2,809	2,314	24 小时	0.317	2023/01/08	0.396	达标
	蒋家塆	-31	-2,041	24 小时	0.229	2023/01/14	0.287	达析
	彭家	114	839	24 小时	0.563	2023/07/06	0.703	达标
	岩下	138	2,356	24 小时	0.264	2023/06/28	0.330	达标
	猫猫冲	-1,043	2,741	24 小时	0,712	2023/02/24	0.891	达标
	麻音塘	-735	-2,739	24 小时	0.402	2023/02/02	0.503	达村
	羊庄	-531	-2,332	24 小时	0.443	2023/02/02	0.554	达杭
	菜溪村	-570	1,381	24 小时	0.338	2023/04/17	0.423	达机
	下廖溪	-928	-2,425	24 小时	0.508	2023/02/11	0.635	达标
	后锁	785	-491	24 小时	0.255	2023/10/27	0.319	达机
	湖南田	659	-2,207	24 小时	0.112	2023/12/19	0.140	达杭
	跳礆	1,874	-486	24 小时	0.148	2023/07/21	0.185	达村
	勝沟	2,587	810	24 小时	0.385	2023/12/07	0.481	达杭
	白岩塘	2,398	1,345	24 小时	0.346	2023/07/04	0.432	达杭
	岩坎上	1,183	-331	24 小时	0.228	2023/07/21	0.285	达标
	分洲	1,559	-1,678	24 小时	0.148	2023/12/19	0.185	达杭
	田家	1,842	-2,503	24 小时	0.144	2023/12/19	0.180	达板
	辽家塆	1,586	39	24 小时	0.277	2023/07/21	0.346	达板
	榴树井	1,998	1,064	24 小时	0.413	2023/07/04	0.516	达标
	杉木林	1,276	-765	24 小时	0.188	.2023/10/27	0.235	达机
	胜利村	1,595	604	24 小时	0.570	2023/12/07	0.713	达机
	高弓滩	2,275	-160	24 小时	0.165	2023/07/21	0.206	达板
	张家	-1,243	2,600	24 小时	1.197	2023/02/25	1.496	达标
NO2	上廖溪	-2,097	-1,243	24 小时	0.496	2023/12/10	0.620	达杭
	腊岩	-2,216	-2,494	24 小时	0.555	2023/09/24	0.694	达标
	中寨	-2,121	-2,706	24 小时	0.543	2023/02/12	0.679	达杭
	观音滩	157	-2,653	24 小时	0.155	2023/07/28	0.194	达机
	荒田	-2,749	1,272	24 小时	0.865	2023/10/31	1.081	达杭
	凡溪屯	-2,482	-583	24 小时	0.263	2023/12/09	0.329	达村
	土湾	-1,640	2,551	24 小时	0.388	2023/02/20	0.485	达核
	三脚岩	-1,876	183	24.小时	0.198	2023/08/06	0.248	达标
	三寨村	-1,889	-615	24 小时	0.425	2023/12/09	0.531	达杭
	堰塘塆	-1,966	739	24 小时	0.218	2023/10/27	0.272	达板
	白猫冲	-1,661	1,244	24 小时	0.357	2023/03/06	0.446	达机
	竹山溪	-1,354	1,893	24 小时	0.162	2023/05/01	0.202	达机
	白家庄	-1,088	-62	24 小时	0.292	2023/04/01	0.365	达板
	鲇鱼塘村	1,643	-2,622	24 小时	0.149	2023/12/19	0.186	达杭
	斜滩	1,950	-1,973	24 小时	0.122	2023/12/19	0.152	达机
	陆家塆	498	79	24 小时	0.946	2023/07/04	1.182	达机
	菜园	-1,031	-2,657	24 小时	0.497	2023/02/11	0.621	达标
	杨柳冲	2,104	1,516	24 小时	0.381	2023/01/30	0.476	达杭
	蔡溪屯	504	489	24 小时	1.258	2023/07/04	1.573	达板
	洞脑上	1,104	889	24 小时	0.657	2023/07/04	0.821	达杭
	赶纸山	-1,772	547	24 小时	0.127	2023/10/27	0.159	达核
	井塆	-2,352	1,366	24 小时	0.428	2023/11/05	0.535	达核
	区域最大值	-200	-200	24 小时	4.298	2023/06/05	5.372	达杨

表 4.1-29 本项目 NO2年均浓度贡献值预测结果表

		X 4.1-29	Array H T	102 TANKO	2.贝胁 诅 贝侧 纪末不		
污染物	预测点	Χ/	Y/	平均	最大贡献值/	占标率/	达标
J 782 12J	TY W	m	m	时段	$(\mu g/m^3)$	%	情况
	田新岩	2,809	2,314	年均	0.053	0.132	达标
	蒋家塆	-31	-2,041	年均	0.043	0.108	达标
	彭家	114	839	年均	0.079	0.196	达标
	岩下	138	2,356	年均	0.022	0.055	达标
	猫猫冲	-1,043	2,741	年均	0.040	0,101	达标
	麻音塘	-735	-2,739	年均	0.066	0.164	达标
	羊庄	-531	-2,332	年均	0.073	0.183	达标
	菜溪村	-570	1,381	年均	0.028	0.070	达标
	下廖溪	-928	-2,425	年均	0.095	0.238	达标
	后锁	785	-491	年均	0.039	0.096	达标
	湖南田	659	-2,207	年均	0.018	0.045	达标
	跳破	1,874	-486	年均	0.019	0.049	达标
	磨沟	2,587	810	年均	0.061	0.153	达标
	白岩塘	2,398	1,345	年均	0.070	0.175	达标
	岩坎上	1,183	-331	年均	0.033	0.083	达标
	分洲	1,559	-1,678	年均	0.013	0.032	达标
	田家	1,842	-2,503	年均	0.010	0.024	达标
	辽家塆	1,586	39	年均	0.042	0.104	达标
	榴树井	1,998	1,064	年均	0.078	0.196	达标
	杉木林	1,276	-765	年均	0.022	0.055	达标
	胜利村	1,595	604	年均	0.092	0.230	达标
	高弓滩	2,275	-160	年均	0.022	0.056	达标
2702	张家	-1,243	2,600	年均	0.055	0.136	达标
NO2	上廖溪	-2.097	-1,243	年均	0.072	0.179	达标
	腊岩	-2,216	-2,494	年均	0.092	0.229	达标
	中寨	-2,121	-2,706	年均	0.094	0.235	达标
	观音滩	157	-2,653	年均	0.026	0.066	达标
	荒田	-2,749	1,272	年均	0.038	0.096	达标
	凡溪屯	-2,482	-583	年均	0.026	0.065	达标
	上湾	-1,640	2,551	年均	0.026	0.066	达标
	三脚岩	-1,876	183	年均	0.020	0.051	达标
	三寨村	-1,889	-615	年均	0.045	0.112	达标
	堰塘塆	-1,966	739	年均	0.015	0.039	达标
	白猫冲	-1,661	1,244	年均	0.025	0.063	达标
	竹山溪	-1,354	1,893	年均	0.014	0.034	达标
	白家庄	-1,088	-62	年均	0.055	0.136	达标
	鲇鱼塘村	1,643	-2,622	年均	0.010	0.025	达标
	斜滩	1,950	-1,973	年均	0.011	0.027	达标
	陆家塆	498	79	年均	0.195	0.487	达标
	菜园	-1,031	-2,657	年均	0.089	0.223	达标
	杨柳冲	2,104	1,516	年均	0.067	0.167	达标
	蔡溪屯	504	489	年均	0.184	0.460	达标
	洞脑上	1,104	889	年均	0.102	0.256	达标
	赶纸山	-1,772	547	年均	0.014	0.035	达标
	井垮	-2,352	1,366	年均	0.028	0.070	达标
	区域最大值	-200	-200	年均	1.153	2.881	达标

表 4.1-30 本项目 PM₁₀24 小时浓度贡献值预测结果表

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
行架彻	195001元	m	m	时段	(µg/m³)	四兆时间	%	情况
	田新岩	2,809	2,314	24 小时	0.472	2023/08/16	0.315	达标
DV F16	蒋家塆	-31	-2,041	24 小时	0.350	2023/05/11	0.233	达标
PM10	彭家	114	839	24 小时	0.620	2023/07/07	0.413	达标
	岩下	138	2,356	24 小时	0.253	2023/07/07	0.169	达标

稀贵金属资源循环利用项目环境影响报告书

猫猫冲	-1,043	2,741	24 小时	0.676	2023/02/24	0.451	达村
麻音塘	-735	-2,739	24 小时	0.384	2023/02/02	0,256	达村
羊庄	-531	-2,332	24 小时	0.449	2023/03/11	0.299	达村
菜溪村	-570	1,381	24 小时	0.316	2023/07/01	0.211	达林
下廖溪	-928	-2,425	24 小时	0.504	2023/02/11	0.336	达柱
后锁	785	-491	24 小时	0.351	2023/06/23	0.234	达机
湖南田	659	-2,207	24 小时	0.193	2023/08/02	0.129	达
跳礆	1,874	-486	24 小时	0.185	2023/07/30	0.124	达
磨沟	2,587	810	24 小时	0.518	2023/10/31	0.345	达
白岩塘	2,398	1,345	24 小时	0.545	2023/11/22	0.363	达
岩坎上	1,183	-331	24 小时	0.209	2023/07/21	0.139	达
分洲	1,559	-1,678	24 小时	0.212	2023/06/23	0.142	达
田家	1,842	-2,503	24 小时	0.125	2023/06/23	0.083	达
辽家塆	1,586	39	24 小时	0.303	2023/08/15	0.202	达
榴树井	1,998	1,064	24 小时	0.551	2023/11/22	0.368	达
杉木林	1,276	-765	24 小时	0.270	2023/06/23	0.180	达
胜利村	1,595	604	24 小时	0.757	2023/10/31	0.505	达
高弓滩	2,275	-160	24 小时	0.225	2023/08/15	0.150	达
张家	-1,243	2,600	24 小时	0.578	2023/02/20	0.385	达
上廖溪	-2,097	-1,243	24 小时	0.462	2023/12/01	0.308	达
腊岩	-2,216	-2,494	24 小时	0.497	2023/12/02	0.331	达
中寨	-2,121	-2,706	24 小时	0.488	2023/02/16	0.325	达
观音滩	157	-2,653	24 小时	0.353	2023/05/11	0.235	达
荒田	-2,749	1,272	24 小时	0.454	2023/10/31	0.303	达
凡溪屯	-2,482	-583	24 小时	0.293	2023/12/09	0.195	达
土湾	-1,640	2,551	24 小时	0.116	2023/02/20	0.077	达
三脚岩	-1,876	183	24 小时	1.024	2023/01/04	0.683	达
三寨村	-1,889	-615	24 小时	0.455	2023/12/09	0.303	达
堰塘塆	-1,966	739	24 小时	1.169	2023/10/31	0.780	达
白猫冲	-1,661	1,244	24 小时	0.461	2023/03/06	0.307	达
竹山溪	-1,354	1,893	24 小时	1.092	2023/02/20	0.728	达
白家庄	-1,088	-62	24 小时	0.360	2023/04/01	0.240	达
鲇鱼塘村	1,643	-2,622	24 小时	0.122	2023/12/19	0.082	达
斜滩	1,950	-1,973	24 小时	0.207	2023/06/23	0.138	达
陆家塆	498	79	24 小时	1.351	2023/12/07	0.901	达
菜园	-1,031	-2,657	24 小时	0.484	2023/02/11	0.322	达
杨柳冲	2,104	1,516	24 小时	0.525	2023/07/05	0.350	达
蔡溪屯	504	489	24 小时	1,373	2023/07/30	0.915	达
洞脑上	1,104	889	24 小时	0.790	2023/01/30	0.527	达
赶纸山	-1,772	547	24 小时	0.184	2023/04/02	0.123	达
井塆	-2,352	1,366	24 小时	0.446	2023/10/09	0.298	达
区域最大值	-200	200	24 小时	9.962	2023/01/03	6,641	达

表 4.1-31 本项目 PM₁₀年均浓度贡献值预测结果表

污染物	预测点	X/	Y/	平均	最大贡献值/	占标率/	达标	
万米初	现视点	m	m	时段	(μg/m³)	%	情况	
	田新岩	2,809	2,314	年均	0.084	0.119	达标	
	蒋家塆	-31	-2,041	年均	0,046	0.066	达标	
	彭家	114	839	年均	0.068	0.098	达标	
	岩下	138	2,356	年均	0.024	0.035	达标	
D) 410	猫猫冲	-1,043	2,741	年均	0.037	0.053	达标	
PM10	麻音塘	-735	-2,739	年均	0.074	0.105	达标	
	羊庄	-531	-2,332	年均	0.081	0.115	达标	
	菜溪村	-570	1,381	年均	0.023	0.032	达标	
	下廖溪	-928	-2,425	年均	0,100	0.142	达标	
	后锁	785	-491	年均	0.030	0.043	达标	

稀贵金属资源循环利用项目环境影响报告书

湖南田	659	-2,207	年均	0.017	0.024	达标
跳破	1.874	-486	年均	0.016	0.023	达标
磨沟	2,587	810	年均	0.082	0.116	达标
白岩塘	2,398	1,345	年均	0.103	0.147	达标
岩坎上	1,183	-331	年均	0.027	0.038	达标
分洲	1,559	-1,678	年均	0.011	0.016	达标
田家	1.842	-2,503	年均	0.009	0.013	达标
辽家塆	1,586	39	年均	0.042	0,060	达标
榴树井	1,998	1,064	年均	0.113	0.162	达标
杉木林	1,276	-765	年均	0.018	0.025	达标
胜利村	1,595	604	年均	0.122	0.175	达标
高弓滩	2,275	-160	年均	0.021	0.030	达标
张家	-1,243	2,600	年均	0.037	0.053	达标
上廖溪	-2.097	-1,243	年均	0.068	0.097	达标
腊岩	-2,216	-2,494	年均	0.087	0.124	达标
中寨	-2,121	-2,706	年均	0.091	0.129	达标
观音滩	157	-2,653	年均	0.029	0.041	达标
荒田	-2,749	1,272	年均	0.028	0.040	达标
凡溪屯	-2,482	-583	年均	0.024	0.035	达标
土湾	-1,640	2,551	年均	0.010	0.014	达标
三脚岩	-1,876	183	年均	0.032	0.045	达标
三寨村	-1,889	-615	年均	0.042	0.060	达标
堰塘塆	-1,966	739	年均	0.030	0.043	达标
白猫冲	-1,661	1,244	年均	0.031	0.044	达标
竹山溪	-1,354	1,893	年均	0.026	0.038	达标
白家庄	-1,088	-62	年均	0.044	0.063	达标
鲇鱼塘村	1,643	-2,622	年均	0.010	0.014	达标
斜滩	1,950	-1,973	年均	0.010	0.014	达标
陆家塆	498	79	年均	0.218	0.311	达标
菜园	-1,031	-2,657	年均	0.094	0.134	达标
杨柳冲	2,104	1,516	年均	0.103	0.148	达标
蔡溪屯	504	489	年均	0.222	0.318	达标
洞脑上	1,104	889	年均	0.137	0.196	达标
赶纸山	-1,772	547	年均	0.013	0.019	达标
井垮	-2,352	1,366	年均	0.031	0.044	达标
区域最大值	-200	-200	年均	1.734	2.477	达标

表 4.1-32 本项目 PM2.524 小时浓度贡献值预测结果表

Act Str. Man	25 80 Jr	X/	Y/	平均	最大贡献值/	rivation that	占标率/	达标
污染物	预测点	m	m	时段	(µg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	24 小时	0.329	2023/08/16	0.439	达标
	蒋家塆	-31	-2,041	24 小时	0.245	2023/05/11	0.326	达标
	彭家	114	839	24 小时	0.433	2023/07/07	0.577	达标
	岩下	138	2,356	24 小时	0.177	2023/07/07	0.236	达标
	猫猫冲	-1,043	2,741	24 小时	0.473	2023/02/24	0.631	达标
	麻音塘	-735	-2,739	24 小时	0.269	2023/02/02	0.358	达标
	羊庄	-531	-2,332	24 小时	0.314	2023/03/11	0.419	达标
	菜溪村	-570	1,381	24 小时	0.221	2023/07/01	0.295	达标
PM2.5	下廖溪	-928	-2,425	24 小时	0.352	2023/02/11	0.469	达标
	后锁	785	-491	24 小时	0.245	2023/06/23	0.327	达析
	湖南田	659	-2,207	24 小时	0.135	2023/08/02	0.180	达标
	跳破	1,874	-486	24 小时	0.129	2023/07/30	0.172	达标
	磨沟	2,587	810	24 小时	0,362	2023/10/31	0.483	达标
	白岩塘	2,398	1,345	24 小时	0.381	2023/11/22	0.508	达标
	岩坎上	1,183	-331	24 小时	0.146	2023/07/21	0.194	达标
	分洲	1,559	-1,678	24 小时	0.148	2023/06/23	0.198	达标
	田家	1,842	-2,503	24 小时	0.087	2023/06/23	0.116	达标

稀贵金属资源循环利用项目环境影响报告书

辽家塆	1,586	39	24 小时	0.212	2023/08/15	0.282	达标
榴树井	1,998	1,064	24 小时	0.386	2023/11/22	0.514	达标
杉木林	1,276	-765	24 小时	0.188	2023/06/23	0.251	达标
胜利村	1,595	604	24 小时	0.529	2023/10/31	0.706	达标
高弓滩	2,275	-160	24 小时	0.157	2023/08/15	0.210	达标
张家	-1,243	2,600	24 小时	0.404	2023/02/20	0.539	达标
上廖溪	-2,097	-1,243	24 小时	0.323	2023/12/01	0.431	达标
腊岩	-2,216	-2,494	24 小时	0.348	2023/12/02	0.464	达标
中寨	-2,121	-2,706	24 小时	0,341	2023/02/16	0.455	达标
观音滩	157	-2,653	24 小时	0.247	2023/05/11	0.329	达标
荒田	-2,749	1,272	24 小时	0.317	2023/10/31	0.423	达标
凡溪屯	-2,482	-583	24 小时	0.205	2023/12/09	0.273	达标
土湾	-1,640	2,551	24 小时	0.081	2023/02/20	0.108	达标
三脚岩	-1,876	183	24 小时	0.716	2023/01/04	0.955	达析
三寨村	-1,889	-615	24 小时	0.318	2023/12/09	0.424	达标
堰塘塆	-1,966	739	24 小时	0.818	2023/10/31	1.091	达标
白猫冲	-1,661	1,244	24 小时	0.322	2023/03/06	0.430	达标
竹山溪	-1,354	1,893	24 小时	0.763	2023/02/20	1.018	达板
白家庄	-1,088	-62	24 小时	0.251	2023/04/01	0.335	达杨
鲇鱼塘村	1,643	-2,622	24 小时	0.086	2023/12/19	0.114	达标
斜滩	1,950	-1,973	24 小时	0.144	2023/06/23	0.193	达杨
陆家塆	498	79	24 小时	0.945	2023/12/07	1.260	达杨
菜园	-1,031	-2,657	24 小时	0.338	2023/02/11	0.451	达标
杨柳冲	2,104	1,516	24 小时	0.366	2023/07/05	0.489	达杨
蔡溪屯	504	489	24 小时	0.959	2023/07/30	1.279	达标
洞脑上	1,104	889	24 小时	0.553	2023/01/30	0.737	达标
赶纸山	-1,772	547	24 小时	0.128	2023/04/02	0.171	达标
井塆	-2,352	1,366	24 小时	0.312	2023/10/09	0.416	达标
区域最大 值	-200	200	24 小时	6.963	2023/01/03	9.284	达杨

表 4.1-33 本项目 PM_{2.5}年均浓度贡献值预测结果表

污染物	预测点	X/	Y/	平均	最大贡献值/	占标率/	达标
75%代别	1與视 点	m	m	时段	(μg/m³)	%	情况
	田新岩	2,809	2,314	年均	0.058	0.167	达标
	蒋家塆	-31	-2,041	年均	0.032	0.093	达标
	彭家	114	839	年均	0.048	0.136	达标
	岩下	138	2,356	年均	0.017	0.049	达标
	猫猫冲	-1,043	2,741	年均	0.026	0.074	达标
	麻音塘	-735	-2,739	年均	0.052	0.147	达标
	羊庄	-531	-2,332	年均	0.057	0.161	达标
	菜溪村	-570	1,381	年均	0.016	0.045	达标
	下廖溪	-928	-2,425	年均	0.070	0.199	达标
	后锁	785	-491	年均	0.021	0.060	达标
	湖南田	659	-2,207	年均	0.012	0.033	达标
PM2.5	跳礅	1,874	-486	年均	0.011	0.032	达标
	磨沟	2,587	810	年均	0.057	0.163	达标
	白岩塘	2,398	1,345	年均	0.072	0.206	达标
	岩坎上	1,183	-331	年均	0.019	0.054	达标
	分洲	1,559	-1,678	年均	0.008	0.022	达标
	田家	1,842	-2,503	年均	0.006	0.018	达标
	辽家塆	1,586	39	年均	0.029	0.083	达标
	榴树井	1,998	1,064	年均	0.079	0.226	达标
	杉木林	1,276	-765	年均	0.012	0.035	达标
	胜利村	1,595	604	年均	0.086	0.244	达标
	高号滩	2,275	-160	年均	0.015	0.042	达标
	张家	-1,243	2,600	年均	0.026	0.074	达标

稀贵金属资源循环利用项目环境影响报告书

上廖溪	-2,097	-1,243	年均	0.048	0.136	达标
腊岩	-2,216	-2,494	年均	0.061	0.173	达标
中寨	-2,121	-2,706	年均	0.063	0.181	达标
观音滩	157	-2,653	年均	0.020	0.058	达标
荒田	-2,749	1,272	年均	0.020	0.056	达标
凡溪屯	-2,482	-583	年均	0.017	0.049	达标
土湾	-1,640	2,551	年均	0.007	0.020	达标
三胸岩	-1,876	183	年均	0.022	0.063	达标
三寨村	-1,889	-615	年均	0.029	0.083	达标
堰塘塆	-1.966	739	年均	0.021	0.060	达标
白猫冲	-1,661	1,244	年均	0.021	0.061	达标
竹山溪	-1,354	1,893	年均	0.018	0.053	达标
白家庄	-1,088	-62	年均	0.031	0.088	达标
鲇鱼塘村	1,643	-2,622	年均	0.007	0.019	达标
斜滩	1,950	-1,973	年均	0.007	0.020	达标
陆家塆	498	79	年均	0.152	0.435	达标
菜园	-1,031	-2,657	年均	0.066	0.187	达标
杨柳冲	2,104	1,516	年均	0.072	0.206	达标
蔡溪屯	504	489	年均	0.155	0.444	达标
洞脑上	1,104	889	年均	0.096	0.274	达标
赶纸山	-1,772	547	年均	0.009	0.026	达标
井垮	-2,352	1,366	年均	0.021	0.061	达标
区域最大值	-200	-200	年均	1.213	3,466	达标

表 4.1-34 本项目 CO1 小时浓度贡献值预测结果表

Art. Str alia	SENIA F	X/	Υ/	平均	最大贡献值/	de zian-lett	占标率/	达标
污染物	预测点	m	m	时段	(µg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	1 小时	0.453	2023/02/01 08:00	0.005	达标
	蒋家塆	-31	-2,041	I 小时	0.475	2023/07/28 20:00	0.005	达标
	彭家	114	839	1 小时	1.125	2023/06/19 06:00	0.011	达标
-	岩下	138	2,356	1 小时	0.499	2023/06/28 20:00	0.005	达标
	猫猫冲	-1,043	2,741	1 小时	3.301	2023/02/25 02:00	0.033	达标
	麻音塘	-735	-2,739	1 小时	0.421	2023/05/24 22:00	0.004	达析
	羊庄	-531	-2,332	1 小时	0.496	2023/01/27 17:00	0.005	达标
	菜溪村	-570	1,381	I 小时	0.628	2023/05/28 00:00	0.006	达标
	下廖溪	-928	-2,425	1 小时	0.573	2023/05/10 07:00	0,006	达杨
	后锁	785	-491	1 小时	0.889	2023/01/23 10:00	0.009	达柯
	湖南田	659	-2,207	1 小时	0.401	2023/09/22 05:00	0.004	达杨
	跳礆	1,874	-486	1 小时	0.552	2023/07/11 06:00	0.006	达杭
	磨沟	2,587	810	1小时	0.567	2023/02/05 09:00	0.006	达杭
	白岩塘	2,398	1,345	1 小时	0.710	2023/02/15 08:00	0.007	达杭
co	岩坎上	1,183	-331	1 小时	0.885	2023/07/11 06:00	0.009	达板
CO	分洲	1,559	-1,678	1 小时	0.520	2023/06/23 06:00	0.005	达板
	田家	1,842	-2,503	1小时	0.327	2023/06/23 06:00	0.003	达机
	辽家塆	1,586	39	1 小时	0.558	2023/07/09 22:00	0.006	达机
	榴树井	1,998	1,064	1 小时	0.815	2023/02/15 08:00	0.008	达板
	杉木林	1,276	-765	1 小时	0.862	2023/01/23 10:00	0.009	达杭
	胜利村	1,595	604	1小时	0.841	2023/02/15 08:00	0.008	达机
	高弓滩	2,275	-160	1 小时	0.450	2023/06/13 03:00	0.005	达机
	张家	-1,243	2,600	I小时	4.340	2023/02/25 02:00	0.043	达析
	上廖溪	-2,097	-1,243	1 小时	0.548	2023/02/25 08:00	0.005	达村
	腊岩	-2,216	-2,494	I小时	0.475	2023/02/18 17:00	0.005	达板
	中寨	-2,121	-2,706	1小时	0.446	2023/11/08 03:00	0.004	达杭
	观音滩	157	-2,653	1 小时	0.442	2023/10/26 06:00	0.004	达核
	荒田	-2,749	1,272	1 小时	4.468	2023/12/30 03:00	0.045	达梅
	凡溪屯	-2,482	-583	1 小时	0.581	2023/12/26 09:00	0.006	达杨
	土湾	-1,640	2,551	1小时	0.351	2023/05/20 04:00	0.004	达标

稀贵金属资源循环利用项目环境影响报告书

三脚岩	-1,876	183	L小时	0.785	2023/08/06 20:00	0.008	达标
三寨村	-1,889	-615	1 小时	0.714	2023/12/26 09:00	0.007	达标
堰塘塆	-1,966	739	1 小时	0.954	2023/03/16 03:00	0.010	达标
白猫冲	-1,661	1,244	1 小时	1,412	2023/04/02 23:00	0.014	达标
竹山渓	-1,354	1,893	1 小时	0.474	2023/06/18 03:00	0.005	达标
白家庄	-1,088	-62	1 小时	0.917	2023/12/26 09:00	0.009	达标
鲇鱼塘村	1,643	-2,622	1 小时	0.366	2023/12/05 08:00	0.004	达标
斜滩	1,950	-1,973	1小时	0.502	2023/06/23 06:00	0.005	达标
陆家塆	498	79	1 小时	1.186	2023/06/30 06:00	0.012	达标
菜园	-1,031	-2,657	1 小时	0.552	2023/05/10 07:00	0.006	达柯
杨柳冲	2,104	1,516	1 小时	0.684	2023/12/03 08:00	0.007	达标
蔡溪屯	504	489	1 小时	1.294	2023/10/14 07:00	0.013	达标
洞脑上	1,104	889	1 小时	0.965	2023/03/26 07:00	0.010	达标
赶纸山	-1,772	547	1 小时	0.363	2023/10/27 22:00	0.004	达标
井塆	-2,352	1,366	1 小时	2.476	2023/11/05 06:00	0.025	达标
区域最大值	-300	100	1 小时	28.645	2023/09/18 21:00	0.286	达标

表 4.1-35 本项目 CO24 小时浓度贡献值预测结果表

5= Dr. 48a	280 SM . 150	X/	Y/	平均	最大贡献值/	distribution	占标率/	达核
污染物	预测点	m	m	时段	(μg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	24 小时	0.067	2023/01/08	0.002	达核
	蒋家塆	-31	-2,041	24 小时	0.041	2023/03/20	0.001	达杭
	彭家	114	839	24 小时	0.091	2023/07/06	0.002	达核
	岩下	138	2,356	24 小时	0.048	2023/06/28	0.001	达核
	猫猫冲	-1,043	2,741	24 小时	0.156	2023/03/21	0.004	达林
	麻音塘	-735	-2,739	24 小时	0.080	2023/02/02	0.002	达标
	羊庄	-531	-2,332	24 小时	0.087	2023/02/02	0.002	达林
	菜溪村	-570	1,381	24.小时	0.062	2023/07/01	0.002	达林
	下廖溪	-928	-2,425	24 小时	0.097	2023/02/11	0.002	达标
	后锁	785	-491	24 小时	0.045	2023/10/27	0.001	达核
	湖南田	659	-2,207	24 小时	0.023	2023/05/11	0.001	达杉
	跳磁	1,874	-486	24 小时	0.024	2023/07/11	0.001	达林
	磨沟	2,587	810	24 小时	0.068	2023/12/07	0.002	达杉
	白岩塘	2,398	1,345	24 小时	0.059	2023/11/07	0.001	达村
	岩坎上	1,183	-331	24 小时	0.039	2023/07/11	0.001	达标
	分洲	1,559	-1,678	24 小时	0.022	2023/12/19	0.001	达林
	田家	1,842	-2,503	24 小时	0.022	2023/12/19	0.001	达林
co	辽家塆	1,586	39	24 小时	0.048	2023/06/07	0.001	达林
co	榴树井	1,998	1,064	24 小时	0.079	2023/11/07	0.002	达林
	杉木林	1,276	-765	24 小时	0.037	2023/01/23	0.001	达杉
	胜利村	1,595	604	24 小时	0.114	2023/12/07	0.003	达标
	高弓滩	2,275	-160	24 小时	0.027	2023/06/13	0.001	达林
	张家	-1,243	2,600	24 小时	0.251	2023/02/25	0.006	达村
	上廖溪	-2,097	-1,243	24 小时	0.096	2023/12/18	0.002	达林
	腊岩	-2,216	-2,494	24 小时	0.099	2023/12/02	0.002	达林
	中寨	-2,121	-2,706	24 小时	0.099	2023/02/12	0.002	达标
	观音滩	157	-2,653	24.小时	0.029	2023/07/28	0.001	达核
	荒田	-2,749	1,272	24 小时	0.217	2023/12/30	0.005	达书
	凡溪屯	-2,482	-583	24 小时	0.049	2023/12/09	0.001	达林
	土湾	-1,640	2,551	24 小时	0.025	2023/12/26	0.001	达村
	三脚岩	-1,876	183	24 小时	0.039	2023/08/06	0.001	达林
	三寨村	-1,889	-615	24 小时	0.085	2023/12/09	0.002	达标
	堰塘塆	-1,966	739	24 小时	0.040	2023/03/16	0.001	达杉
	白猫冲	-1,661	1,244	24 小时	0.068	2023/04/02	0.002	达标
	竹山溪	-1,354	1,893	24 小时	0.030	2023/05/25	0.001	达核
	白家庄	-1,088	-62	24 小时	0.061	2023/12/09	0.002	达核

稀贵金属资源循环利用项目环境影响报告书

鲇鱼塘村	1,643	-2,622	24 小时	0.023	2023/12/19	0.001	达标
斜滩	1,950	-1,973	24 小时	0.021	2023/06/23	0.001	达标
陆家塆	498	79	24 小时	0.164	2023/07/21	0.004	达标
菜园	-1,031	-2,657	24 小时	0.096	2023/02/11	0.002	达标
杨柳冲	2,104	1,516	24 小时	0.087	2023/01/30	0.002	达标
蔡溪屯	504	489	24 小时	0.233	2023/07/04	0.006	达标
洞脑上	1,104	889	24 小时	0.125	2023/06/12	0.003	达标
赶纸山	-1,772	547	24 小时	0.026	2023/10/27	0.001	达标
井塆	-2,352	1,366	24 小时	0.104	2023/11/05	0.003	达标
区域最大值	-300	100	24 小时	1.210	2023/09/18	0.030	达标

表 4.1-36 本项目硫酸雾 1 小时浓度贡献值预测结果表

5 % Oh. 44m	2850 Ac	X/	Y/	平均	最大贡献值/	during the con	占标率/	达标
污染物	预测点 -	m	m	时段	(µg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	L小时	0.202	2023/07/08 00:00	0.067	达析
	蒋家塆	-31	-2,041	1 小时	0.211	2023/07/27 23:00	0.070	达标
	彭家	114	839	1 小时	0.414	2023/07/14 06:00	0.138	达标
	岩下	138	2,356	1 小时	0.301	2023/06/18 22:00	0.100	达杨
	猫猫冲	-1,043	2,741	I小时	1.403	2023/02/24 02:00	0.468	达杨
羊圧 菜溪/ 下廖	麻音塘	-735	-2,739	1 小时	0.201	2023/06/01 22:00	0.067	达机
	羊圧	-531	-2,332	1 小时	0.217	2023/09/03 21:00	0.072	达核
	菜溪村	-570	1,381	1 小时	0.361	2023/01/12 17:00	0.120	达核
	下廖溪	-928	-2,425	1小时	0.232	2023/08/26 06:00	0.077	达林
	后锁	785	-491	1小时	0.253	2023/01/23 10:00	0.084	达核
	湖南田	659	-2,207	1 小时	0.155	2023/05/03 04:00	0.052	达标
	跳磁	1,874	-486	1 小时	0.198	2023/08/27 01:00	0.066	达杭
	磨沟	2,587	810	1 小时	0.229	2023/06/29 21:00	0.076	达板
	白岩塘	2,398	1,345	1 小时	0.231	2023/07/28 21:00	0.077	达杭
	岩坎上	1,183	-331	1 小时	0.287	2023/08/27 01:00	0.096	达板
	分洲	1,559	-1,678	1 小时	0.158	2023/06/23 06:00	0.053	达核
	田家	1,842	-2,503	1 小时	0.114	2023/08/12 19:00	0.038	达板
	辽家塆	1,586	39	L小时	0.241	2023/07/09 22:00	0.080	达核
	榴树井	1,998	1,064	1 小时	0.252	2023/07/02 23:00	0.084	达杭
	杉木林	1,276	-765	1 小时	0.258	2023/01/23 10:00	0.086	达核
T2: 100	胜利村	1,595	604	1 小时	0.256	2023/07/02 01:00	0.085	达机
硫酸	高弓滩	2,275	-160	1 小时	0.231	2023/08/15 22:00	0.077	达标
	张家	-1,243	2,600	1 小时	1.021	2023/02/20 02:00	0.340	达板
	上廖溪	-2,097	-1,243	1 小时	0.221	2023/09/28 21:00	0.074	达机
	腊岩	-2,216	-2,494	1 小时	0.221	2023/08/08 21:00	0.074	达杨
	中寨	-2,121	-2,706	1 小时	0.241	2023/06/20 20:00	0.080	达机
	观音滩	157	-2,653	1 小时	0.225	2023/07/27 23:00	0.075	达核
	荒田	-2,749	1,272	1 小时	0.924	2023/01/05 17:00	0.308	达标
	凡溪屯	-2,482	-583	1小时	0.281	2023/08/09 19:00	0.094	达机
	上湾	-1,640	2,551	1 小时	0.053	2023/04/17 19:00	0.018	达板
	三脚岩	-1,876	183	1 小时	0.491	2023/08/06 20:00	0.164	达杭
	三寨村	-1,889	-615	1 小时	0.288	2023/12/08 19:00	0.096	达杭
	堰塘塆	-1,966	739	1小时	0.981	2023/12/30 03:00	0.327	达机
	白猫冲	-1,661	1,244	1 小时	0.938	2023/10/24 23:00	0.313	达板
	竹山溪	-1,354	1,893	I小时	0.372	2023/05/25 23:00	0.124	达杭
	白家庄	-1,088	-62	1 小时	0.348	2023/08/07 21:00	0.116	达杭
	鲇鱼塘村	1,643	-2,622	1 小时	0.101	2023/12/19 09:00	0.034	达标
	斜滩	1,950	-1,973	1 小时	0.150	2023/06/23 06:00	0.050	达村
	陆家塆	498	79	1 小时	0.466	2023/06/18 20:00	0.155	达核
	菜园	-1,031	-2,657	1 小时	0.233	2023/09/06 21:00	0.078	达标
	杨柳冲	2,104	1,516	I 小时	0.230	2023/07/20 20:00	0.077	达标
	蔡溪屯	504	489	1 小时	0.491	2023/06/09 21:00	0.164	达杨

稀贵金属资源循环利用项目环境影响报告书

洞脑上	1,104	889	L小时	0.283	2023/08/19 01:00	0.094	达标
赶纸山	-1,772	547	1 小时	0.314	2023/04/02 22:00	0.105	达标
井塆	-2,352	1,366	L小时	1.080	2023/10/09 20:00	0.360	达标
区域最大值	-200	100	1 小时	6.746	2023/04/02 23:00	2.249	达标

表 4.1-37 本项目硫酸雾 24 小时浓度贡献值预测结果表

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
12010	49.00	m	m	时段	(µg/m³)		9/6	情况
	田新岩	2,809	2,314	24 小时	0.033	2023/01/08	0.033	达标
	蒋家塆	-31	-2,041	24 小时	0.023	2023/05/11	0.023	达标
	彭家	114	839	24 小时	0.044	2023/07/07	0.044	达标
	岩下	138	2,356	24 小时	0.020	2023/07/07	0.020	达标
	猫猫冲	-1,043	2,741	24 小时	0.076	2023/02/24	0.076	达标
	麻音塘	-735	-2,739	24 小时	0.026	2023/02/02	0.026	达标
	羊庄	-531	-2,332	24 小时	0.031	2023/03/11	0.031	达标
	菜溪村	-570	1,381	24 小时	0.025	2023/07/01	0.025	达标
	下廖溪	-928	-2,425	24 小时	0.035	2023/02/11	0.035	达标
	后锁	785	+491	24 小时	0.013	2023/10/27	0.013	达标
	湖南田	659	-2,207	24 小时	0.008	2023/05/11	0.008	达标
	姚磁	1,874	-486	24 小时	0.009	2023/07/30	0.009	达标
	磨沟	2,587	810	24 小时	0.036	2023/10/31	0.036	达标
	白岩塘	2,398	1,345	24 小时	0.033	2023/11/22	0.033	达标
	岩坎上	1,183	-331	24 小时	0.013	2023/07/21	0.013	达标
	分洲	1,559	-1,678	24 小时	0.007	2023/06/23	0.007	达板
	田家	1,842	-2,503	24 小时	0.007	2023/12/19	0.007	达粉
	辽家垮	1,586	39	24 小时	0.020	2023/08/15	0.020	达杨
	榴树井	1,998	1,064	24 小时	0.034	2023/11/01	0.034	达标
	杉木林	1,276	-765	24 小时	0.011	2023/01/23	0.011	达杭
	胜利村	1,595	604	24 / 네턴	0.050	2023/10/31	0.050	达板
	高号維	2,275	-160	24 小时	0.017	2023/08/15	0.017	达杭
	张家	-1,243	2,600	24 小时	0.061	2023/02/20	0.061	丛板
硫酸	上廖溪	-2,097	-1,243	24 小时	0.034	2023/12/10	0.034	达板
	腊岩	-2,216	-2,494	24 小时	0.036	2023/12/02	0.036	达机
	中寨	-2,121	-2,706	24 小时	0.035	2023/02/16	0.035	达析
	观音滩	157	-2,653	24 小时	0.024	2023/05/11	0.024	达板
	荒田	-2,749	1,272	24 小时	0.048	2023/01/05	0.048	达板
	凡漢屯	-2,482	-583	24 小时	0.020	2023/12/09	0.020	达杨
	土湾	-1,640	2,551	24 小时	0.004	2023/04/17	0.004	达板
	三脚岩	-1,876	183	24 小时	0.023	2023/08/06	0.023	达标
	三寨村	-1,889	-615	24 小时	0.032	2023/12/09	0.032	达村
	堰塘塆	-1,966	739	24 小时	0.057	2023/10/31	0.057	达板
	白猫冲	-1,661	1,244	24 小时	0.049	2023/03/06	0.049	达柯
	竹山溪	-1,354	1,893	24 小时	0.019	2023/05/25	0.019	达杨
	白家庄	-1,088	-62	24 小时	0.026	2023/04/01	0.026	达杨
	鲇鱼塘村	1,643	-2,622	24 小时	0.007	2023/12/19	0.007	达板
	斜滩	1,950	-1,973	24 小时	0.006	2023/06/23	0.006	达板
	陆家塆	498	79	24 小时	0.100	2023/12/07	0.100	达板
	菜园	-1.031	-2,657	24 小时	0.034	2023/02/11	0.034	达板
	杨柳冲	2,104	1,516	24 小时	0.037	2023/07/05	0.034	达标
	蔡溪屯	504	489	24 小时	0.097	2023/05/13	0.097	达杨
	洞脑上	1,104	889	24 小时	0.060	2023/01/30	0.060	达柯
	赶纸山	-1,772	547	24 小时	0.014	2023/04/02	0.014	达柯
	井塆			24 小时	0.050	2023/10/09	0.014	
	区域最大值	-2,352	-100	24 小时	0.617	2023/10/09	0.617	达标

表 4.1-38 本项目氯化氢 1 小时浓度贡献值预测结果表

5-291.45n	3万·纳山土	Χ/	Υ/	平均	最大贡献值/	Urziniski ter	占标率/	达柯
污染物	预测点	m	m	时段	(µg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	1 小时	0.642	2023/03/26 07:00	1.284	达标
	蒋家塆	-31	-2,041	1 小时	0.704	2023/08/02 07:00	1.407	达标
	彭家	114	839	1小时	1.138	2023/06/19 06:00	2.276	达特
	岩下	138	2,356	1小时	0.646	2023/06/28 20:00	1.291	达标
	猎猫冲	-1,043	2,741	1 小时	3.279	2023/02/25 02:00	6.557	达标
	麻音塘	-735	-2,739	1 小时	0.602	2023/05/10 07:00	1.204	达杭
	单庄	-531	-2,332	1 小时	0.624	2023/05/10 07:00	1.248	达杭
	集溪村	-570	1,381	1 小时	0.933	2023/11/15 17:00	1.866	达机
	下廖溪	-928	-2,425	1 小时	0.836	2023/05/10 07:00	1.671	达板
	后锁	785	-491	1小时	1:110	2023/10/27 08:00	2,219	达林
	湖南田	659	-2,207	1 小时	0.525	2023/09/14 22:00	1.049	达村
	跳破	1,874	-486	1小时	0.640	2023/12/04 09:00	1.280	达林
	磨沟	2,587	810	1 小时	0.805	2023/02/05 09:00	1.610	达杭
	白岩塘	2,398	1,345	1小时	0.937	2023/02/15 08:00	1.873	达标
	岩坎上	1,183	-331	1小时	0.866	2023/07/11 06:00	1.732	达板
	分洲	1,559	-1.678	1 小时	0.866	2023/06/23 06:00	1.732	达衫
	田家	1,842	-2,503	1 小时	0.530	2023/06/23 06:00	1.060	达核
	辽家塆	1,586	39	1 小时	0.692	2023/09/30 02:00	1.384	达标
	榴树井	1,998	1,064	1小时	1.062	2023/02/15 08:00	2.124	达板
杉木	杉木林	1,276	-765	1 小时	1.090	2023/01/23 10:00	2.179	达核
	胜利村	1,595	604	1小时	1.083	2023/02/15 08:00	2,166	达板
	高弓滩	2,275	-160	1 小时	0.569	2023/06/27 04:00	1.138	达板
	张家	-1,243	2,600	1 小时	5.479	2023/02/25 02:00	10.958	达核
HCL	上廖溪	-2,097	-1,243	1 小时	0.783	2023/02/25 08:00	1.565	达核
	腊岩	-2,216	-2,494	1 小时	0.493	2023/02/18 17:00	0.986	达机
	中寨	-2,121	-2,706	1 小时	0.523	2023/08/26 05:00	1.046	达机
	观音滩	157	-2,653	1 小时	0.540	2023/08/02 07:00	1.079	达机
	売田	-2,749	1,272	1 小时	4.563	2023/12/30 03:00	9.126	达杨
	凡溪屯	-2,482	-583	1小时	0.856	2023/12/26 09:00	1.713	达板
	上湾	-1,640	2,551	1 小时	0.727	2023/05/20 04:00	1.454	达杨
	三脚岩	-1,876	183	1 小时	0.976	2023/08/06 20:00	1.952	达村
	三寨村	-1,889	-615	1 小时	1.054	2023/08/06 20:00	2.109	达杨
			739	1小时	1.110	2023/03/16 03:00	2.220	达村
	堰塘塆	-1,966	1,244	1 小时		2023/04/02 23:00	3.037	达杭
	白猫冲竹山溪	-1,661	-	1小时	1,519	2023/02/20 05:00	1	达机
	白家庄	-1,354	1,893	1 小时	0.733		1.467	达杭
	-	-1,088	-62		1.186	2023/12/26 09:00	2,371	
	鲇鱼塘村 dom	1,643	-2,622	1小时	0.475	2023/12/19 09:00	0.949	达核
	斜滩	1,950	-1,973	1小时	0.848	2023/06/23 06:00	1.695	达标
	陆家塆	498	79	1 小时	1.198	2023/03/22 05:00	2.395	达标
	菜园	-1,031	-2,657	1 小时	0.807	2023/05/10 07:00	1.614	达板
	杨柳冲	2,104	1,516	1 小时	0.903	2023/12/03 08:00	1.805	达板
	蔡溪屯	504	489	1小时	1.274	2023/10/14 07:00	2.549	达机
	洞脑上	1,104	889	1 小时	1.262	2023/03/26 07:00	2.523	达机
	赶纸山	-1,772	547	1小时	0,958	2023/02/06 19:00	1,916	达标
	井塆 区域最大 值	-2,352	1,366	1小时	2.369	2023/11/05 06:00	40.290	达杨

表 4.1-39 本项目氯化氢 24 小时浓度贡献值预测结果表

污染物	355 (State See	旋测点 X/	Υ/	平均	最大贡献值/	ili smokrar	占标率/	达标
15-52-10	现机点	m	m	时段	(μg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	24 小时	0.087	2023/01/30	0.583	达标
HCL	蒋家塆	-31	-2,041	24 小时	0.053	2023/04/24	0.353	达标
	彭家	114	839	24 小时	0.191	2023/10/10	1.274	达标

稀贵金属资源循环利用项目环境影响报告书

岩下	138	2,356	24 小时	0.068	2023/06/28	0.451	达标
猫猫冲	-1,043	2,741	24 小时	0.158	2023/03/21	1.054	达标
麻音塘	-735	-2,739	24 小时	0.108	2023/02/02	0.720	达标
羊庄	-531	-2,332	24 小时	0.117	2023/02/02	0.777	达标
菜溪村	-570	1,381	24 小时	0.092	2023/04/17	0.615	达标
下廖溪	-928	-2,425	24 小时	0.128	2023/02/02	0.855	达标
后锁	785	-491	24 小时	0.069	2023/10/27	0.457	达标
湖南田	659	-2,207	24 小时	0.035	2023/05/11	0.236	达标
跳磁	1,874	-486	24 小时	0.047	2023/07/21	0.311	达标
磨沟	2.587	810	24 小时	0.096	2023/12/07	0.643	达标
白岩塘	2,398	1,345	24 小时	0.082	2023/06/12	0.546	达标
岩坎上	1,183	-331	24 小时	0.076	2023/07/21	0.506	达标
分洲	1,559	-1,678	24 小时	0.037	2023/06/23	0.248	达标
田家	1,842	-2,503	24.小时	0.033	2023/12/19	0.222	达标
辽家塆	1,586	39	24 小时	0.074	2023/07/21	0.493	达标
榴树井	1,998	1,064	24 小时	0.098	2023/07/04	0.654	达标
杉木林	1,276	-765	24 小时	0.049	2023/10/27	0.327	达标
胜利村	1,595	604	24 小时	0.147	2023/12/07	0.980	达标
高弓滩	2,275	-160	24 小时	0.044	2023/07/21	0.295	达标
张家	-1,243	2,600	24 小时	0.328	2023/02/25	2.186	达标
上塵溪	-2,097	-1.243	24 小时	0.126	2023/12/10	0.838	达标
腊岩	-2,216	-2.494	24 小时	0.133	2023/09/24	0.889	达标
中寨	-2,121	-2,706	24 小时	0.141	2023/02/12	0.939	达标
观音滩	157	-2,653	24 小时	0.047	2023/01/04	0.315	达标
荒田	-2,749	1,272	24 小时	0.223	2023/10/31	1.487	达标
凡溪屯	-2,482	-583	24 小时	0.069	2023/12/09	0.461	达标
土湾	-1,640	2,551	24 小时	0.058	2023/02/20	0.384	达标
三脚岩	-1.876	183	24 小时	0.050	2023/08/06	0.335	达标
三寨村	-1,889	-615	24 小时	0.113	2023/12/09	0.754	达标
堰塘塆	-1,966	739	24 小时	0.047	2023/10/27	0.316	达标
白猫冲	-1,661	1,244	24 小时	0.079	2023/04/02	0.528	达标
竹山溪	-1,354	1,893	24 小时	0.043	2023/05/25	0.289	达标
白家庄	-1,088	-62	24 小时	0.070	2023/04/01	0.466	达标
鲇鱼塘村	1,643	-2,622	24 小时	0.035	2023/12/19	0.236	达标
斜滩	1,950	-1,973	24 小时	0.036	2023/06/23	0.241	达标
陆家塆	498	79	24 小时	0.311	2023/12/05	2.072	达标
菜园	-1,031	-2,657	24 小时	0.119	2023/02/02	0.796	达标
杨柳冲	2,104	1,516	24 小时	0.107	2023/01/30	0.712	达标
蔡溪屯	504	489	24 小时	0.314	2023/07/04	2.090	达标
洞脑上	1,104	889	24 小时	0.170	2023/05/13	1.135	达标
赶纸山	-1,772	547	24 小时	0.068	2023/02/06	0.454	达标
井塆	-2,352	1,366	24 小时	0.100	2023/11/05	0.666	达标
区域最大值	0	100	24 小时	1.614	2023/06/12	10.763	达标

表 4.1-40 本项目氟化物 1 小时浓度贡献值预测结果表

3.2. 921. Mars	335(40) .15	X/	Y/	平均	最大贡献值/	stration by	占标率/	达标
污染物	预测点	m	m	时段	(µg/m³)	出现时间	%	情 情
	田新岩	2,809	2,314	1 小时	0.018	2023/03/26 07:00	0.092	达标
	蒋家塆	-31	-2,041	T 小时	0.024	2023/08/02 07:00	0.118	达标
	彭家	114	839	1 小时	0.031	2023/06/27 23:00	0.153	达标
	岩下	138	2,356	1 小时	0.018	2023/06/28 19:00	0.089	达标
F	猫猫冲	-1,043	2,741	1 小时	0.072	2023/02/25 02:00	0.358	达标
	麻音塘	-735	-2,739	1 小时	0.021	2023/05/10 07:00	0.106	达标
	羊庄.	-531	-2,332	1 小时	0.023	2023/05/10 07:00	0.113	达标
	菜溪村	-570	1,381	L小时	0.021	2023/04/17 21:00	0.107	达标
	下廖溪	-928	-2,425	1 小时	0.027	2023/05/10 07:00	0.134	达标

稀贵金属资源循环利用项目环境影响报告书

后锁	785	-491	1 小时	0.030	2023/10/27 08:00	0.151	达林
湖南田	659	-2,207	1 小时	0.014	2023/12/19 09:00	0.071	达林
跳磁	1,874	-486	I 小时	0.021	2023/12/04 09:00	0.103	达林
磨沟	2,587	810	1 小时	0.025	2023/02/15 08:00	0.124	达林
白岩塘	2,398	1,345	1 小时	0.028	2023/02/15 08:00	0.140	达林
岩坎上	1,183	-331	1 小时	0.021	2023/05/19 07:00	0.103	达标
分洲	1,559	-1,678	1 小时	0.018	2023/06/23 06:00	0.091	达棒
田家	1,842	-2,503	1 小时	0.016	2023/12/19 09:00	0.081	达
辽家塆	1,586	39	1 小时	0.020	2023/12/23 09:00	0.101	达村
榴树井	1,998	1,064	1 小时	0.028	2023/02/15 08:00	0.139	达村
杉木林	1,276	-765	1 小时	0.026	2023/10/27 08:00	0.131	达
胜利村	1,595	604	1 小时	0.029	2023/03/29 07:00	0.144	达
高弓滩	2,275	-160	1 小时	0.018	2023/12/04 09:00	0.088	达
张家	-1,243	2,600	1 小时	0.156	2023/02/25 05:00	0.778	达
上塵溪	-2,097	-1,243	1 小时	0.023	2023/02/25 08:00	0.113	达
腊岩	-2,216	-2,494	1 小时	0.014	2023/02/12 11:00	0.070	达
中寨	-2,121	-2,706	1 小时	0.015	2023/07/17 22:00	0.074	达
观音滩	157	-2,653	I 小时	0.019	2023/08/02 07:00	0.097	达
荒田	-2,749	1,272	1 小时	0.088	2023/12/30 03:00	0.438	达
凡溪屯	-2,482	-583	I 小时	0.024	2023/12/26 09:00	0.119	达
土湾	-1,640	2,551	1 小时	0.084	2023/04/01 23:00	0.422	达
三脚岩	-1,876	183	1 小时	0.018	2023/10/13 07:00	0.091	达
三寨村	-1,889	-615	1 小时	0.029	2023/12/26 09:00	0.146	达
堰塘塆	-1,966	739	1 小时	0.023	2023/03/16 03:00	0.115	达
白猫冲	-1,661	1,244	1小时	0.052	2023/04/02 23:00	0.261	达
竹山溪	-1,354	1,893	1 小时	0.017	2023/05/28 22:00	0.084	达
白家庄	-1,088	-62	1 小时	0.031	2023/12/26 09:00	0.155	达
鲇鱼塘村	1,643	-2,622	1 小时	0.018	2023/12/19 09:00	0.090	达
斜滩	1,950	-1,973	1 小时	0.019	2023/06/23 06:00	0.097	达
陆家塆	498	79	1 小时	0.037	2023/06/21 05:00	0.187	达
菜园	-1,031	-2,657	1 小时	0.026	2023/05/10 07:00	0.130	达
杨柳冲	2,104	1,516	1 小时	0.022	2023/03/26 07:00	0.109	达
蔡溪屯	504	489	1 小时	0.030	2023/07/14 22:00	0.152	达
洞脑上	1,104	889	1 小时	0.025	2023/09/19 07:00	0.125	达
赶纸山	-1,772	547	L小时	0.011	2023/04/18 20:00	0.054	达
井塆	-2,352	1,366	1 小时	0.052	2023/11/05 06:00	0.259	达
区域最大值	-300	100	1 小时	0.424	2023/09/18 21:00	2.120	达

表 4.1-41 本项目氟化物 24 小时浓度贡献值预测结果表

污染物	355 (B) (A)	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
行架彻	预测点	m	m	时段	(μg/m³)	6万块的 间	%	情况
	田新岩	2,809	2,314	24 小时	0.002	2023/05/13	0.029	达标
	蒋家塆	-31	-2,041	24 小时	0.002	2023/01/14	0.033	达标
	彭家	114	839	24 小时	0.005	2023/06/17	0.066	达标
	岩下	138	2,356	24 小时	0.002	2023/06/28	0.028	达标
	猫猫冲	-1,043	2,741	24 小时	0.004	2023/02/25	0.054	达标
	麻音塘	-735	-2,739	24 小时	0.003	2023/02/02	0.037	达标
	羊庄	-531	-2,332	24 小时	0.003	2023/02/02	0.041	达标
F	菜溪村	-570	1,381	24 小时	0.003	2023/04/17	0.039	达标
	下廖溪	-928	-2,425	24 小时	0.003	2023/02/11	0.047	达标
	后锁	785	-491	24 小时	0.002	2023/10/27	0.028	达标
	湖南田	659	-2,207	24 小时	0.001	2023/12/19	0.014	达标
	跳破	1,874	-486	24 小时	0.001	2023/07/21	0.019	达标
	磨沟	2,587	810	24 小时	0.003	2023/12/07	0.041	达标
	白岩塘	2,398	1,345	24 小时	0.003	2023/07/04	0.041	达标
	岩坎上	1,183	-331	24 小时	0.002	2023/07/21	0.028	达标

稀贵金属资源循环利用项目环境影响报告书

分洲	1,559	-1,678	24 小时	0.001	2023/12/19	0.020	达标
田家	1,842	-2,503	24 小时	0.001	2023/12/19	0.019	达标
辽家塆	1,586	39	24 小时	0.002	2023/07/21	0.035	达标
榴树井	1,998	1,064	24 小时	0.003	2023/07/04	0.049	达标
杉木林	1,276	-765	24 小时	0.002	2023/10/27	0.023	达标
胜利村	1,595	604	24 小时	0.004	2023/07/04	0.061	达标
高弓滩	2,275	-160	24 小时	0.002	2023/07/21	0.022	达标
张家	-1,243	2,600	24 小时	0.011	2023/02/25	0.153	达标
上廖溪	-2,097	-1,243	24 小时	0.004	2023/12/10	0.051	达标
腊岩	-2,216	-2,494	24.小时	0.005	2023/09/24	0.069	达标
中寨	-2,121	-2,706	24 小时	0.004	2023/09/24	0.059	达标
观音滩	157	-2,653	24 小时	0.001	2023/01/14	0.016	达标
荒田	-2,749	1,272	24 小时	0.004	2023/12/30	0.059	达标
凡溪屯	-2,482	-583	24 小时	0.002	2023/12/09	0.025	达标
土湾	-1,640	2,551	24 小时	0.007	2023/02/20	0.096	达标
三脚岩	-1,876	183	24 小时	0.001	2023/10/13	0.015	达标
三寨村	-1,889	-615	24 小时	0.003	2023/12/09	0.038	达标
堰塘塆	-1,966	739	24 小时	0.001	2023/10/27	0.015	达标
白猫冲	-1,661	1,244	24 小时	0.003	2023/04/02	0.037	达标
竹山溪	-1,354	1,893	24 小时	0.001	2023/05/01	0.017	达标
白家庄	-1,088	-62	24 小时	0.002	2023/07/17	0.025	达标
鲇鱼塘村	1,643	-2,622	24 小时	0.001	2023/12/19	0.019	达标
斜滩	1,950	-1,973	24 小时	0.001	2023/12/19	0.016	达标
陆家塆	498	79	24 小时	0.008	2023/07/04	0.108	达标
菜园	-1,031	-2,657	24 小时	0.003	2023/02/11	0.046	达标
杨柳冲	2,104	1,516	24 小时	0.003	2023/07/04	0.040	达标
蔡溪屯	504	489	24 小时	0.010	2023/07/15	0.143	达标
洞脉上	1,104	889	24 小时	0.005	2023/07/04	0.070	达标
赶纸山	-1,772	547	24 小时	0.001	2023/05/01	0.011	达标
井塆	-2,352	1,366	24 小时	0.002	2023/11/05	0.031	达标
区域最大	-100	-200	24 小时	0.037	2023/04/22	0.529	达标

表 4.1-42 本项目五氧化二磷 1 小时浓度贡献值预测结果表

s= shulda	and the state of the	X/	Y/	平均	最大贡献值/	un mande (vor	占标率/	达标
污染物	预测点	m	m	时段	(μg/m³)	出现时间	% 0.009 0.009 0.009 0.022 0.010 0.065 0.008 0.010 0.012 0.011 0.018 0.008 0.011 0.014 0.017	情况
	田新岩	2,809	2,314	1 小时	0.013	2023/02/01 08:00	0.009	达标
	蒋家塆	-31	-2,041	1 小时	0.014	2023/07/28 20:00	0.009	达标
	彭家	114	839	1 小时	0.033	2023/06/19 06:00	0.022	达标
	岩下	138	2,356	1 小时	0.015	2023/06/28 20:00	0.010	达标
	猫猫冲	-1,043	2,741	1 小时	0.097	2023/02/25 02:00	0.065	达标
	麻音塘	-735	-2,739	1小时	0.012	2023/05/10 07:00	0.008	达标
	羊庄	-531	-2,332	1 小时	0.015	2023/01/27 17:00	0.010	达标
	菜溪村	-570	1,381	1小时	0.019	2023/05/28 00:00	0.012	达标
	下廖溪	-928	-2,425	1 小时	0.017	2023/05/10 07:00	0.011	达标
at bui / to	后锁	785	-491	1 小时	0.026	2023/01/23 10:00	0.018	达标
五氧化二	湖南田	659	-2,207	1 小时	0.012	2023/09/22 05:00	0.008	达标
確	跳破	1,874	-486	1小时	0.016	2023/07/11 06:00	0.011	达标
	磨沟	2,587	810	1 小时	0.017	2023/02/05 09:00	0.011	达标
1	白岩塘	2,398	1,345	I小时	0.021	2023/02/15 08:00	0.014	达标
	岩坎上	1,183	-331	1 小时	0.026	2023/07/11 06:00	0.017	达标
	分洲	1,559	-1,678	1 小时	0.016	2023/06/23 06:00	0.011	达标
	田家	1,842	-2,503	1 小时	0.010	2023/06/23 06:00	0.007	达标
	辽家塆	1,586	39	1 小时	0.016	2023/07/09 22:00	0.011	达标
	榴树井	1,998	1,064	1 小时	0.024	2023/02/15 08:00	0.016	达标
	杉木林	1,276	-765	I小时	0.026	2023/01/23 10:00	0.017	达标
	胜利村	1,595	604	1 小时	0.025	2023/02/15 08:00	0.017	达标

稀贵金属资源循环利用项目环境影响报告书

高弓滩	2,275	-160	L小时	0.013	2023/06/13 03:00	0.009	达标
张家	-1,243	2,600	1 小时	0.127	2023/02/25 02:00	0.085	达标
上廖溪	-2,097	-1,243	1小时	0.016	2023/02/25 08:00	0.011	达标
腊岩	-2,216	-2,494	1小时	0.014	2023/02/18 17:00	0.009	达标
中寨	-2,121	-2,706	1小时	0.013	2023/11/08 03:00	0.009	达标
观音滩	157	-2,653	1小时	0.013	2023/10/26 06:00	0.009	达标
荒田	-2,749	1,272	1 小时	0.131	2023/12/30 03:00	0.087	达标
凡溪屯	-2,482	-583	1小时	0.017	2023/12/26 09:00	0.012	达标
土湾	-1,640	2,551	1.小时	0.011	2023/05/20 04:00	0.007	达标
三脚岩	-1,876	183	1 小时	0.023	2023/08/06 20:00	0.016	达标
三寨村	-1,889	-615	1小时	0.021	2023/12/26 09:00	0.014	达标
堰塘塆	-1,966	739	1小时	0.028	2023/03/16 03:00	0.019	达标
白猫冲	-1,661	1,244	1 小时	0.042	2023/04/02 23:00	0.028	达标
竹山溪	-1,354	1,893	1 小时	0.014	2023/06/18 03:00	0.009	达析
白家庄	-1,088	-62	1 小时	0.027	2023/12/26 09:00	0.018	达标
鲇鱼塘村	1,643	-2,622	1.小时	0.011	2023/12/05 08:00	0.007	达标
斜滩	1,950	-1,973	1 小时	0.015	2023/06/23 06:00	0.010	达特
陆家塆	498	79	1 小时	0.035	2023/06/30 06:00	0.023	达析
菜园	-1,031	-2,657	1 小时	0.016	2023/05/10 07:00	0.011	达标
杨柳冲	2,104	1,516	1 小时	0.020	2023/12/03 08:00	0.014	达标
蔡溪屯	504	489	1 小时	0.038	2023/10/14 07:00	0.025	达杨
洞脑上	1,104	889	1 小时	0.029	2023/03/26 07:00	0.019	达有
赶纸山	-1,772	547	1 小时	0.011	2023/10/27 22:00	0.007	达标
井塆	-2,352	1,366	1小时	0.073	2023/11/05 06:00	0.049	达标
区域最大值	-300	100	上小时	0.840	2023/09/18 21:00	0,560	达标

表 4.1-43 本项目五氧化二磷 24 小时浓度贡献值预测结果表

运动物	255 Mil Jr	X/	Y/	平均	最大贡献值/	di 2010 4 (SI	占标率/	达标
污染物	预测点	m	m	时段	(µg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	24 小时	0.002	2023/01/08	0.004	达标
	蒋家塆	-31	-2,041	24 小时	0.001	2023/03/20	0.002	达标
	彭家	114	839	24 小时	0.003	2023/07/06	0.005	达标
	岩下	138	2,356	24 小时	0.001	2023/06/28	0.003	达标
	猫猫冲	-1,043	2,741	24 小时	0.005	2023/03/21	0.009	达标
	麻音塘	-735	-2,739	24 小时	0.002	2023/02/02	0.005	达标
	羊庄	-531	-2,332	24 小时	0.003	2023/02/02	0.005	达标
	菜溪村	-570	1,381	24 小时	0.002	2023/07/01	0.004	达标
	下廖溪	-928	-2,425	24 小时	0.003	2023/02/11	0.006	达标
	后锁	785	-491	24 小时	0.001	2023/10/27	0.003	达标
	湖南田	659	-2,207	24 小时	0.001	2023/05/11	0.001	达标
	跳破	1,874	-486	24 小时	0.001	2023/07/11	0.001	达标
	磨沟	2,587	810	24 小时	0.002	2023/12/07	0.004	达标
五氧化二	白岩塘	2,398	1,345	24 小时	0.002	2023/11/07	0.004	达标
俳	岩坎上	1,183	-331	24 小时	0.001	2023/07/11	0.002	达标
	分洲	1,559	-1,678	24 小时	0.001	2023/06/23	0.001	达标
	田家	1,842	-2,503	24 小时	0.001	2023/12/19	0.001	达标
	辽家塆	1,586	39	24.小时	0.001	2023/06/07	0.003	达标
	榴树井	1,998	1,064	24 小时	0.002	2023/11/07	0.005	达标
	杉木林	1,276	-765	24 小时	0.001	2023/01/23	0.002	达标
	胜利村	1,595	604	24 小时	0.003	2023/12/07	0.007	达标
	高弓滩	2,275	-160	24 小时	0.001	2023/06/13	0.002	达标
	张家	-1,243	2,600	24 小时	0.007	2023/02/25	0.015	达标
	上廖溪	-2,097	-1,243	24 小时	0.003	2023/12/18	0.006	达标
	腊岩	-2,216	-2,494	24 小时	0.003	2023/12/02	0.006	达标
	中寨	-2,121	-2,706	24 小时	0.003	2023/02/12	0.006	达标
	观音滩	157	-2,653	24 小时	0.001	2023/07/28	0.002	达标

稀贵金属资源循环利用项目环境影响报告书

荒田	-2,749	1,272	24 小时	0.006	2023/12/30	0.013	达标
凡溪屯	-2,482	-583	24 小时	0.001	2023/12/09	0.003	达标
上湾	-1,640	2,551	24 小时	0.001	2023/12/26	0.001	达标
三脚岩	-1,876	183	24 小时	0.001	2023/08/06	0.002	达标
三寨村	-1,889	-615	24 小时	0.003	2023/12/09	0.005	达标
堰塘塆	-1,966	739	24 小时	0.001	2023/03/16	0.002	达标
白猫冲	-1,661	1,244	24 小时	0.002	2023/04/02	0.004	达标
竹山溪	-1,354	1,893	24 小时	0.001	2023/05/25	0.002	达标
白家庄	-1,088	-62	24 小时	0.002	2023/12/09	0.004	达标
鲇鱼塘村	1,643	-2,622	24 小时	0.001	2023/12/19	0.001	达标
斜滩	1,950	-1,973	24 小时	0.001	2023/06/23	0.001	达标
陆家塆	498	79	24 小时	0.005	2023/07/21	0.010	达标
菜园	-1.031	-2,657	24 小时	0.003	2023/02/11	0.006	达标
杨柳冲	2,104	1,516	24 小时	0.003	2023/01/30	0.005	达标
蔡溪屯	504	489	24 小时	0.007	2023/07/04	0.014	达标
洞脑上	1,104	889	24 小时	0.004	2023/06/12	0.007	达标
赶纸山	-1,772	547	24 小时	0.001	2023/10/27	0.002	达标
井塆	-2,352	1,366	24 小时	0.003	2023/11/05	0.006	达标
区域最大值	-300	100	24 小时	0.035	2023/09/18	0.071	达标

表 4.1-44 本项目氯气 1 小时浓度贡献值预测结果表

污染物	预测点	X/	Y/	平均	最大页献值/	出现时间	占标率/	达标
75条例	顶脚层	mi	m	时段	(µg/m³)	क्षा रहा ग्रह्मा होने	%	情况
	田新岩	2,809	2,314	1 小时	0.045	2023/03/26 07:00	0.045	达标
	蒋家塆	-31	-2,041	1 小时	0.062	2023/08/02 07:00	0.062	达标
	彭家	114	839	1 小时	0.086	2023/07/11 21:00	0.086	达柯
	岩下	138	2,356	1 小时	0.054	2023/04/16 21:00	0.054	达板
	猫猫冲	-1,043	2,741	1 小时	0.204	2023/02/25 02:00	0.204	达杭
	麻音塘	-735	-2,739	1 小时	0.053	2023/05/10 07:00	0.053	达板
	辛庄	-531	-2,332	1 小时	0.054	2023/05/10 07:00	0.054	达标
	菜溪村	-570	1,381	1 小时	0.067	2023/07/01 20:00	0.067	达机
	下廖溪	-928	-2,425	L小时	0.071	2023/05/10 07:00	0.071	达板
	后锁	785	+491	1 小时	0.075	2023/10/27 08:00	0.075	达村
	湖南田	659	-2,207	1 小时	0.043	2023/12/19 09:00	0.043	达核
	跳破	1,874	-486	1 小时	0.054	2023/12/04 09:00	0.054	达标
	磨沟	2,587	810	1 小时	0.064	2023/02/15 08:00	0.064	达制
1	白岩塘	2,398	1,345	1 小时	0.066	2023/02/15 08:00	0.066	达板
	岩坎上	1,183	-331	1 小时	0.054	2023/12/04 09:00	0.054	达核
	分洲	1,559	-1,678	1 小时	0.052	2023/06/23 06:00	0.052	达核
氯	田家	1,842	-2,503	1 小时	0.038	2023/06/23 06:00	0.038	达标
	辽家塆	1,586	39	1 小时	0.050	2023/12/23 09:00	0.050	达机
	榴树井	1,998	1,064	1 小时	0.070	2023/02/15 08:00	0.070	达核
	杉木林	1,276	-765	1小时	0.068	2023/01/23 10:00	0.068	达机
	胜利村	1,595	604	1 小时	0.077	2023/03/29 07:00	0.077	达板
	高弓滩	2,275	-160	1 小时	0.046	2023/12/23 09:00	0.046	达杭
	张家	-1,243	2,600	1 小时	0.436	2023/02/25 02:00	0.436	达板
	上廖溪	-2,097	-1,243	1 小时	0.062	2023/02/25 08:00	0.062	达机
	腊岩	-2,216	-2,494	1 小时	0.037	2023/09/24 02:00	0.037	达板
	中寨	-2,121	-2,706	I小时	0.042	2023/07/17 22:00	0.042	达板
	观音滩	157	-2,653	1 小时	0.048	2023/08/02 07:00	0.048	达杭
	荒田	-2,749	1,272	1 小时	0.263	2023/12/30 03:00	0.263	达核
	凡溪屯	-2,482	-583	1 小时	0.061	2023/12/26 09:00	0.061	达机
	土湾	-1,640	2,551	1 小时	0.145	2023/02/20 02:00	0.145	达核
	三脚岩	-1,876	183	1 小时	0.059	2023/08/06 20:00	0.059	达板
	三寨村	-1,889	-615	I小时	0.078	2023/12/26 09:00	0.078	达机
	堰塘塆	-1,966	739	1 小时	0.077	2023/03/16 03:00	0.077	达杨

白猫冲	-1,661	1,244	L小时	0.102	2023/04/02 23:00	0.102	达标
竹山溪	-1,354	1,893	1 小时	0.043	2023/03/06 18:00	0.043	达标
白家庄	-1,088	-62	1 小时	0.079	2023/07/17 21:00	0.079	达标
鲇鱼塘村	1,643	-2,622	1 小时	0.044	2023/12/19 09:00	0.044	达标
斜滩	1,950	-1,973	1 小时	0.053	2023/06/23 06:00	0.053	达标
陆家塆	498	79	1 小时	0.106	2023/07/04 22:00	0.106	达标
菜园	-1,031	-2,657	1 小时	0.069	2023/05/10 07:00	0.069	达标
杨柳冲	2,104	1,516	1.小时	0.059	2023/12/03 08:00	0.059	达标
蔡溪屯	504	489	1.小时	0.097	2023/05/13 20:00	0.097	达标
洞脑上	1,104	889	1 小时	0.070	2023/03/26 07:00	0.070	达柯
赶纸山	-1,772	547	1 小时	0.037	2023/03/09 18:00	0.037	达标
井塆	-2,352	1,366	1 小时	0.147	2023/03/13 19:00	0.147	达标
区域最大值	-300	100	1小时	0.908	2023/11/05 06:00	0.908	达标

表 4.1-45 本项目氯气 24 小时浓度贡献值预测结果表

污染物	335,560 .15	X/	Y/	平均	最大贡献值/	du still net des	占标率/	达杭
ケ米初	预测点 -	m	m	时段	(μg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	24 小时	0.005	2023/05/13	0.018	达杭
	蒋家塆	-31	-2,041	24 小时	0.005	2023/01/14	0.017	达标
	彭家	114	839	24 小时	0.012	2023/07/06	0.039	达标
	岩下	138	2,356	24 小时	0.006	2023/06/28	0.020	达核
	猫猫冲	-1,043	2,741	24 小时	0.010	2023/02/24	0.032	达核
	麻音塘	-735	-2,739	24 小时	0.007	2023/02/02	0.024	达核
	羊庄	-531	-2,332	24 小时	0.008	2023/02/02	0.025	达核
	菜溪村	-570	1,381	24 小时	0,008	2023/07/01	0.025	达林
	下廖溪	-928	-2,425	24 小时	0.009	2023/05/10	0.028	达板
	后锁	785	-491	24 小时	0.005	2023/10/27	0.016	达核
	湖南田	659	-2,207	24.小时	0.003	2023/12/19	0.010	达杭
	跳破	1,874	-486	24 小时	0.004	2023/07/21	0.013	达板
	磨沟	2,587	810	24 小时	0.008	2023/12/07	0.027	达核
	白岩塘	2,398	1,345	24 小时	0.007	2023/07/04	0.024	达专
	岩坎上	1,183	-331	24 小时	0.006	2023/07/21	0.021	达林
3	分洲	1,559	-1,678	24 小时	0.003	2023/12/19	0.010	达核
	田家	1,842	-2,503	24 小时	0.003	2023/12/19	0.011	达核
	辽家塆	1,586	39	24 小时	0.006	2023/07/21	0.021	达书
	榴树井	1,998	1,064	24 小时	0.009	2023/07/04	0.029	达杉
氯	杉木林	1,276	-765	24 小时	0.004	2023/10/27	0.013	达核
	胜利村	1,595	604	24 小时	0.012	2023/07/04	0.039	达核
	高弓滩	2,275	-160	24 小时	0.004	2023/07/21	0.013	达林
	张家	-1,243	2,600	24 小时	0.029	2023/02/25	0.098	达杉
	上廖溪	-2,097	-1,243	24 小时	0.011	2023/12/10	0.035	达核
	腊岩	-2,216	-2,494	24 小时	0.013	2023/09/24	0.044	达林
	中寨	-2,121	-2,706	24 小时	0.011	2023/02/12	0.036	达标
	观音滩	157	-2,653	24 小时	0.003	2023/07/28	0.010	达标
	売田	-2,749	1,272	24 小时	0.012	2023/12/30	0.042	达林
	凡溪屯	-2,482	-583	24 小时	0.005	2023/12/09	0.017	达标
	土湾	-1,640	2,551	24 小时	0.013	2023/02/20	0.045	达核
	三脚岩	-1,876	183	24 小时	0.003	2023/08/06	0.012	达书
	三寨村	-1,889	-615	24 小时	0.008	2023/12/09	0.027	达标
	堰塘塆	-1,966	739	24 小时	0.003	2023/03/16	0.011	达核
	白猫冲	-1,661	1,244	24 小时	0.006	2023/04/02	0.020	达核
	竹山溪	-1,354	1,893	24 小时	0.004	2023/05/01	0.013	达机
	白家庄	-1,088	-62	24 小时	0.005	2023/07/17	0.018	达核
	鲇鱼塘村	1,643	-2,622	24 小时	0.003	2023/12/19	0.011	达板
	斜滩	1,950	-1,973	24 小时	0.003	2023/12/19	0.009	达标
	陆家塆	498	79	24 小时	0.024	2023/07/04	0.081	达杭

菜园	-1,031	-2,657	24 小时	0.008	2023/05/10	0.027	达标
杨柳冲	2,104	1,516	24 小时	0.007	2023/05/13	0.024	达标
蔡淏屯	504	489	24 小时	0.022	2023/07/04	0.072	达标
洞脑上	1,104	889	24 小时	0.013	2023/07/04	0,042	达标
赶纸山	-1,772	547	24 小时	0.003	2023/05/01	0.009	达标
井塆	-2,352	1,366	24 小时	0.006	2023/03/13	0.021	达标
区域最大	-200	-300	24 小时	0.128	2023/04/22	0.427	达标

表 4.1-46 本项目甲醛 1 小时浓度贡献值预测结果表

v-lap as	ieropu tu	X/	Y/	平均	最大贡献值/	11.200-1.400	占标率/	达析
污染物	预测点	m	m	时段	(μg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	1 小时	0.00074	2023/06/11 23:00	0.00148	达标
	蒋家塆	-31	-2,041	1 小时	0.00093	2023/07/28 20:00	0.00186	达析
	彭家	114	839	1 小时	0.00193	2023/07/14 06:00	0.00386	达板
	岩下	138	2,356	L小时	0.00077	2023/07/14 06:00	0.00153	达析
	猫猫冲	-1,043	2,741	1 小时	0.00287	2023/08/22 06:00	0.00575	达标
	麻音塘	-735	-2,739	T 小时	0.00074	2023/05/24 22:00	0.00148	达标
	羊庄	-531	-2,332	1 小时	0.00084	2023/08/28 04:00	0.00167	达标
	菜溪村	-570	1,381	1 小时	0.00116	2023/07/01 21:00	0.00233	达核
	下廖溪	-928	-2,425	1 小时	0.00091	2023/05/10 07:00	0.00181	达板
	后锁	785	-491	1小时	0.00147	2023/07/11 06:00	0.00294	达标
	湖南田	659	-2,207	1 小时	0.00083	2023/05/11 06:00	0.00166	达杨
	跳破	1,874	-486	1小时	0.00089	2023/08/27 01:00	0.00177	达标
	磨沟	2,587	810	1小时	0.00098	2023/02/15 08:00	0.00195	达核
	白岩塘	2,398	1,345	1 小时	0.00108	2023/12/03 08:00	0.00215	达村
	岩坎上	1,183	-331	1 小时	0.00111	2023/07/11 06:00	0.00222	达核
	分洲	1,559	-1,678	1 小时	0.00092	2023/06/23 06:00	0.00183	达板
	田家	1,842	-2,503	1 小时	0.00063	2023/06/23 06:00	0.00126	达标
	辽家塆	1,586	39	1 小时	0.00100	2023/02/06 08:00	0.00200	达板
	榴树井	1,998	1,064	1 小时	0.00114	2023/12/03 08:00	0.00229	达板
	杉木林	1,276	-765	1 小时	0.00139	2023/01/23 10:00	0.00277	达物
	胜利村	1,595	604	L小时	0.00138	2023/02/15 08:00	0.00277	达林
	高弓狮	2,275	-160	1 小时	0.00078	2023/07/09 22:00	0.00156	达核
甲醛	张家	-1,243	2,600	1 小时	0.00874	2023/02/25 02:00	0.01748	达杉
	上廖溪	-2,097	-1,243	1 小时	0.00091	2023/02/25 08:00	0.00183	达板
	腊岩	-2,216	-2,494	1 小时	0.00078	2023/02/18 17:00	0.00155	达杉
	中寨	-2,121	-2,706	1 小时	0.00082	2023/06/20 20:00	0.00164	达核
	观音滩	157	-2,653	1 小时	0.00070	2023/10/26 06:00	0.00140	达核
	荒田	-2,749	1,272	1 小时	0.00484	2023/10/31 19:00	0.00968	达核
	凡溪屯	-2,482	-583	1 小时	0.00100	2023/04/01 19:00	0.00200	达机
	土湾	-1,640	2,551	1 小时	0.00047	2023/05/20 04:00	0.00094	达核
	三脚岩	-1,876	183	1 小时	0.00094	2023/08/16 21:00	0.00188	达核
	三寨村	-1,889	-615	1小时	0.00116	2023/12/26 09:00	0.00232	达杭
	堰塘塆	-1,966	739	1 小时	0.00088	2023/10/27.22:00	0.00176	达板
	白猫冲	-1,661	1,244	1 小时	0.00170	2023/05/28 19:00	0.00341	达核
	竹山溪	-1,354	1,893	1 小时	0.00088	2023/03/07 18:00	0.00177	达板
	白家庄	-1,088	-62	1.小时	0.00129	2023/10/13 07:00	0.00258	达板
	鲇鱼塘村	1,643	-2,622	上小时	0.00049	2023/06/23 06:00	0.00098	达板
	斜滩	1,950	-1,973	I小时	0.00084	2023/06/23 06:00	0.00168	达杭
	陆家塆	498	79	1 小时	0.00184	2023/10/13 17:00	0.00367	达杭
	菜园	-1,031	-2,657	1 小时	0.00087	2023/05/10 07:00	0.00174	达机
	杨柳冲	2,104	1,516	1 小时	0.00096	2023/12/03 08:00	0.00193	达机
	蔡溪屯	504	489	I小时	0.00180	2023/03/26 07:00	0.00360	达核
	洞脑上	1,104	889	1 小时	0.00144	2023/03/26 07:00	0.00289	达标
	赶纸山	-1,772	547	I小时	0.00105	2023/10/27 22:00	0.00210	达标
	井塆	-2,352	1,366	1 小时	0.00179	2023/03/13 19:00	0.00358	达杨

区域最大	-300	300	1 小时	0.04061	2023/05/25 23:00	0.08122	达标
------	------	-----	------	---------	------------------	---------	----

表 4.1-47 本项目甲醛 24 小时浓度贡献值预测结果表

		1			的林及贝斯坦拉	100000000000	L15-41	1 27 3
污染物	预测点	X/	Υ/.	平均	最大贡献值/	出现时间	占标率/	达林
1 4057 84		m	m	时段	(μg/m³)		0/0	情况
	田新岩	2,809	2,314	24 小时	0.00011	2023/01/08	0.00000	达标
	蒋家塆	-31	-2,041	24 小时	0.00007	2023/07/28	0.00000	达机
	彭家	114	839	24 小时	0.00013	2023/08/23	0.00000	达林
	岩下	138	2,356	24 小时	0.00007	2023/07/07	0.00000	达标
	猎猫冲	-1,043	2,741	24 小时	0.00014	2023/02/24	0.00000	达林
	麻音塘	-735	-2,739	24 小时	0.00012	2023/02/02	0.00000	达林
	羊庄	-531	-2,332	24 小时	0.00013	2023/02/02	0.00000	达标
	菜溪村	-570	1,381	24 小时	0.00012	2023/07/01	0.00000	达柱
	下廖溪	-928	-2,425	24 小时	0.00016	2023/02/02	0.00000	达村
	后领	785	-491	24 小时	0.00007	2023/07/11	0.00000	达相
	湖南田	659	-2,207	24 小时	0.00004	2023/05/11	0.00000	达相
	跳破	1,874	-486	24 小时	0.00004	2023/07/21	0.00000	达村
	磨沟	2,587	810	24 小时	0.00014	2023/10/31	0.00000	达村
	白岩塘	2,398	1,345	24 小时	0.00009	2023/01/08	0.00000	达
	岩坎上	1,183	-331	24 小时	0,00007	2023/07/21	0.00000	达
	分洲	1,559	-1,678	24 小时	0.00004	2023/06/23	0.00000	达
	田家	1,842	-2,503	24 小时	0,00003	2023/12/19	0.00000	达
	辽家塆	1,586	39	24 小时	0.00009	2023/12/07	0.00000	达
	榴树井	1,998	1,064	24 小时	0.00010	2023/01/08	0.00000	达
	杉木林	1,276	-765	24 小时	0.00006	2023/01/23	0.00000	达
	胜利村	1,595	604	24 小时	0.00018	2023/11/07	0.00000	达
	高弓滩	2,275	-160	24 小时	0.00006	2023/08/15	0.00000	达
tii Xv	张家	-1,243	2,600	24 小时	0.00040	2023/02/25	0.00000	达
甲醛	上廖溪	-2,097	+1,243	24 小时	0.00014	2023/12/10	0.00000	达
	腊岩	-2,216	-2,494	24 小时	0.00016	2023/12/02	0.00000	达
	中寨	-2,121	-2,706	24 小时	0.00016	2023/02/12	0.00000	达
	观音滩	157	-2.653	24 小时	0.00004	2023/03/19	0.00000	达
	荒田	-2,749	1,272	24 小时	0.00026	2023/10/31	0.00000	达
	凡溪屯	-2,482	-583	24 小时	0.00007	2023/12/09	0.00000	达
	土湾	-1,640	2,551	24 小时	0.00004	2023/12/26	0.00000	达
	三脚岩	-1,876	183	24 小时	0.00004	2023/08/16	0.00000	达
	三寨村	-1,889	-615	24 小时	0.00013	2023/12/09	0.00000	达
	堰塘塆	-1,966	739	24 小时	0.00005	2023/10/27	0.00000	达
	白猫沖	-1,661	1,244	24 小时	0,00010	2023/05/28	0.00000	达
	竹山溪	-1,354	1,893	24 小时	0.00006	2023/05/01	0.00000	达
	白家庄	-1,088	-62	24 小时	0.00008	2023/10/13	0.00000	达
	鲇鱼塘村	1,643	-2,622	24 小时	0.00003	2023/12/19	0.00000	达
	斜滩	1,950	-1,973	24 小时	0.00004	2023/06/23	0.00000	达
	陆家塆	498	79	24 小时	0.00040	2023/07/04	0.00000	达
	菜园	-1,031	-2,657	24 小时	0.00015	2023/02/02	0.00000	达
	杨柳冲	2,104	1,516	24 小时	0.00013	2023/01/30	0.00000	选
	蔡溪屯	504	489	24 小时	0.00031	2023/07/30	0.00000	11.1
	洞脑上	1,104	889	24 小时	0.00019	2023/01/30	0.00000	达
	赶纸山	-1,772	547	24 小时	0.00006	2023/10/27	0.00000	达
	井塆	-2,352	1,366	24 小时	0.00008	2023/10/27	0.00000	达
	区域最大值	-300	1,366	24 小时	0.00094	2023/05/15	0.00000	达

表 4.1-48 本项目氨气 1 小时浓度贡献值预测结果表

污染物	预测点	X/	Y/.	平均	最大贡献值/	出现时间	占标率/	达标
15%(10)	19000月六	m	m	时段	(µg/m³)	TO WELL IN	%	情况
111.69	田新岩	2,809	2,314	1 小时	0.001	2023/06/11 23:00	0.001	达标
甲醛	蒋家塆	-31	-2,041	1 小时	0.001	2023/07/28 20:00	0.002	达标

稀贵金属资源循环利用项目环境影响报告书

参索	114	0.00	i /l-n-i	0.002	2022/07/14 06:00	0.004	往長
彭家 岩下	114	839	1小时	0.002	2023/07/14 06:00	0.004	达标
		2,356		0.001	2023/07/14 06:00	0.002	达标
猫猫冲	-1,043	2,741	1 小时	0.003			
麻音塘	-735	-2,739	1小时	0.001	2023/05/24 22:00	0.001	达标
羊庄	-531	-2,332	1小时	0.001	2023/08/28 04:00	0.002	达标
菜溪村	-570	1,381	1 小时	0.001	2023/07/01 21:00	0.002	达标
下廖溪	-928	-2,425	1小时	0.001	2023/05/10 07:00	0.002	达标
后锁	785	-491	1小时	0.001	2023/07/11 06:00	0.003	达标
湖南田	659	-2,207	1.小时	0.001	2023/05/11 06:00	0.002	达标
跳破	1,874	-486	1 小时	0.001	2023/08/27 01:00	0.002	达标
磨沟	2,587	810	1小时	0,001	2023/02/15 08:00	0.002	达标
白岩塘	2,398	1,345	1小时	0.001	2023/12/03 08:00	0.002	达标
岩坎上	1,183	-331	1 小时	0.001	2023/07/11 06:00	0.002	达标
分洲	1,559	-1,678	1 小时	0.001	2023/06/23 06:00	0.002	达标
田家	1,842	-2,503	1小时	0.001	2023/06/23 06:00	0.001	达标
辽家塆	1,586	39	1 小时	0.001	2023/02/06 08:00	0.002	达标
榴树井	1,998	1,064	1 小时	0.001	2023/12/03 08:00	0.002	达标
杉木林	1,276	-765	I 小时	0.001	2023/01/23 10:00	0.003	达标
胜利村	1,595	604	1 小时	0.001	2023/02/15 08:00	0.003	达标
高弓滩	2,275	~160	I 小时	0.001	2023/07/09 22:00	0.002	达标
张家	-1,243	2,600	1 小时	0.009	2023/02/25 02:00	0.017	达标
上塵漢	-2,097	-1,243	1 小时	0.001	2023/02/25 08:00	0.002	达标
腊岩	-2,216	-2,494	1小时	0.001	2023/02/18 17:00	0.002	达标
中寨	-2,121	-2,706	1 小时	0.001	2023/06/20 20:00	0.002	达标
观音滩	157	-2,653	1小时	0.001	2023/10/26 06:00	0.001	达标
荒田	-2,749	1,272	1 小时	0.005	2023/10/31 19:00	0.010	达标
凡溪屯	-2,482	-583	1 小时	0.001	2023/04/01 19:00	0.002	达标
土湾	-1,640	2,551	1 小时	0.000	2023/05/20 04:00	0.001	达标
三脚岩	-1,876	183	1小时	0.001	2023/08/16 21:00	0.002	达标
三寨村	-1,889	-615	1 小时	0.001	2023/12/26 09:00	0.002	达标
堰塘塆	-1,966	739	1 小时	0.001	2023/10/27 22:00	0.002	达标
白猫冲	-1,661	1,244	1 小时	0.002	2023/05/28 19:00	0.003	达标
竹山溪	-1,354	1,893	1 小时	0,001	2023/03/07 18:00	0.002	达标
白家庄	-1,088	-62	1 小时	0.001	2023/10/13 07:00	0.003	达标
鲇鱼塘村	1,643	-2,622	1 小时	0,000	2023/06/23 06:00	0.001	达标
斜滩	1,950	-1,973	1 小时	0.001	2023/06/23 06:00	0.002	达标
陆家塆	498	79	T小时	0.002	2023/10/13 17:00	0.004	达标
菜园	-1,031	-2,657	1 小时	0.001	2023/05/10 07:00	0.002	达标
杨柳冲	2,104	1,516	1 小时	0.001	2023/12/03 08:00	0.002	达标
蔡溪屯	504	489	1 414	0.002	2023/03/26 07:00	0.004	达标
洞脑上	1,104	889	1小时	0.001	2023/03/26 07:00	0.003	达标
赶纸山	-1,772	547	1小时	0.001	2023/10/27 22:00	0.002	达标
井塆	-2,352	1,366	1 小时	0.002	2023/03/13 19:00	0.004	达标
区域最大值	-300	100	1 小时	0.041	2023/05/25 23:00	0.081	达标

表 4.1-49 本项目 NMHC 小时浓度贡献值预测结果表

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
75 06 400	TAMAND YES	m	m	时段	(µg/m³)	ETT SACTES IN	%	情况
	田新岩	2,809	2,314	L小时	0.306	2023/03/26 07:00	0.015	达标
	蒋家塆	-31	-2,041	1 小时	0.358	2023/07/28 20:00	0.018	达标
彭家	彭家	114	839	1 小时	0.712	2023/07/14 06:00	0.036	达标
STATIC	岩下	138	2,356	1 小时	0.314	2023/06/28 20:00	0.016	达标
NMHC	猫猫冲	-1,043	2,741	1小时	1.282	2023/02/24 02:00	0.064	达标
	麻音塘	-735	-2,739	1 小时	0.289	2023/05/24 22:00	0.014	达标
	羊庄	-531	-2,332	I小时	0.323	2023/08/28 04:00	0.016	达标
	菜溪村	-570	1,381	1 小时	0.429	2023/07/01 21:00	0.021	达标

稀贵金属资源循环利用项目环境影响报告书

下廖溪	-928	-2,425	L小时	0.405	2023/05/10 07:00	0.020	达标
后锁	785	+491	1 小时	0.577	2023/01/23 10:00	0.029	达标
湖南田	659	-2,207	1 小时	0.300	2023/05/11 06:00	0.015	达标
跳破	1,874	-486	1 小时	0.344	2023/08/27 01:00	0.017	达标
磨沟	2,587	810	1小时	0.417	2023/02/15 08:00	0.021	达标
白岩塘	2,398	1,345	1 4 104	0.467	2023/12/03 08:00	0.023	达标
岩坎上	1,183	-331	1 小时	0.475	2023/07/11 06:00	0.024	达标
分洲	1,559	-1,678	1小时	0.433	2023/06/23 06:00	0.022	达标
田家	1,842	-2,503	1 小时	0.287	2023/06/23 06:00	0.014	达标
辽家塆	1,586	39	1 小財	0.411	2023/02/05 09:00	0.021	达标
榴树井	1,998	1,064	1 小时	0.487	2023/12/03 08:00	0.024	达标
杉木林	1,276	-765	1小时	0.581	2023/01/23 10:00	0.029	达标
胜利村	1.595	604	1 小时	0.581	2023/02/15 08:00	0.029	达标
高弓滩	2,275	-160	1 小时	0.307	2023/07/09 22:00	0.015	达析
张家	-1,243	2,600	1 小时	3.274	2023/02/25 02:00	0.164	达标
上廖溪	-2,097	-1,243	1.小时	0.397	2023/02/25 08:00	0.020	达标
腊岩	-2,216	-2,494	1 小时	0.300	2023/02/18 17:00	0.015	达标
中寨	-2,121	-2,706	1 小时	0.313	2023/06/20 20:00	0.016	达板
观音滩	157	-2,653	1 小时	0.278	2023/07/28 20:00	0.014	达标
荒田	-2,749	1,272	1 小时	2.029	2023/12/30 03:00	0.101	达标
凡溪屯	-2,482	-583	1 小时	0.396	2023/12/26 09:00	0.020	达杨
土湾	-1,640	2,551	1 小时	0.242	2023/05/20 04:00	0.012	达柯
三脚岩	-1,876	183	1 小时	0.484	2023/12/20 01:00	0.024	达杨
三寨村	-1,889	-615	1 小时	0.517	2023/12/26 09:00	0.026	达杨
堰塘塆	-1,966	739	1小时	0.372	2023/10/27 22:00	0.019	达标
白猫冲	-1,661	1,244	1 小时	0.572	2023/05/28 19:00	0.029	达杨
竹山溪	-1,354	1,893	1 小时	0.421	2023/02/20 05:00	0.021	达标
白家庄	-1,088	-62	1 小时	0.509	2023/10/13 07:00	0.025	达标
鲇鱼塘村	1,643	-2,622	1 小时	0.218	2023/06/23 06:00	0.011	达标
斜滩	1,950	-1,973	1 小时	0.408	2023/06/23 06:00	0.020	达柄
陆家塆	498	79	1 小时	0.698	2023/02/05 09:00	0.035	达板
菜园	-1,031	-2,657	1 小时	0.389	2023/05/10 07:00	0.019	达标
杨柳冲	2,104	1,516	1 小时	0.424	2023/12/03 08:00	0.021	达标
蔡溪屯	504	489	1 小时	0.733	2023/03/26 07:00	0.037	达杨
洞脳上	1,104	889	1 小时	0.635	2023/03/26 07:00	0.032	达析
赶纸山	-1,772	547	1 小时	0.385	2023/10/27 22:00	0.019	达标
井塆	-2,352	1,366	I小时	0.982	2023/03/13 19:00	0.049	达标
区域最大值	-300	100	i 小时	12.022	2023/05/25 23:00	0.601	达标

表 4.1-50 本项目硫化氢 1 小时浓度贡献值预测结果表

45-3h Min	255 (80) Az	X/	Y/	平均	最大贡献值/	11: 361 0-1 6-1	占标率/	达标
污染物	预测点	m	m	时段	(µg/m³)	出现时间	% 0.218 0.235 0.511 0.266 1.119 0.195 0.221 0.347 0.253	情况
	田新岩	2,809	2,314	1小时	0.022	2023/06/11 23:00	0.218	达标
	蒋家塆	-31	-2,041	1 小时	0.024	2023/07/28 20:00	0.235	达标
	彭家	114	839	1 小时	0.051	2023/07/14 06:00	0.511	达标
	岩下	138	2,356	1 小时	0.027	2023/06/18 22:00	0.266	达标
	猫猫冲	-1,043	2,741	1小时	0,112	2023/02/24 02:00	1.119	达标
	麻音塘	-735	-2,739	1 小时	0.020	2023/06/15 23:00	0.195	达标
1120	羊庄	-531	-2,332	I小时	0.022	2023/03/11 05:00	0.221	达析
H2S	菜溪村	-570	1,381	1 小时	0.035	2023/01/12 17:00	0.347	达杨
	下慶溪	-928	-2,425	1 小时	0.025	2023/05/10 07:00	0.253	达板
	后锁	785	-491	1 小时	0.035	2023/01/23 10:00	0.347	达村
	湖南田	659	-2,207	I小时	0.019	2023/05/11 06:00	0.189	达柯
	跳破	1,874	-486	1 小时	0.023	2023/08/27 01:00	0.234	达标
	磨沟	2,587	810	L小时	0.025	2023/02/15 08:00	0.245	达标
	白岩塘	2,398	1,345	1 小时	0.030	2023/12/03 08:00	0,297	达杨

稀贵金属资源循环利用项目环境影响报告书

岩坎上	1,183	-331	工小时	0.030	2023/08/27 01:00	0.304	达标
分洲	1,559	-1,678	1 小时	0.023	2023/06/23 06:00	0.234	达标
田家	1,842	-2,503	1小时	0.015	2023/06/23 06:00	0.154	达标
辽家塆	1,586	39	1小时	0.026	2023/08/15 03:00	0.265	达标
榴树井	1,998	1,064	1小时	0.030	2023/03/13 03:00	0.304	达标
杉木林	1,276	-765	1小时	0.035	2023/01/23 10:00	0.353	达标
胜利村	1,595	604	1小时	0.033	2023/02/15 08:00	0.333	达标
高弓滩	2,275	-160	1小时	0.021	2023/06/13 03:00	0.207	达标
张家	-1,243	2,600	1.小时	0.149	2023/02/25 02:00	1.489	达标
上廖溪	-2.097	-1.243	1 小时	0.025	2023/02/25 08:00	0.248	达标
腊岩	-2,097	-2,494	1小时	0.023	2023/10/03 03:00	0.246	达板
中寨	-2,121	-2,706	1小时	0.022	2023/06/20 20:00	0.252	达标
观音滩	157	-2,653	1小时	0.020	2023/10/26 06:00	0.195	达标
荒田	-2,749	1,272	1 小时	0.105	2023/10/28 06:00	1.047	达板
凡溪屯	-2,482	-583	1小时	0.026	2023/08/09 19:00	0.255	达标
上湾	-1,640	2,551	1小时	0.026	2023/05/20 04:00	0.110	达板
三脚岩			1 小时		2023/08/06 20:00	0.382	达标
三寨村	-1,876	-615	1 小时	0.038	2023/12/26 09:00	0.318	达有
堰塘塆	-1,889 -1,966	739	1 小时	0.052	2023/10/31 20:00	0.631	达杨
771				0.003	2023/10/31 20:00	0.791	
白猫冲	-1,661	1,244	1 小时			100000	达标
竹山溪	-1,354	1,893	1小时	0.038	2023/09/29 23:00 2023/12/26 09:00	0.376	达杨
白家庄	-1,088	-62	1 小时	0.031		0.309	达标
鲇鱼塘村 斜滩	1,643	-2,622	1 小时	0.013	2023/12/19 09:00	0.133	达标
	1,950	-1,973	1小时	0.022	2023/06/23 06:00	0.220	
陆家塆	498	79	1 小时	0.056	2023/08/21 00:00	0.556	达标
菜园	-1,031	-2,657	1 小时	0.024	2023/05/10 07:00	0.244	达标
杨柳冲	2,104	1,516	1 小时	0.028	2023/12/03 08:00	0.278	达标
蔡溪屯	504	489	1小时	0.054	2023/10/14 07:00	0.539	达标
洞脳上	1,104	889	1小时	0.040	2023/03/26 07:00	0.400	达标
赶纸山	-1,772	547	1 小时	0.024	2023/10/27 22:00	0.244	达柯
井塆	-2,352	1,366	1 小时	0.076	2023/03/13 19:00	0.763	达柯
区域最大值	-300	100	1 小时	0,569	2023/05/25 23:00	5.686	达标

表 4.1-51 本项目镍 1 小时浓度贡献值预测结果表

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
1709010	Dickery	m	m	时段	(μg/m³)	(1) 5/(1) [1]	%	情况
	田新岩	2,809	2,314	1 小时	0.00013	2023/03/26 07:00	0.000	达标
	蒋家塆	-31	-2,041	1 小时	0.00013	2023/08/02 07:00	0.000	达标
	彭家	114	839	1 小时	0.00015	2023/07/14 06:00	0.000	达标
	岩下	138	2,356	1 小时	0.00011	2023/08/22 03:00	0.000	达标
	猫猫冲	-1,043	2,741	1 小时	0.00019	2023/09/19 19:00	0.001	达标
	麻音塘	-735	-2,739	1 小时	0.00011	2023/05/10 07:00	0.000	达标
	羊庄	-531	-2,332	1小时	0.00011	2023/05/10 07:00	0.000	达标
	菜溪村	-570	1,381	1 小时	0.00010	2023/09/17 18:00	0.000	达标
	下廖溪	-928	-2,425	1 小时	0.00014	2023/05/10 07:00	0.000	达柯
\$10	后锁	785	-491	1 小时	0.00037	2023/06/23 06:00	0.001	达标
INI	湖南田	659	-2,207	1 小时	0.00008	2023/08/02 05:00	0.000	达标
	跳破	1,874	-486	上小时	0.00010	2023/12/04 09:00	0.000	达杨
	磨沟	2,587	810	I小时	0.00016	2023/02/05 09:00	0.001	达析
	白岩塘	2,398	1,345	1 小时	0.00016	2023/02/15 08:00	0.001	达标
	岩坎上	1,183	-331	1 小时	0.00013	2023/10/27 08:00	0.000	达标
	分洲	1,559	-1,678	1 小时	0.00024	2023/06/23 06:00	0.001	达村
	田家	1,842	-2,503	I小时	0.00014	2023/06/23 06:00	0.000	达柯
Nî	辽家垮	1,586	39	1 小时	0.00012	2023/02/05 09:00	0.000	达标
	榴树井	1,998	1,064	I小时	0.00017	2023/02/15 08:00	0.001	达标
	杉木林	1,276	-765	1 小时	0.00028	2023/06/23 06:00	0.001	达柯

稀贵金属资源循环利用项目环境影响报告书

胜利村	1,595	604	L小时	0.00020	2023/02/05 09:00	0.001	达析
高马滩	2,275	-160	1 小时	0.00009	2023/08/21 00:00	0.000	达标
张家	-1,243	2,600	1 小时	0.00049	2023/02/25 05:00	0.002	达标
上塵溪	-2,097	-1,243	1 小时	0.00013	2023/02/25 08:00	0.000	达标
腊岩	-2,216	-2,494	1小时	0.00007	2023/01/16 08:00	0.000	达有
中赛	-2,121	-2,706	1小时	0.00008	2023/04/10 02:00	0.000	达杨
观音滩	157	-2,653	1 小时	0.00010	2023/08/02 07:00	0.000	达村
荒田	-2,749	1,272	1 小时	0.00020	2023/12/30 03:00	0.001	达标
凡溪屯	-2,482	-583	1 小时	0.00017	2023/12/26 09:00	0.001	达柄
土灣	-1,640	2,551	1 小时	0.00028	2023/04/01 23:00	0.001	达标
三脚岩	-1,876	183	1 小时	0.00132	2023/12/20 01:00	0.004	达标
三寨村	-1,889	-615	1 小时	0.00021	2023/12/26 09:00	0.001	达标
堰塘塆	-1,966	739	1 小时	0.00092	2023/02/06 19:00	0.003	达杨
白猫冲	-1,661	1,244	1 小时	0.00020	2023/04/02 23:00	0.001	达板
竹山溪	-1,354	1,893	1 小时	0.00108	2023/02/20 05:00	0.004	达标
白家庄	-1,088	-62	1.小时	0.00022	2023/12/26 09:00	0.001	达板
鲇鱼塘村	1,643	-2,622	1 小时	0.00010	2023/06/23 06:00	0.000	达机
斜滩	1,950	-1,973	1 小时	0.00024	2023/06/23 06:00	0.001	达板
陆家塆	498	79	1 小时	0.00034	2023/02/05 09:00	0.001	达村
菜园	-1,031	-2,657	1 小时	0.00014	2023/05/10 07:00	0.000	达标
杨柳冲	2,104	1,516	1 小时	0.00015	2023/03/26 07:00	0.001	达杨
蔡溪屯	504	489	1 小时	0.00032	2023/03/26 07:00	0.001	达核
洞脑上	1,104	889	1 小时	0.00022	2023/03/26 07:00	0.001	达板
赶纸山	-1,772	547	1小时	0.00021	2023/02/06 19:00	0.001	达标
井塆	-2,352	1,366	1小时	0.00015	2023/11/05 06:00	0.001	达村
区域最大 值	-200	200	1 小时	0.01348	2023/01/03 01:00	0.045	达杨

表 4.1-52 本项目锰及其化合物 24 小时浓度贡献值预测结果表

行法机械	预测点	X/	Y/.	平均	最大贡献值/	出现时间	占标率/	达标
1.3 24540	13648174	m	m	时段	(µg/m³)	(11 tight) bid	%	情况
	田新岩	2,809	2,314	24 小时	0.00006	2023/08/16	0.001	达标
	蒋家塆	-31	-2,041	24 小时	0.00004	2023/04/12	0.000	达标
	彭家	114	839	24 小时	0.00009	2023/07/06	0.001	达标
	岩下	138	2,356	24 小时	0.00004	2023/06/28	0.000	达标
	猫猫冲	-1,043	2,741	24 小时	0.00003	2023/02/25	0.000	达标
	麻音塘	-735	-2,739	24 小时	0.00006	2023/05/10	0.001	达标
	羊庄.	-531	-2,332	24 小时	0.00006	2023/05/10	0.001	达标
	菜溪村	-570	1,381	24 小时	0.00004	2023/04/17	0.000	达标
	下塵溪	-928	-2,425	24 小时	0.00007	2023/05/10	0.001	达标
	后锁	785	-491	24 小时	0.00006	2023/10/27	0.001	达标
	湖南田	659	-2,207	24 小时	0.00003	2023/08/02	0.000	达标
污染物 猛及其化 合物	跳破	1,874	-486	24 小时	0.00003	2023/07/30	0.000	达标
	磨沟	2,587	810	24 小时	0.00006	2023/07/21	0.001	达标
	白岩塘	2,398	1,345	24 小时	0.00006	2023/11/22	0.001	达标
	岩坎上	1,183	-331	24 小时	0.00003	2023/07/21	0.000	达标
	分剂	1,559	-1,678	24 小时	0.00004	2023/06/23	0.000	达标
	田家	1,842	-2,503	24 小时	0.00002	2023/06/23	0.000	达标
	辽家塆	1,586	39	24 小时	0.00004	2023/07/21	0.000	达标
1	榴树井	1,998	1,064	24 小时	0.00007	2023/11/22	0.001	达标
	杉木林	1,276	-765	24 小时	0.00005	2023/06/23	0.000	达标
	胜利村	1,595	604	24 小时	0.00009	2023/10/31	0.001	达标
	高弓滩	2,275	-160	24 小时	0.00002	2023/07/21	0.000	达标
	张家	-1,243	2,600	24 小时	0.00011	2023/02/25	0.001	达标
	上廖溪	-2,097	-1,243	24 小时	0.00006	2023/12/10	0.001	达标
猛及其化	腊岩	-2,216	-2,494	24 小时	0.00007	2023/09/24	0.001	达标
	中寨	-2,121	-2,706	24 小时	0.00007	2023/02/12	0.001	达标

稀贵金属资源循环利用项目环境影响报告书

观音滩	157	-2,653	24 小时	0.00004	2023/05/11	0.000	达标
荒田	-2,749	1,272	24 小时	0.00003	2023/12/30	0.000	达标
凡溪屯	-2,482	-583	24 小时	0.00004	2023/12/09	0.000	达标
土湾	-1,640	2,551	24 小时	0.00008	2023/02/20	0.001	达标
三脚岩	-1,876	183	24 小时	0.00021	2023/12/20	0.002	达标
三寨村	-1,889	-615	24 小时	0.00006	2023/12/09	0.001	达标
堰塘塆	-1,966	739	24 小时	0.00017	2023/02/06	0.002	达标
白猫冲	-1,661	1,244	24 小时	0.00004	2023/04/02	0.000	达标
竹山溪	-1,354	1,893	24 小时	0.00022	2023/02/20	0.002	达标
白家庄	-1,088	-62	24 小时	0.00004	2023/12/26	0.000	达标
鲇鱼塘村	1,643	-2,622	24 小时	0.00002	2023/12/19	0.000	达标
斜滩	1,950	-1,973	24 小时	0.00004	2023/06/23	0.000	达标
陆家塆	498	79	24 小时	0.00016	2023/07/04	0.002	达标
菜园	-1,031	-2,657	24 小时	0.00007	2023/05/10	0.001	达标
杨柳冲	2,104	1,516	24 小时	0.00006	2023/08/16	0.001	达标
蔡溪屯	504	489	24 小时	0.00016	2023/07/04	0.002	达标
洞脑上	1,104	889	24 小时	0.00009	2023/07/04	0.001	达标
赶纸山	-1,772	547	24 小时	0.00004	2023/02/06	0.000	达标
井塆	-2,352	1,366	24 小时	0.00002	2023/11/05	0.000	达标
区域最大值	-200	200	24 小时	0.00208	2023/01/03	0.021	达标

表 4.1-53 本项目二噁英年均浓度贡献值预测结果表

污染物	预测点	X/	Y/	平均	最大贡献值/	占标率/	达标
75%(10)	104001144	m	m	时段	(µg/m³)	%	情达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达达
	田新岩	2,809	2,314	年均	0.000000000051	0.009	达标
	蒋家塆	-31	-2,041	年均	0.000000000039	0.006	达标
	彭家	114	839	年均	0.000000000077	0.013	达标
	岩下	138	2,356	年均	0.0000000000020	0.003	达标
	猫猫冲	-1,043	2,741	年均	0.000000000038	0.006	达标
Ī	麻音塘	-735	-2,739	年均	0.000000000000	0.010	达标
Ī	羊庄	-531	-2,332	年均	0.000000000067	0.011	达标
	菜溪村	-570	1,381	年均	0.000000000027	0.005	达标
	下廖溪	-928	-2,425	年均	0.000000000089	0.015	达标
	后锁	785	-491	年均	0.000000000035	0.006	达标
	湖南田	659	-2,207	年均	0.000000000016	0.003	达标
	跳破	1,874	-486	年均	0.000000000018	0.003	达标
	磨沟	2,587	810	年均	0.000000000059	0.010	达标
	白岩塘	2,398	1,345	年均	0.000000000067	0.011	达标
	岩坎上	1,183	-331	年均	0.000000000030	0.005	达标
二噁英类	分洲	1,559	-1,678	年均	0.000000000011	0.002	达标
	田家	1,842	-2,503	年均	0.0000000000008	0.001	达标
	辽家塆	1,586	39	年均	0.000000000039	0.007	达标
	榴树井	1,998	1,064	年均	0.000000000077	0.013	达标
	杉木林	1,276	-765	年均	0.0000000000020	0.003	达标
	胜利村	1,595	604	年均	0.000000000093	0.015	达标
	高弓滩	2,275	-160	年均	0.0000000000000	0.003	达标
Ī	张家	-1,243	2,600	年均	0.000000000061	0.010	达标
	上廖溪	-2,097	-1,243	年均	0.0000000000070	0.012	达标
	腊岩	-2,216	-2,494	年均	0.000000000086	0.014	达标
	中寨	-2,121	-2,706	年均	0.000000000087	0.015	达标
	观音滩	157	-2,653	年均	0.0000000000023	0.004	达标
	荒田	-2,749	1,272	年均	0.0000000000045	0.008	达标
	凡溪屯	-2,482	-583	年均	0.0000000000025	0.004	达标
	土湾	-1,640	2,551	年均	0.000000000010	0.002	达标
	三脚岩	-1,876	183	年均	0.000000000018	0.003	达标
	三寨村	-1,889	-615	年均	0.000000000045	0.007	达标

稀贵金属资源循环利用项目环境影响报告书

堰塘塆	-1,966	739	年均	0.000000000012	0.002	达标
白猫冲	-1,661	1,244	年均	0.000000000018	0.003	达标
竹山溪	-1,354	1,893	年均	0.000000000013	0.002	达标
白家庄	-1,088	-62	年均	0.000000000055	0.009	达标
鲇鱼塘村	1,643	-2,622	年均	0.0000000000009	0.001	达标
斜滩	1,950	-1,973	年均	0.000000000010	0.002	达标
陆家塆	498	79	年均	0.000000000180	0.030	达标
菜园	-1,031	-2,657	年均	0.000000000083	0.014	达标
杨柳冲	2,104	1,516	年均	0.000000000065	0.011	达标
蔡溪屯	504	489	年均	0.000000000187	0.031	达标
洞脑上	1.104	889	年均	0.000000000107	0.018	达标
赶纸山	-1,772	547	年均	0.000000000013	0.002	达标
井塆	-2,352	1,366	年均	0.0000000000023	0.004	达标
区域最大值	-200	-200	年均	0.000000001252	0.209	达标

表 4.1-54 本项目镉年均浓度贡献值预测结果表

- W 45	menni te	X/	Υ/	平均	最大贡献值/	占标率/	达标
污染物	预测点	m	m	时段	(μg/m³)	%	情况
	田新岩	2,809	2,314	年均	0.000000017	0.00035	达标
	蒋家塆	-31	-2,041	年均	0.000000012	0.00024	达标
	彭家	114	839	年均	0.000000015	0.00031	达标
	岩下	138	2,356	年均	0.000000006	0.00012	达标
	猫猫冲	-1,043	2,741	年均	0.000000004	0.00007	达标
	麻音塘	-735	-2,739	年均	0.000000018	0.00036	达标
	羊庄.	-531	-2,332	年均	0.000000020	0.00040	达标
	菜溪村	-570	1,381	年均	0.000000005	0.00010	达标
	下廖溪	-928	-2,425	年均	0.000000024	0.00048	达标
	后锁	785	-491	年均	0.000000008	0.00016	达标
	湖南田	659	-2,207	年均	0.000000004	0.00009	达标
	跳磁	1,874	-486	年均	0.000000004	0.00009	达标
	磨沟	2,587	810	年均	0.000000017	0.00034	达标
	白岩塘	2,398	1,345	年均	0.000000022	0.00044	达标
	岩坎上	1,183	-331	年均	0.000000007	0.00014	达标
	分洲	1,559	-1,678	年均	0.000000003	0.00006	达标
Cd	田家	1,842	-2,503	年均	0.000000002	0.00005	达标
	辽家塆	1,586	39	年均	0.000000010	0.00020	达标
	榴树井	1,998	1,064	年均	0.000000024	0.00048	达标
	杉木林	1,276	-765	年均	0.000000005	0.00009	达标
	胜利村	1,595	604	年均	0.000000026	0.00051	达标
	高弓滩	2,275	-160	年均	0.000000005	0.00011	达标
	张家	-1,243	2,600	年均	0.000000005	0.00010	达标
	上廖溪	-2,097	-1,243	年均	0.000000016	0.00032	达标
	腊岩	-2,216	-2,494	年均	0.000000021	0.00042	达标
	中寨	-2,121	-2,706	年均	0.000000022	0.00044	达标
	观音滩	157	-2,653	年均	0.000000007	0.00015	达标
	荒田	-2,749	1,272	年均	0.000000003	0.00006	达标
	凡溪屯	-2,482	-583	年均	0.000000006	0.00012	达标
	土湾	-1,640	2,551	年均	0.000000007	0.00014	达标
	三脚岩	-1,876	183	年均	0.000000007	0.00015	达标
	三寨村	-1,889	-615	年均	0.000000010	0.00019	达标
	堰塘塆	-1,966	739	年均	0.000000005	0.00011	达标
	白猫冲	-1,661	1,244	年均	0.000000003	0.00005	达标
	竹山溪	-1,354	1,893	年均	0.000000007	0.00014	达标
	白家庄	-1,088	-62	年均	0.000000010	0.00019	达标
	鲇鱼塘村	1,643	-2,622	年均	0.000000003	0.00005	达标
	斜滩	1,950	-1,973	年均	0.000000003	0.00005	达标
	陆家塆	498	79	年均	0.000000049	0.00099	达标

稀贵金属资源循环利用项目环境影响报告书

菜园	-1,031	-2,657	年均	0.000000023	0.00045	达标
杨柳冲	2,104	1,516	年均	0.000000022	0.00044	达标
蔡溪屯	504	489	年均	0.000000044	0.00088	达标
洞脑上	1,104	889	年均	0.000000028	0.00057	达标
赶纸山	-1,772	547	年均	0.000000003	0.00006	达标
井塆	-2,352	1,366	年均	0.000000002	0.00004	达标
区域最大值	-100	-200	年均	0.000000334	0.00669	达标

表 4.1-55 本项目砷年均浓度贡献值预测结果表

		表 4.1-55 X/	Y/	平均	页 献 值	占标率/	达标
污染物	预测点	m	m	时段	(μg/m³)	%	情况
	田新岩	2,809	2,314	年均	0.00009	1.449	达标
	蒋家塆	-31	-2,041	年均	0.00009	0.994	达标
	彭家	114	839	年均	0.00008	1.281	达标
	岩下	138	2,356	年均	0.00003	0.483	达标
	猫猫冲	-1,043	2,741	年均	0.00003	0.483	达标
	麻音塘	-735	-2,739	年均	0.00002	1.486	达标
	羊庄.	-531		年均	0.00010	1.647	达标
	菜溪村	-570	-2,332 1,381	年均	0.00010	0.430	达标
	下廖溪	-928		年均	0.00012		达标
			-2,425	年均		2.008	
	后锁	785	-491	年均	0.00004	0.646	达标
	湖南田	659	-2,207		0,00002	0,373	
	跳破	1,874	-486	年均	0.00002	0.359	达标
	磨沟	2,587	810	年均	0.00009	1.419	达标
	白岩塘	2,398	1,345	年均	0.00011	1.828	达标
	岩坎上	1,183	-331	年均	0.00003	0.574	达标
	分洲	1,559	-1,678	年均	0.00002	0.251	达标
	田家	1,842	-2,503	年均	0.00001	0.207	达标
	辽家塆	1,586	39	年均	0.00005	0.825	达标
	榴树井	1,998	1,064	年均	0.00012	2.016	达标
	杉木林	1,276	-765	年均	0.00002	0.388	达标
As	胜利村	1,595	604	年均	0.00013	2.144	达标
	高弓滩	2,275	-160	年均	0,00003	0.449	达标
	张家	-1,243	2,600	年均	0.00002	0.415	达标
	上廖溪	-2,097	-1,243	年均	0.00008	1,323	达标
	腊岩	-2,216	-2,494	年均	0,00011	1.770	达标
	中寨	-2,121	-2,706	年均	0.00011	1.837	达标
	观音滩	157	-2,653	年均	0,00004	0.619	达标
	荒田	-2,749	1,272	年均	0,00001	0.239	达标
	凡溪屯	-2,482	-583	年均	0.00003	0.482	达标
	土湾	-1,640	2,551	年均	0.00004	0.589	达标
	三脚岩	-1,876	183	年均	0.00004	0.616	达标
	三寨村	-1,889	-615	年均	0.00005	0.799	达标
	堰塘塆	-1,966	739	年均	0.00003	0.453	达标
	白猫冲	-1,661	1,244	年均	0.00001	0,213	达标
	竹山溪	-1,354	1,893	年均	0.00003	0.565	达标
	白家庄	-1,088	-62	年均	0.00005	0.809	达标
	鲇鱼塘村	1,643	-2,622	年均	0.00001	0.220	达标
	斜滩	1,950	-1,973	年均	0.00001	0.224	达标
	陆家塆	498	79	年均	0.00025	4.115	达标
	菜园	-1,031	-2,657	年均	0.00011	1.890	达标
	杨柳冲	2,104	1,516	年均	0.00011	1.834	达标
	蔡溪屯	504	489	年均	0,00022	3.657	达标
	洞脑上	1,104	889	年均	0.00014	2.357	达标
	赶纸山	-1,772	547	年均	0.00002	0.259	达标
	井塆	-2,352	1,366	年均	0.00001	0,185	达标
	区域最大值	-100	-200	年均	0.00167	27.857	达标

表 4.1-56 本项目铅年均浓度贡献值预测结果表

污染物	36 36 Jr	X/	Υ/	平均	最大贡献值/	占标率/	达标
万架初	预测点	m	m	时段	(μg/m³)	%	情况
	田新岩	2,809	2,314	年均	0.00050	0.100	达标
	蒋家塆	-31	-2,041	年均	0.00034	0.068	达标
	彭家	114	839	年均	0.00045	0.091	达标
	岩下	138	2,356	年均	0.00017	0.034	达标
	猫猫冲	-1,043	2,741	年均	0.00011	0.023	达标
	麻音塘	-735	-2,739	年均	0.00051	0.102	达标
	羊庄	-531	-2,332	年均	0.00057	0.113	达标
	菜溪村	-570	1,381	年均	0.00015	0.031	达标
	下廖溪	-928	-2,425	年均	0.00069	0.139	达标
	后锁	785	-491	年均	0.00023	0.045	达标
	湖南田	659	-2,207	年均	0.00013	0.026	达标
	跳破	1,874	-486	年均	0.00013	0.025	达标
	磨沟	2,587	810	年均	0.00049	0.099	达标
	白岩塘	2,398	1,345	年均	0.00063	0.126	达标
	岩坎上	1,183	-331	年均	0.00020	0.040	达标
	分洲	1,559	-1,678	年均	0.00009	0.018	达标
	田家	1,842	-2,503	年均	0.00007	0.014	达标
	辽家塆	1,586	39	年均	0.00029	0.058	达标
	榴树井	1,998	1,064	年均	0.00070	0.140	达标
	杉木林	1,276	-765	年均	0.00014	0.027	达标
	胜利村	1,595	604	年均	0.00075	0.149	达标
Рь	高弓滩	2,275	-160	年均	0.00016	0.031	达标
	张家	-1,243	2,600	年均	0.00016	0.032	达标
Pb	上廖溪	-2,097	-1,243	年均	0.00046	0.092	达标
	腊岩	-2,216	-2,494	年均	0.00061	0.122	达标
	中寨	-2,121	-2,706	年均	0.00063	0.127	达标
	观音滩	157	-2,653	年均	0.00021	0.043	达标
	荒田	-2,749	1,272	年均	0.00010	0.019	达标
	凡溪屯	-2,482	-583	年均	0.00017	0.034	达标
	土湾	-1,640	2,551	年均	0.00020	0.039	达标
	三脚岩	-1,876	183	年均	0.00021	0.042	达标
	三寨村	-1,889	-615	年均	0.00028	0.056	达标
	堰塘塆	-1,966	739	年均	0.00016	0.031	达标
	白猫冲	-1,661	1,244	年均	0.00008	0.016	达标
	竹山溪	-1,354	1,893	年均	0.00019	0.039	达标
	白家庄	-1,088	-62	年均	0.00029	0.057	达标
	鲇鱼塘村	1,643	-2,622	年均	0,00008	0.015	达标
	斜滩	1,950	-1,973	年均	0.00008	0.016	达标
	陆家塆	498	79	年均	0.00143	0.285	达标
	菜园	-1,031	-2,657	年均	0.00065	0.131	达标
	杨柳冲	2,104	1,516	年均	0.00063	0.127	达标
	蔡溪屯	504	489	年均	0.00128	0.257	达标
	洞脑上	1,104	889	年均	0.00082	0.164	达标
	赶纸山	-1,772	547	年均	0.00009	0.018	达标
	井塆	-2,352	1,366	年均	0.00008	0.015	达标
	区域最大值	-100	-200	年均	0.00953	1.906	达标

4.1.3.9 叠加现状环境质量及在建、拟建污染源预结果及评价

(1) 环境影响叠加方法

本次叠加预测评价主要考虑叠加环境空气质量现状,以判定环境保护目标和网格

点主要污染物的保证率日平均质量浓度和年平均质量浓度的达标情况。本项目不涉及"以新带老"污染源,根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中达标区域的叠加公式如下:

$$C_{\text{ 叠加 }(x, y, t)} = C_{\text{ 本项目 }(x, y, t)} - C_{\text{ 经税的破 }(x, y, t)} + C_{\text{ 报在键 }(x, y, t)} + C_{\text{ 現状 }(x, y, t)}$$

式中: $C_{\text{ф m}(x,y,t)}$ ——在 t 时刻,预测点(x,y) 叠加各污染物及现状浓度后的环境质量浓度, mg/m^3 。

 $C_{\text{*m}}$ (x, y, t) ——在 t 时刻,本项目对预测点 (x, y) 的贡献浓度, mg/m^3 。

 $C_{\mathbb{E}_{MMK}(x,y,t)}$ ——在t 时刻,区域削减污染源对预测点(x,y)的贡献浓度, mg/m^3 。本项目不涉及。

 $C_{$ 根在建(x,y,t)</sub> ——在t 时刻,其他在建、拟建项目对预测点(x,y) 的贡献浓度, mg/m^3 。

 $C_{\text{现状}(x,y,b)}$ ——在t时刻,预测点(x,y)的环境质量浓度, mg/m^3 。

(2) 保证率日平均质量浓度计算方法

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)中保证率日平均质量浓度计算公式如下:

$$m=1+(n-1)\times p$$

式中: p——该污染物日平均质量浓度的保证率,按 HJ663 规定的对应污染物年平均评价中 24h 平均百分位数取值,%;取值分别为 SO₂24h 平均第 98 百分位数,NO₂24h 平均第 98 百分位数,PM₁₀24h 平均第 95 百分位数,PM₁₀24h 平均第 95 百分位数。

n——1 个日历年内单个预测点上的日平均质量浓度的所有数据个数,个: m——百分位数 p 应对的序数 (第 m 个),向上取整。

经计算, m (SO₂) 和 m (NO₂) 为 358, m (PM₁₀) 和 m (PM_{2.5}) 为 347。其他 因子在 HJ663 未作规定。

(3) 背景值取值

本次叠加现状环境质量及其他污染源后预测评价背景值取值及说明见表 4.1-57。

污染因子	平均时段	取值(µg/m³)	来源
0.2	24 小时平均	7	
SO ₂	年平均	4	
NO	24 小时平均	31	
NO ₂	年平均	13	EZ C. L. L. L. L. C. EZ LAND. L. S. ANDR. GOVERNMENT
DM	24 小时平均	80	铜仁七中站点(国控站点)2023年环境空
PM_{10}	年平均	37	气质量数据
DM	24 小时平均	66	
PM _{2.5}	年平均	23	
CO	24 小时平均	800	
甲醛	1小时平均	19	现状补充监测最大值
T 宏 本色 (語)	1 小时平均	2.5	期批社大批测具上体
硫酸雾	24 小时平均	2.5	现状补充监测最大值
tot 11s tot	1 小时平均	10	面也分去收测具土体
氯化氢	24 小时平均	10	现状补充监测最大值
NMHC	1 小时平均	480	现状补充监测最大值
エケルー機	1 小时平均	0.01	市业分大地测具工体
五氧化二磷	24 小时平均	0,1	现状补充监测最大值
200 1-1	1 小时平均	15	加坡处大水原则具土体
氯气	24 小时平均	15	现状补充监测最大值
Est 11 Alm	1 小时平均	3.2	加州为大地湖里土地
氟化物	24 小时平均	0.62	现状补充监测最大值
硫化氢	1 小时平均	7	现状补充监测最大值
氨气	1 小时平均	120	现状补充监测最大值
镍	24 小时平均	0.25	现状补充监测最大值
锰	24 小时平均	未检出	现状补充监测最大值

4.1-57 背景值取值统计表

(4) 预测结果评价

SO₂对评价区域内各环境敏感点的 24 小时平均浓度叠加值范围在 7.415μg/m³~11.108μg/m³之间,占标率为 4.944%~7.406%之间,各敏感点 24 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 35.635μg/m³,占标率为 23.757%,均达标。SO₂对评价区域内各环境敏感点的年平均浓度叠加值范围在 4.101μg/m³~5.415μg/m³之间,占标率为 6.834%~9.025%之间,各敏感点年平均浓度叠加值均达标;区域最大地面浓度点叠加值为 12.825μg/m³,占标率为 21.374%,均达标。

NO₂对评价区域内各环境敏感点的 24 小时平均浓度叠加值范围在 31.268μg/m³~33.508μg/m³之间,占标率为 39.085%~41.884%之间,各敏感点 24 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 40.959μg/m³,占标率为 51.199%,均达标。NO₂对评价区域内各环境敏感点的年平均浓度叠加值范围在 13.079μg/m³~14.225μg/m³

之间,占标率为 32.698%~35.562%之间,各敏感点年平均浓度叠加值均达标;区域最大地面浓度点叠加值为 16.815μg/m³,占标率为 42.037%,均达标。

PM₁₀对评价区域内各环境敏感点的 24 小时平均浓度叠加值范围在 80.164μg/m³~82.721μg/m³之间,占标率为 53.443%~55.148%之间,各敏感点 24 小时平均浓度叠加值均达标; 区域最大地面浓度点叠加值为 89.623μg/m³,占标率为 59.748%,均达标。PM₁₀对评价区域内各环境敏感点的年平均浓度叠加值范围在 37.046μg/m³~38.606μg/m³之间,占标率为 52.923%~55.152%之间,各敏感点年平均浓度叠加值均达标; 区域最大地面浓度点叠加值为 41.606μg/m³,占标率为 59.437%,均达标。

PM_{2.5} 对评价区域内各环境敏感点的 24 小时平均浓度叠加值范围在 66.115μg/m³~67.901μg/m³之间,占标率为 88.153%~90.535%之间,各敏感点 24 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 72.730μg/m³,占标率为 96.974%,均达标。PM_{2.5} 对评价区域内各环境敏感点的年平均浓度叠加值范围在 23.032μg/m³~24.112μg/m³之间,占标率为 65.806%~68.891%之间,各敏感点年平均浓度叠加值均达标;区域最大地面浓度点叠加值为 26.219μg/m³,占标率为 74.913%,均达标。

CO 对评价区域内各环境敏感点的 24 小时平均浓度叠加值范围在 800.005μg/m³~800.101μg/m³之间,占标率为 20.000%~20.003%之间,各敏感点 24 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 800.531μg/m³,占标率为 20.013%,均达标。

硫酸对评价区域内各环境敏感点的 1 小时平均浓度叠加值范围在 4.515μg/m³~24.725μg/m³之间,占标率为 1.505%~8.242%之间,各敏感点 1 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 158.417μg/m³,占标率为 52.806%,均达标。硫酸对评价区域内各环境敏感点的 24 小时平均浓度叠加值范围在 2.640μg/m³~7.628μg/m³之间,占标率为 2.640%~7.628%之间,各敏感点 24 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 15.833μg/m³,占标率为 15.833%,均达标。

NMHC 对评价区域内各环境敏感点的 1 小时平均浓度叠加值范围在 483.138μg/m³~607.780μg/m³之间,占标率为 24.157%~30.389%之间,各敏感点 1 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 890.635μg/m³,占标率为 44.532%,均达标。

锰及其化合物对评价区域内各环境敏感点的24小时平均浓度叠加值范围在

0.002μg/m³~0.182μg/m³之间,占标率为 0.022%~1.817%之间,各敏感点 24 小时平均 浓度叠加值均达标;区域最大地面浓度点叠加值为 1.640μg/m³,占标率为 16.395%,均 达标。

HCI 对评价区域内各环境敏感点的 1 小时平均浓度叠加值范围在 10.606μg/m³~13.982μg/m³之间,占标率为 21.212%~27.963%之间,各敏感点 1 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 46.889μg/m³,占标率为 93.778%,达标。HCI对评价区域内各环境敏感点的 24 小时平均浓度叠加值范围在 10.046μg/m³~10.768μg/m³之间,占标率为 66.974%~71.786%之间,各敏感点 24 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 13.032μg/m³,占标率为 86.882%,均达标。

F 对评价区域内各环境敏感点的 1 小时平均浓度叠加值范围在 3.409μg/m³~4.504μg/m³之间,占标率为 17.044%~22.519%之间,各敏感点 1 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 14.329μg/m³,占标率为 71.647%,均达标。叠F 对评价区域内各环境敏感点的 24 小时平均浓度叠加值范围在 0.633μg/m³~0.767μg/m³之间,占标率为 9.045%~10.955%之间,各敏感点 24 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 1.602μg/m³,占标率为 22.885%,均达标。

五氧化二磷对评价区域内各环境敏感点的 1 小时平均浓度叠加值范围在 0.020μg/m³~0.141μg/m³之间,占标率为 0.013%~0.094%之间,各敏感点 1 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 0.850μg/m³,占标率为 0.566%,均达标。五氧化二磷对评价区域内各环境敏感点的 24 小时平均浓度叠加值范围在 0.101μg/m³~0.107μg/m³之间,占标率为 0.201%~0.215%之间,各敏感点 24 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 0.135μg/m³,占标率为 0.271%,均达标。

NH₃对评价区域内各环境敏感点的 1 小时平均浓度叠加值范围在 120.260μg/m³~122.934μg/m³之间,占标率为 60.130%~61.467%之间,各敏感点 1 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 131.575μg/m³,占标率为 65.788%,均达标。

甲醛对评价区域内各环境敏感点的 1 小时平均浓度叠加值范围在 19.0005μg/m³~19.0087μg/m³之间,占标率为 38.0009%~38.0175%之间,各敏感点 1 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 19.0406μg/m³,占标率为 38.0812%,均达

标。甲醛对评价区域内各环境敏感点的 24 小时平均浓度叠加值范围在 0.0000µg/m³~ 0.0004µg/m³之间,占标率为 0.0000%~0.0000%之间,各敏感点 24 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 0.0019µg/m³,占标率为 0.0000%,均达标。

H₂S 对评价区域内各环境敏感点的 I 小时平均浓度叠加值范围在 7.011μg/m³~7.149μg/m³之间,占标率为 70.110%~71.489%之间,各敏感点 1 小时平均浓度叠加值均达标;区域最大地面浓度点叠加值为 7,569μg/m³,占标率为 75.686%,均达标。

综上所述,本项目排放的 SO₂、NO₂、PM₁₀、PM_{2.5}、CO 的叠加周边拟建在建污染源及环境质量现状后的保证率日平均浓度及年平均浓度的最大浓度均能满足《环境空气质量标准》(GB3095-2012)二级标准限值要求,氟化物叠加周边拟建在建污染源及环境质量现状后的短期平均浓度的最大浓度能满足《环境空气质量标准》(GB3095-2012)二级标准限值要求,五氧化二磷、氨气、氯气、硫化氢、甲醛、HCI、硫酸雾、锰及其化合物叠加周边拟建在建污染源及环境质量现状后满足《环境影响评价技术导则大气环境》(HJ2.2-2018)附录 D 标准限值要求,镍及其化合物、NMHC 叠加周边拟建在建污染源及环境质量现状后满足《大气污染物综合排放标准详解》非甲烷总烃一次值 2.0mg/m³。

表 4.1-58 SO2叠加周边拟在建污染源及保证率日平均现状环境质量后预测结果表

污染物	表面面 去	X/	Y/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
23640	预测点	m	m	时段	11 19 July 19 19 19 19 19 19 19 19 19 19 19 19 19	(µg/m³)	%	(µg/m³)	(µg/m³)	9/6	情况
	田新岩	2,809	2,314	保证率日平均	2023/09/19	1.581	1.054	7.000	8,581	5,720	达标
	蒋家塆	-31	-2,041	保证率日平均	2023/12/19	0.982	0.654	7.000	7.982	5.321	达标
	彭家	114	839	保证率日平均	2023/08/25	2.727	1.818	7.000	9.727	6.484	达标
	岩下	138	2,356	保证率日平均	2023/06/15	1.182	0.788	7.000	8.182	5,454	达标
	猫猫冲	-1,043	2,741	保证率日平均	2023/01/18	2.486	1.657	7.000	9.486	6.324	达标
	麻音塘	-735	-2,739	保证率目平均	2023/05/10	1.451	0.967	7.000	8.451	5.634	达标
	羊庄	-531	-2,332	保证率日平均	2023/01/14	1.407	0.938	7.000	8,407	5,605	达标
	菜溪村	-570	1,381	保证率日平均	2023/06/14	1.304	0.869	7.000	8.304	5,536	达标
	下應溪	-928	-2,425	保证率日平均	2023/01/14	2.302	1.535	7.000	9,302	6.201	达标
	后锁	785	-491	保证率目平均	2023/08/05	1.994	1.329	7,000	8.994	5.996	达标
	湖南田	659	-2,207	保证率目平均	2023/07/24	0.740	0.493	7.000	7.740	5.160	达标
SO2	此做	1,874	-486	保证率日平均	2023/08/15	1.123	0.749	7.000	8.123	5.415	达标
	磨沟	2,587	810	保证率日平均	2023/12/25	1.832	1.222	7.000	8.832	5.888	达标
	白岩塘	2,398	1,345	保证率日平均	2023/04/15	1.829	1.220	7.000	8.829	5.886	达标
	岩坎上	1,183	-331	保证率日平均	2023/10/22	1.919	1,279	7.000	8,919	5.946	达标
	分洲	1,559	-1,678	保证率日平均	2023/03/30	0.542	0.361	7.000	7.542	5.028	达标
	田家	1,842	-2,503	保证率日平均	2023/03/30	0.428	0.286	7.000	7.428	4.952	达标
	辽家塆	1,586	39	保证率日平均	2023/07/10	2.252	1.501	7.000	9.252	6.168	达标
	榴树井	1,998	1,064	保证率日平均	2023/04/15	2.026	1.351	7.000	9.026	6.017	达标
	杉木林	1,276	-765	保证率日平均	2023/07/09	0.999	0.666	7.000	7.999	5.333	达标
	胜利村	1,595	604	保证率目平均	2023/07/05	2.395	1.596	7.000	9.395	6.263	达标
	高号滩	2,275	-160	保证率日平均	2023/10/22	1.335	0.890	7.000	8,335	5.557	达标
	张家	-1,243	2,600	保证率目平均	2023/11/15	1.739	1.159	7.000	8.739	5.826	达标

上廖溪	-2,097	-1.243	保证率日平均	2023/12/09	2.551	1.701	7.000	9.551	6.367	达标
腊岩	-2.216	-2,494	保证率日平均	2023/09/25	3.001	2.001	7.000	10.001	6.667	达标
中襄	-2,121	-2,706	保证率日平均	2023/02/16	2.884	1.922	7.000	9.884	6,589	达标
观音滩	157	-2,653	保证率日平均	2023/09/30	0.730	0.487	7,000	7.730	5,153	达标
荒田	-2,749	1,272	保证率日平均	2023/02/19	1.288	0.859	7.000	8,288	5,525	达标
凡溪屯	-2,482	-583	保证率日平均	2023/10/21	0.729	0.486	7.000	7.729	5,153	达标
土湾	-1,640	2,551	保证率目平均	2023/02/19	1.318	0.879	7.000	8,318	5,546	达标
三脚岩	-1,876	183	保证率目平均	2023/03/06	0.935	0.623	7.000	7.935	5,290	达标
三条村	-1,889	-615	保证率目平均	2023/08/10	1.159	0.772	7.000	8.159	5.439	达标
堤塘塆	-1,966	739	保证率日平均	2023/06/18	1.220	0.813	7.000	8.220	5.480	达标
白猫冲	-1,661	1,244	保证率日平均	2023/01/04	1.528	1.019	7.000	8.528	5.686	达标
竹山溪	-1,354	1,893	保证率日平均	2023/04/17	0.796	0.531	7.000	7.796	5.198	达标
白家庄	-1.088	-62	保证率日平均	2023/08/23	2.807	1.872	7.000	9.807	6.538	达标
話鱼塘村	1.643	-2,622	保证率目平均	2023/07/01	0.415	0.277	7.000	7.415	4.944	达标
斜滩	1,950	-1.973	保证率日平均	2023/07/02	0.468	0.312	7.000	7.468	4.979	达标
陆家塆	498	79	保证率日平均	2023/07/10	4.108	2.739	7.000	11,108	7.406	达标
菜园	-1,031	-2,657	保证率日平均	2023/03/11	2.356	1.571	7.000	9.356	6.237	达标
杨柳冲	2,104	1,516	保证率日平均	2023/07/05	2.011	1.341	7.000	9.011	6.008	达标
蔡溪屯	504	489	保证率日平均	2023/06/11	3.715	2.477	7.000	10.715	7,143	达标
洞脑上	1,104	889	保证率日平均	2023/09/10	2.688	1.792	7.000	9.688	6.459	达标
赶纸山	-1,772	547	保证率日平均	2023/06/18	1.418	0.945	7.000	8.418	5,612	达标
井塆	-2,352	1,366	保证率日平均	2023/09/29	1.185	0.790	7.000	8.185	5,457	达标
区域最大值	-1,000	-800	保证率日平均	2023/06/03	28.635	19,090	7.000	35.635	23.757	达标

表 4.1-59 SO2 叠加周边拟在建污染源及年均现状环境质量后预测结果表

		444 22	DOT H./	and a limit of	the second second		man a series as	make a section of	A PAP TOP	
污染物	2017/00/ 45	X/	Y/	平均	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
与架物	预测点	m	m	时段	(µg/m³)	%	(µg/m³)	(µg/m³)	%	情况
	田新岩	2,809	2,314	年均	0.455	0.758	4.000	4.455	7.424	达标
	蒋家塆	-31	-2,041	年均	0.276	0.460	4,000	4.276	7.126	达切
	彭家	114	839	年均	0.888	1.481	4.000	4.888	8.147	达板
	岩下	138	2,356	年均	0.301	0.501	4.000	4,301	7.168	达标
	猫猫冲	-1,043	2,741	年均	0.364	0.607	4,000	4.364	7.273	达标
	麻音塘	-735	-2,739	年均	0.427	0.711	4.000	4.427	7.378	达机
	羊庄	-531	-2,332	年均	0,427	0.712	4.000	4.427	7.379	达标
	菜溪村	-570	1,381	年均	0.322	0.537	4.000	4.322	7.203	达杭
	下塵溪	-928	-2,425	年均	0.683	1.138	4.000	4.683	7.805	达核
	后锁	785	-491	年均	0.544	0.907	4,000	4.544	7.573	达板
	湖南田	659	-2,207	年均	0.163	0,272	4,000	4.163	6.939	达板
	跳破	1,874	-486	年均	0.264	0.440	4,000	4.264	7.107	达板
	磨肉	2,587	810	年均	0.525	0.876	4.000	4.525	7.542	达板
	白岩塘	2,398	1,345	年均	0.567	0.946	4.000	4.567	7.612	达核
con	岩坎上	1,183	-331	年均	0.499	0.832	4.000	4.499	7.499	达板
SO2	分洲	1,559	-1,678	年均	0.130	0.217	4.000	4.130	6.884	达机
	田家	1,842	-2,503	年均	0.101	0.168	4.000	4.101	6.834	达板
	辽家塆	1,586	39	年均	0.578	0.964	4.000	4.578	7.630	达板
	榴树井	1,998	1,064	年均	0.632	1.053	4.000	4.632	7.720	达机
	杉木林	1,276	-765	年均	0.270	0.450	4.000	4.270	7.116	达机
	胜利村	1,595	604	年均	0.745	1.242	4.000	4.745	7.909	达板
	高弓滩	2,275	-160	年均	0.296	0.493	4.000	4.296	7.160	达板
	张家	-1,243	2,600	年均	0.302	0.503	4,000	4.302	7.170	达板
	上廖溪	-2,097	-1,243	年均	0.699	1.165	4.000	4.699	7.831	达核
	腊岩	-2,216	-2,494	年均	0.947	1.578	4.000	4.947	8.245	达杭
	中寨	-2,121	-2,706	年均	0.937	1.562	4.000	4.937	8,228	达核
	观音滩	157	-2,653	年均	0,199	0.332	4.000	4.199	6.999	达板
	荒田	-2,749	1,272	年均	0,209	0.349	4,000	4.209	7.016	达板
	凡溪屯	-2,482	-583	年均	0.239	0.398	4.000	4.239	7.065	达板
	土湾	-1,640	2,551	年均	0.203	0.338	4,000	4.203	7,004	达板

稀贵金属资源循环利用项目环境影响报告书

三脚岩	-1,876	183	年均	0.215	0.358	4.000	4.215	7.025	达标
三縣村	-1,889	-615	年均	0.393	0.655	4.000	4.393	7.322	达标
堰塘塆	-1,966	739	年均	0.216	0.360	4.000	4.216	7.027	达标
白猫冲	-1,661	1,244	年均	0.295	0.491	4.000	4.295	7.158	达标
竹山渓	-1,354	1,893	年均	0,164	0.274	4,000	4.164	6.941	达标
白家庄	-1,088	-62	年均	0.628	1.046	4,000	4.628	7.713	达标.
鲇鱼塘村	1,643	-2,622	年均	0.103	0.172	4.000	4.103	6.838	达标
斜滩	1,950	-1,973	年均	0.111	0.185	4.000	4,111	6.851	达标
陆家均	498	79	年均	1.415	2.358	4.000	5.415	9.025	达标
桌园	-1,031	-2,657	年均	0.672	1.119	4.000	4.672	7.786	达标
杨柳冲	2,104	1,516	年均	0.583	0.972	4.000	4.583	7.638	达标
蔡溪屯	504	489	年均	1.326	2.210	4.000	5,326	8.877	达标
洞脑上	1,104	889	年均	0.849	1.415	4.000	4.849	8.082	达标
赶纸山	-1,772	547	年均	0.227	0.379	4.000	4.227	7.046	达标
井塆	-2,352	1,366	年均	0.248	0.413	4.000	4.248	7.079	达标
区域最大值	-1,000	-900	年均	8.825	14,708	4.000	12.825	21.374	达标

表 4.1-60 NO2 叠加周边拟在建污染源及保证率日平均现状环境质量后预测结果表

	A 4.1-00	-		UKETS/IL XET 7.3	taname bloom		A: 54 A 4	2007	45.45.44.14	-14-64	
污染物	預測点	X/	Y/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达板
行为经利组	DRAMERA	m	m	时段	知道同	(μg/m³)	%.	(µg/m³)	(µg/m3)	96	情况
	国新岩	2,809	2,314	保证率日平均	2023/07/05	1.055	1.319	31.000	32.055	40.069	达标
Î	蒋家塆	-31	-2,041	保证率日平均	2023/10/26	0.628	0.785	31,000	31.628	39,535	达标
	彭家	114	839	保证率目平均	2023/08/23	1.816	2.270	31,000	32.816	41.020	达标
	岩下	138	2,356	保证率日平均	2023/07/11	0.745	0.932	31,000	31.745	39.682	达标
	猫猫冲	-1,043	2,741	保证率目平均	2023/02/25	0.698	0.872	31.000	31.698	39.622	达标
Ì	麻音塘	-735	-2,739	保证率目平均	2023/08/06	0.965	1.206	31,000	31.965	39,956	达标
	羊庄	-531	-2,332	保证率日平均	2023/05/11	0.995	1.243	31,000	31.995	39,993	达杨
	菜溪村	-570	1,381	保证率日平均	2023/07/31	0.721	0.901	31,000	31.721	39.651	达标
Ī	下廖溪	-928	-2,425	保证率日平均	2023/09/13	1.354	1.692	31.000	32.354	40.442.	达标
Ī	后锁	785	-491	保证率日平均	2023/07/07	0.896	1.120	31.000	31.896	39.870	达标
Ī	測海田	659	-2,207	保证率日平均	2023/02/05	0.449	0.561	31.000	31.449	39.311	达柯
	斯特斯	1,874	-486	保证率日平均	2023/12/05	0.568	0.711	31.000	31.568	39,461	达机
Î	磨沟	2,587	810	保证率日平均	2023/12/24	1.023	1.279	31.000	32.023	40.029	达柄
	白岩塘	2,398	1.345	保证率日平均	2023/11/01	1.091	1.364	31.000	32.091	40.114	达桐
	岩坎上	1,183	-331	保证率日平均	2023/11/17	0.841	1.051	31,000	31.841	39.801	达板
Ī	分别	1,559	-1.678	保证率日平均	2023/05/19	0.342	0.428	31.000	31.342	39.178	达板
ì	田家	1,842	-2,503	保证率日平均	2023/07/01	0.268	0.335	31.000	31.268	39.085	达杨
NO2	辽家塆	1,586	39	保证率日平均	2023/08/01	0.963	1.204	31.000	31.963	39.954	达标
NO2	榴树井	1,998	1,064	保证率日平均	2023/11/01	1.167	1.459	31,000	32.167	40.209	达标
	杉木林	1,276	-765	保证率目平均	2023/07/24	0.512	0.640	31,000	31.512	39.390	达杨
	胜利村	1,595	604	保证率日平均	2023/07/10	1.339	1.673	31,000	32,339	40,423	达板
	高弓滩	2,275	-160	保证率目平均	2023/10/27	0.614	0.768	31,000	31.614	39.518	达板
	账家	-1,243	2,600	保证率目平均	2023/10/16	0.678	0.848	31.000	31.678	39.598	达标
	上廖溪	-2,097	-1,243	保证率日平均	2023/10/06	1.815	2.268	31.000	32.815	41.018	达标
I	腊岩	-2,216	-2,494	保证率日平均	2023/03/18	1.838	2.298	31,000	32,838	41.048	达标
	中寨	-2,121	-2,706	保证率日平均	2023/02/10	1.796	2.245	31.000	32.796	40.995	达标
	观音滩	157	-2,653	保证率日平均	2023/02/23	0.500	0.625	31.000	31,500	39.375	丛板
	荒田	-2,749	1,272	保证率日平均	2023/12/20	0.580	0.725	31.000	31,580	39.475	达板
1	凡渓屯	-2,482	-583	保证率日平均	2023/09/21	0.586	0.732	31.000	31.586	39,482	达板
	土湾	-1,640	2,551	保证率日平均	2023/02/06	1.084	1.355	31.000	32.084	40.105	达杨
	三脚岩	-1.876	183	保证率日平均	2023/12/26	0.751	0.939	31.000	31,751	39,689	达村
	三寨村	-1,889	-615	保证率日平均	2023/10/07	0.920	1.151	31.000	31.920	39.901	达柯
	退塘垮	-1,966	739	保证率日平均	2023/02/06	0.842	1.052	31.000	31.842	39.802	达板
	白猫冲	-1,661	1,244	保证率日平均	2023/02/19	0.781	0.977	31.000	31.781	39.727	达板
	竹山溪	-1.354	1,893	保证率日平均	2023/03/21	0.603	0.754	31.000	31.603	39.504	达柯
	白家庄	-1,088	-62	保证率日平均	2023/06/21	1.016	1.270	31,000	32.016	40.020	达标

鲇鱼塘村	1,643	-2,622	保证率日平均	2023/07/01	0.285	0.356	31,000	31.285	39,106	达标
斜滩	1,950	-1,973	保证率日平均	2023/05/19	0.317	0.396	31.000	31.317	39.146	达标
陆家塆	498	79	保证率日平均	2023/06/09	2.402	3.002	31.000	33.402	41.752	达标
菜园	-1,031	-2,657	保证率日平均	2023/09/13	1.356	1.695	31,000	32.356	40.445	达标
杨柳冲	2,104	1,516	保证率目平均	2023/01/07	1.227	1.533	31,000	32.227	40.283	达标
蔡溪屯	504	489	保证率日平均	2023/09/19	2.508	3.134	31,000	33.508	41.884	达标
洞脇上	1,104	889	保证率目平均	2023/06/11	1.731	2.164	31,000	32.731	40,914	达标
赶纸山	-1,772	547	保证率日平均	2023/10/31	0.604	0.755	31,000	31.604	39.505	达标
井塆	-2,352	1,366	保证率日平均	2023/02/19	0.605	0.756	.31.000	31.605	39,506	达标
区域最大值	-1,000	-900	保证率日平均	2023/06/05	9.959	12.449	31,000	40.959	51.199	达标

表 4.1-61 NO2叠加周边拟在建污染源及年均现状环境质量后预测结果表

	7	4.1-61	NU2 企	加山河和	仕建 污染	娜 汉十岁的	心小小鬼贝	里/口/贝约5	一木化	
tot ob dan	328 286 - 17	X/	Y/	平均	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
污染物	预测点	m	m	时段	(µg/m³)	%	(µg/m³)	(µg/m³)	%	情况
	田新岩	2,809	2,314	年均	0,337	0.844	13.000	13,337	33.344	达杭
	蒋家塆	-31	-2,041	年均	0.242	0.605	13,000	13.242	33.105	达有
	彭家	114	839	年均	0.838	2.096	13.000	13,838	34.596	达标
	岩下	138	2,356	年均	0,202	0.505	13.000	13,202	33.005	达村
	猫猫冲	-1,043	2,741	年均	0.148	0.370	13.000	13,148	32.870	达村
	麻音塘	-735	-2,739	年均	0.332	0.831	13.000	13,332	33.331	达柯
	羊庄	-531	-2,332	年均	0.353	0.882	13.000	13,353	33.382	达板
	菜溪村	-570	1,381	年均	0.229	0.572	13.000	13,229	33.072	达板
	下度漢	-928	-2,425	年均	0.488	1,219	13,000	13,488	33.719	达板
	后锁	785	-491	年均	0.334	0.834	13.000	13,334	33.334	达机
	湖南田	659	-2,207	年均	0.142	0.355	13.000	13.142	32.855	达机
	跳破	1,874	-486	年均	0.160	0.400	13.000	13.160	32,900	达板
	磨沟	2,587	810	年均	0.316	0.790	13,000	13.316	33.290	达机
	白岩坳	2,398	1,345	年均	0.388	0.970	13.000	13.388	33.470	达机
	岩坎上	1,183	-331	年均	0.285	0.713	13,000	13.285	33,213	达
	分洲	1,559	-1,678	年均	0.101	0.252	13.000	13,101	32.752	达核
	田家	1,842	-2,503	年均	0.079	0.198	13.000	13.079	32.698	达标
	辽家塆	1,586	39	年均	0.309	0.772	13.000	13.309	33.272	达
	榴树井	1,998	1,064	年均	0.414	1.034	13,000	13,414	33.534	达机
	杉木林	1,276	-765	年均	0,177	0.443	13.000	13,177	32.943	达和
	胜利村	1,595	604	年均	0.456	1.139	13.000	13.456	33.639	达林
NO2	高号維	2,275	-160	年均	0,173	0.431	13.000	13,173	32.931	达林
	张家	-1,243	2,600	年均	0.158	0.394	13.000	13,158	32.894	达标
	上廖溪	-2,097	-1,243	年均	0.487	1.217	13.000	13,487	33.717	达板
	腊岩	-2,216	-2,494	年均	103.0	1.503	13.000	13.601	34.003	达林
	中寨	-2,121	-2,706	年均	0.593	1.482	13,000	13,593	33.982	达机
	观音滩	157	-2,653	年均	0.173	0.433	13.000	13,173	32.933	达林
	荒田	-2,749	1,272	年均	0.115	0.288	13.000	13.115	32.788	达机
	凡溪屯	-2,482	-583	年均	0.208	0.519	13.000	13.208	33.019	达机
	士湾	-1,640	2,551	年均	0.188	0.469	13,000	13.188	32.969	达机
	三脚岩	-1,876	183	年均	0.206	0.515	13.000	13.206	33.015	达
	三寨村	-1,889	-615	年均	0.332	0.830	13.000	13.332	33.330	达
	堰塘塆	-1,966	739	年均	0.183	0.457	13.000	13.183	32.957	达机
	白猫冲	-1,661	1,244	年均	0.174	0.434	13,000	13.174	32.934	达机
	竹山渓	-1,354	1,893	年均	0.141	0.353	13.000	13.141	32.853	达
	白家庄	-1,088	-62	年均	0.447	1.118	13,000	13.447	33.618	达板
	鲇鱼塘村	1,643	-2,622	年均	0.082	0.205	13.000	13,082	32.705	达核
	斜滩	1,950	-1,973	年均	0.086	0.215	13.000	13.086	32.715	达标
	陆家增	498	79	年均	0.978	2.445	13.000	13,978	34.945	达林
	菜园	-1,031	-2,657	年均	0,469	1.173	13.000	13,469	33.673	达标
	杨柳冲	2,104	1,516	年均	0.418	1.045	13.000	13,418	33.545	达核
	蔡溪屯	504	489	年均	1,225	3.062	13.000	14,225	35.562	达林
	洞脑上:	1,104	889	年均	0.598	1.495	13,000	13,598	33.995	达板

1	赶纸山	-1.772	547	年均	0.171	0.426	13.000	13,171	32.926	达标
	非塆.	-2,352	1,366	年均	0,131	0.327	13.000	13,131	32.827	达标
18	域最大值	-1,000	-900	年均	3.815	9.537	13.000	16.815	42.037	达标

表 4.1-62 PM₁₀叠加周边拟在建污染源及保证率日平均现状环境质量后预测结果表

		X/	Y/	平均		变化值/	占标率/	现状值/	叠加值/	占标率/ 达标
污染物	预测点	m	m	时段	出现时间	(µg/m³)	36	(µg/m³)	(μg/m³)	% 情况
	田新岩	2,809	2,314	保证率目平均	2023/10/21	1.467	0.978	80,000	81.467	54.311 达梅
	蔣家均	-31	-2.041	保证率目平均	2023/03/20	0.805	0.537	80,000	80.805	53.870 达标
	彭家	114	839	保证率日平均	2023/08/09	1.086	0.724	80.000	81.086	54.057 达板
Ì	岩下	138	2,356	保证率日平均	2023/07/12	0.539	0.359	80.000	80.539	53.693 达标
Ť	猫猫冲	-1,043		保证率日平均	2023/10/14	0.690	0.460	80.000	80.690	53.793 达板
1	麻音塘	-735	-2,739	保证率日平均	2023/06/16	1.025	0.683	80.000	81.025	54,017 丛林
Ì	羊庄	-531	-2,332	保证率日平均	2023/06/16	1.070	0.713	80.000	81.070	54.046 达标
1	菜渓村	-570	1,381	保证率日平均	2023/05/04	0.441	0.294	80.000	80.441	53.627 达林
Ì	下摩溪	-928	-2,425	保证率日平均	2023/03/11	1.378	0.919	80.000	81.378	54.252 达标
	后锁	785	-491	保证率日平均	2023/07/14	0.985	0.657	80.000	80.985	53.990 达标
Ì	湖南田	659	-2,207	保证奉日平均	2023/02/23	0.469	0.313	80.000	80.469	53.646 达标
1	跳廠	1,874	-486	保证率日平均	2023/06/26	0.412	0.275	80.000	80.412	53.608 达标
Ì	磨沟	2,587	810	保证率日平均	2023/07/07	1.248	0.832	80.000	81.248	54.165 达杭
	白岩塘	2,398	1,345	保证率日平均	2023/10/23	1.690	1.127	80.000	81.690	54.460 达标
	岩坎上	1,183	-331	保证率日平均	2023/07/06	0.893	0.595	80,000	80.893	53,929 达标
	分洲	1,559	-1,678	保证率目平均	2023/03/19	0.230	0.153	80,000	80.230	53.486 达板
	田家	1,842	-2,503	保证率日平均	2023/07/01	0.192	0.128	80.000	80.192	53.461 达核
1	辽家塆	1,586	39	保证率目平均	2023/09/08	0.960	0.640	80,000	80,960	53.973 达标
1	榴树井	1,998	1,064	保证率目平均	2023/03/14	1.880	1.253	-80,000	81.880	54.586 达标
	杉木林	1,276	-765	保证率日平均	2023/06/07	0.420	0.280	80,000	80.420	53.613 达板
-	胜利村	1,595	604	保证率日平均	2023/11/07	1.582	1.055	80.000	81.582	54.388 达标
Ī	商号滩	2,275	-160	保证率日平均	2023/08/04	0.479	0.319	80.000	80.479	53.653 达标
PM10	张家	-1,243	2,600	保证率日平均	2023/05/20	0.596	0.397	80.000	80.596	53.731 达核
LMIO	上摩漢	-2,097	-1,243	保证率日平均	2023/09/28	1.021	0.680	80.000	81.021	54.014 达标
	腊岩	-2.216	-2,494	保证率日平均	2023/02/13	1.208	0.805	80.000	81.208	54.139 达标
	中態	-2,121	-2,706	保证率日平均	2023/02/21	1.306	0.871	80.000	81.306	54.204 达杭
	观音滩	157	-2,653	保证率日平均	2023/03/25	0.575	0.383	80.000	80.575	53.717 达板
	荒田	-2,749	1,272	保证率日平均	2023/02/23	0.500	0.333	80.000	80.500	53.667 达标
	凡溪屯	-2.482	-583	保证率日平均	2023/11/23	0.373	0.249	80.000	80.373	53.582 达核
	上灣	-1,640	2,551	保证率日平均	2023/04/17	0.164	0.109	80.000	80.164	53.443 达杭
	三脚岩	-1,876	183	保证率日平均	2023/06/18	0.442	0.295	80.000	80.442	53.628 达杨
	三寨村	-1,889	-615	保证率日平均	2023/10/05	0.599	0.399	80,000	80.599	53.733 达标
	退塘垮	-1,966	739	保证率日平均	2023/11/18	0.602	0.401	80,000	80.602	53.735 达核
	白猫冲	-1,661	1,244	保证率日平均	2023/09/29	0.800	0.533	80,000	80.800	53.867 达标
	竹山溪	-1,354		保证率目平均	2023/12/20	0.410	0.273	80.000	80.410	53.606 达标
1	白家住	-1,088		保证率目平均		0.659	0.439	80.000	80.659	53.772 达标
1	鲇鱼塘村	1,643	-2,622		2023/08/21	0.212	0.142	80.000	80.212	53.475 达标
	斜滩	1,950		保证率日平均	2023/08/21	0.206	0.137	80.000	80.206	53.471 达标
	陆家塆	498	79	保证率日平均	2023/11/22	2.546	1.698	80.000	82.546	55.031 达标
	菜园	-1,031		保证率日平均	2023/02/03	1.318	0.879	80.000	81,318	54.212 丛板
1	杨柳冲	2,104	1,516	保证率日平均	2023/07/09	1.793	1.195	80.000	81,793	54.529 达标
	蔡淏屯	504	489	保证率日平均	2023/08/14	2.721	1.814	80.000	82.721	55.148 达核
	洞脑上	1,104	889	保证率日平均	2023/04/30	2.652	1.768	80.000	82.652	55.101 达标
1	赶纸山	-L.772	547	保证率日平均	2023/12/19	0.303	0,202	80.000	80.303	53,535 达核
	井塆	-2,352		保证率日平均	2023/11/18	0.596	0.397	80.000	80.596	53.731 达标
	区域最大值	-600	-700	保证率日平均	2023/11/30	9.623	6.415	80.000	89.623	59.748 达林

表 4.1-63 PM10叠加周边拟在建污染源及年均现状环境质量后预测结果表

污染物	初始此	X/	-Y/	平均	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
1.0.0120	136.092.555	m	m	时段	(µg/m³)	9%	(µg/m²)	(μg/m ³)	%	情况

	田新岩	2,809	2,314	年均	0.509	0.727	37.000	37,509	53.584	达标
	蒋家塆	+31	-2,041	年均	0.307	0.438	37.000	37,307	53,296	达标
	彭家	114	839	年均	0.554	0.791	37.000	37,554	53.648	达析
	岩下	138	2,356	年均	0,170	0.242	37.000	37,170	53.100	达杨
	猫猫冲	-1,043	2,741	年均	0.175	0.250	37.000	37,175	53.107	达柯
	麻音塘	-735	-2,739	年均	0.372	0.532	37.000	37,372	53.389	达板
	羊庄	-531	-2,332	年均	0.411	0.587	37.000	37.411	53.444	达板
	菜溪村	~570	1,381	年均	0.135	0.194	37.000	37,135	53.051	达板
	下廖溪	-928	-2,425	年均	0.520	0.743	37.000	37,520	53.600	达板
	后键	785	-491	年均	0.466	0.666	37.000	37,466	53.523	达机
	湖南田	659	-2,207	年均	0.162	0.232	37.000	37.162	53.089	达板
	跳破	1,874	-486	年均	0.151	0.216	37.000	37,151	53.073	达机
	磨沟	2,587	810	年均	0.391	0.559	37.000	37.391	53.416	达核
	自岩塘	2,398	1.345	年均	0.590	0.844	37.000	37.590	53.701	达机
	岩坎上	1,183	-331	年均	0.353	0.504	37.000	37.353	53.361	达核
	分洲	1,559	-1,678	年均	0.087	0.124	37.000	37,087	52.981	达机
	田家	1,842	-2,503	年均	0.067	0.096	37.000	37.067	52.953	达核
	辽家塆	1,586	39	年均	0.365	0.521	37.000	37.365	53.378	达
	榴树井	1,998	1,064	年均	0.671	0.959	37.000	37,671	53.816	达核
	杉木林	1,276	-765	年均	0.170	0.243	37.000	37,170	53.100	达核
	胜利村	1,595	604	年均	0.620	0.886	37.000	37,620	53.743	达林
	高弓維	2,275	-160	年均	0.171	0.244	37.000	37,171	53.102	达林
	张家	-1,243	2,600	年均	0.144	0.206	37.000	37,144	53.063	达机
PM10	上廖溪	-2,097	-1,243	年均	0.326	0.465	37.000	37,326	53.323	达林
	腊岩	-2,216	-2,494	年均	0.432	0.618	37.000	37.432	53.475	达机
	中寨	-2,121	-2,706	年均	0.450	0.643	37.000	37,450	53.500	达林
	观音滩	157	-2,653	年均	0.213	0.305	37.000	37.213	53.162	达机
	荒田	-2,749	1,272	年均	0.105	0.150	37.000	37.105	53.007	达林
	凡溪屯	-2,482	-583	年均	0.139	0.198	37,000	37.139	53.055	达机
	上湾	-1,640	2,551	年均	0.046	0.066	37.000	37.046	52.923	达林
	三脚岩	-1,876	183	年均	0.151	0.216	37.000	37.151	53.073	达
	三寨村	-1,889	-615	年均	0.215	0.307	37.000	37.215	53.164	达机
	堰塘塆	-1,966	739	年均	0.162	0.231	37,000	37,162	53.088	达标
	白猫冲	-1,661	1,244	年均	0.188	0.268	37.000	37.188	53.125	达机
	竹山溪	-1,354	1,893	年均	0.114	0.163	37.000	37.114	53,021	达板
	白家庄	-1,088	-62	年均	0.301	0.431	37.000	37,301	53,288	达机
	鲇鱼塘村	1,643	-2,622	年均	0.073	0.104	37.000	37,073	52.961	达林
	斜滩	1,950	-1,973	年均	0,071	0.102	37.000	37,071	52.959	达林
	陆家塆	498	79	年均	1,606	2.295	37.000	38,606	55.152	达标
	菜园	-1,031	-2,657	年均	0.493	0.705	37.000	37,493	53.562	达杉
	杨柳冲	2,104	1,516	年均	0.624	0.891	37.000	37.624	53.748	达核
	蔡溪屯	504	489	年均	1,544	2.206	37.000	38.544	55.063	达板
	洞脑上	1.104	889	年均	0.989	1.413	37.000	37,989	54.270	达板
	赶纸山	-1,772	547	年均	0.104	0.149	37.000	37.104	53.006	达机
	井塆	-2,352	1,366	年均	0.145	0.208	37.000	37.145	53.065	达板
	区域最大值	-400	-300	年均	4,606	6.580	37.000	41,606	59.437	达机

表 4.1-64 PM2.5叠加周边拟在建污染源及保证率日平均现状环境质量后预测结果表

污染物	预测点	X/	Y/	平均	during a fair	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
75.96年初	THANTES	m	m	时段	出现时间	(µg/m³)	45	(µg/m³)	(μg/m³)	%	情况
	田新岩	2,809	2,314	保证率日平均	2023/07/05	0.966	1.288	66.000	66.966	89,288	达标
	蒋家塆	-31	-2,041	保证率日平均	2023/03/20	0.549	0.732	66,000	66.549	88.732	达标
DLC2 C	彭家	114	839	保证率日平均	2023/08/24	0.759	1.012	66.000	66.759	89.012	达标
PM2.5	岩下	138	2,356	保证率日平均	2023/07/12	0.377	0.503	66.000	66.377	88.503	达标
	猫猫冲	-1,043	2,741	保证率日平均	2023/10/14	0.483	0.644	66.000	66.483	88.644	达标
	麻音塘	-735	-2,739	保证率日平均	2023/02/03	0.700	0.933	66,000	66,700	88.933	达标

羊庄	-531	-2.332	保证率日平均	2023/02/22	0.741	0.988	66.000	66.741	88.988	达析
菜溪村	-570	1,381	保证率日平均	2023/05/04	0.308	0.411	66.000	66.308	88.411	达标
下廖溪	-928	-2,425	保证率日平均	2023/02/12	0.960	1.280	66.000	66.960	89.280	达标
后锁	785	-491	保证率日平均	2023/07/14	0.689	0.919	66,000	66.689	88.919	达标
湖南田	659	-2,207	保证率日平均	2023/07/24	0.311	0.415	66.000	66.311	88.415	达标
到的	1,874	-486	保证奉日平均	2023/10/27	0.285	0.381	66,000	66,285	88.381	达标
磨沟	2,587	810	保证奉目平均	2023/07/07	0.870	1.160	66,000	66.870	89.160	达标
白岩塘	2,398	1,345	保证率目平均	2023/08/03	1.179	1.572	66.000	67.179	89.572	达标
岩坎上	1,183	-331	保证率目平均	2023/07/06	0.623	0.831	66,000	66.623	88.831	达标
分洲	1,559	-1,678	保证率日平均	2023/05/27	0.150	0.200	66:000	66.150	88,200	达标
田家	1,842	-2,503	保证率日平均	2023/07/23	0.133	0.178	66.000	66.133	88.178	丛板
辽家塆	1,586	39	保证率日平均	2023/07/05	0.669	0.893	66.000	66.669	88.893	达柯
榴树井	1,998	1,064	保证率日平均	2023/03/14	1.314	1.752	66,000	67.314	89.752	达标
松木林	1,276	-765	保证率目平均	2023/06/07	0.284	0.378	66.000	66.284	88,378	达标
胜利村	1,595	604	保证丰日平均	2023/10/29	1.090	1.453	66.000	67.090	89.453	达标
高弓滩	2,275	-160	保证率日平均	2023/06/29	0.334	0.445	66.000	66.334	88.445	达杨
张家	-1,243	2,600	保证率日平均	2023/05/20	0.416	0.555	66.000	66.416	88.555	达柯
上際漢	-2,097	-1.243	保证率日平均	2023/09/28	0.708	0.943	66.000	66.708	88.943	达析
腊岩	-2.216	-2,494	保证率日平均	2023/02/13	0.841	1.121	66.000	66.841	89.121	达板
中塞	-2,121	-2,706	保证率日平均	2023/12/13	0.903	1.204	66.000	66.903	89.204	达标
观音准	157	-2,653	保证率日平均	2023/04/28	0.382	0.509	66,000	66,382	88.509	达标
荒田	-2,749	1,272	保证奉日平均	2023/02/23	0.349	0.466	66.000	66.349	88.466	达析
凡溪屯	-2,482	-583	保证率日平均	2023/11/23	0.260	0.347	66,000	66.260	88.347	达板
土湾	-1,640	2,551	保证奉目平均	2023/04/17	0.115	0.153	66,000	66.115	88.153	达梅
三脚岩	-1,876	183	保证率日平均	2023/06/18	0.310	0.413	66.000	66.310	88.413	达标
三寨村	-1,889	-615	保证率日平均	2023/10/05	0.414	0.552	66,000	66.414	88.552	达柯
堰塘塆	-1,966	739	保证率日平均	2023/11/18	0.421	0.562	66,000	66.421	88.562	达标
白猫冲	-1,661	1,244	保证率目平均	2023/09/29	0.560	0.747	66,000	66.560	88.747	达村
竹山溪	-1.354	1,893	保证率日平均	2023/05/25	0.283	0.378	66.000	66,283	88,378	达标
白家庄	-1,088	-62	保证率日平均	2023/04/27	0.460	0.613	66.000	66.460	88.613	达标
钻鱼塘村	1.643	-2,622	保证率日平均	2023/05/15	0.145	0.193	66.000	66.145	88.193	达析
斜峰	1,950	-1.973	保证率日平均	2023/08/21	0.144	0.191	66.000	66.144	88.191	达柯
陆家塆	498	79	保证率日平均	2023/07/22	1.774	2.365	66.000	67,774	90,365	达标
菜园	-1,031	-2,657	保证率日平均	2023/02/12	0.906	1.208	66.000	66.906	89.208	达板
杨柳冲	2,104	1.516	保证率日平均	2023/07/09	1.249	1.665	66.000	67.249	89,665	达析
蔡溪屯	504	489	保证率日平均	2023/08/14	1,901	2.535	66.000	67.901	90.535	达标
洞脑上	1,104	889	保证率日平均	2023/04/30	1.855	2.473	66.000	67.855	90.473	达村
赶纸山	-1,772	547	保证率日平均	2023/11/09	0.206	0.274	66,000	66,206	88.274	达标
井塆	-2,352	1,366	保证率日平均	2023/11/18	0.417	0.556	66.000	66.417	88.556	达杨
区域最大值	-600	-700	保证率日平均	2023/11/30	6.730	8.974	66,000	72.730	96.974	达标

表 4.1-65 PM2.5叠加周边拟在建污染源及年均现状环境质量后预测结果表

污染物	预测点	X/	Y/	平均	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
15%(10)	155,003,53	m	m	时段	(µg/m³)	%	(µg/m³)	(µg/m³)	%	情况
	田新岩	2,809	2,314	年均	0.321	0.918	23.000	23,321	66.633	达标
	蒋家塆	-31	-2,041	非均	0.207	0.592	23.000	23.207	66.307	达标
PM2.5	彭家	114	839	年均	0.380	1.085	23.000	23.380	66.799	达标
	岩下	138	2,356	年均	0.117	0.335	23,000	23.117	66.049	达标
	猫猫冲	-1,043	2,741	年均	0.122	0.349	23.000	23.122	66.063	达标
	麻音塘	-735	-2,739	年均	0.255	0.730	23,000	23.255	66.444	达标
	羊庄	→531	-2,332	年均	0.281	0.804	23.000	23,281	66.518	达标
	菜溪村	-570	1,381	年均	0.093	0.266	23.000	23.093	65.980	达标
	下壓渠	-928	-2,425	年均	0.359	1.025	23.000	23,359	66.739	达标
	后链	785	-491	年均	0.313	0.895	23.000	23,313	66.609	达标
	湖南田	659	-2,207	年均	0,105	0.300	23.000	23,105	66.015	达标
	跳破	1,874	-486	年均	0.098	0.281	23.000	23.098	65.995	达标
	麻沟	2,587	810	年均	0.271	0.773	23.000	23,271	66.487	达标

白岩塘	2,398	1,345	年均	0.409	1.170	23,000	23.409	66.884	达标
岩坎上	1,183	-331	年均	0.231	0.659	23.000	23,231	66.374	达标
分洲	1,559	-1,678	年均	0.055	0.157	23.000	23.055	65.871	达析
田家	1,842	-2,503	年均	0.044	0.125	23.000	23,044	65.839	达桐
辽家塆	1,586	39	年均	0,242	0.690	23.000	23,242	66.405	达柯
榴树井	1,998	1,064	年均	0.457	1.305	23.000	23,457	67.020	达板
杉木林	1,276	-765	年均	0.105	0.299	23.000	23,105	66.014	达柯
胜利村	1,595	604	年均	0.413	1.179	23.000	23,413	66.894	达杨
高弓滩	2,275	-160	年均	0.116	0.330	23.000	23.116	66.044	达板
张家	-1,243	2,600	年均	0.101	0.288	23.000	23,101	66.002	达板
上廖溪	-2,097	-1,243	年均	0.225	0.643	23,000	23,225	66.357	达板
聯告	-2,216	-2,494	年均	0.299	0.856	23.000	23,299	66.570	达板
中寨	-2,121	-2,706	年均	0.312	0.891	23.000	23,312	66.605	达板
观音剂	157	-2,653	年均	0.142	0.405	23.000	23.142	66.119	达机
荒田	-2,749	1,272	年均	0.073	0.208	23.000	23.073	65.923	达杭
凡溪屯	-2,482	-583	年均	0.095	0.270	23.000	23,095	65.985	达机
土湾	-1,640	2,551	年均	0.032	0.092	23.000	23.032	65.806	达核
三脚岩	-1,876	183	年均	0.104	0.298	23,000	23,104	66.012	达板
三寨村	-1,889	-615	年均	0.147	0.421	23.000	23,147	66.135	达板
堰塘塆	-L,966	739	年均	0.112	0.321	23.000	23.112	66.035	达杭
白猫冲	-1,661	1,244	年均	0,131	0.373	23.000	23,131	66.088	达核
竹山溪	-1,354	1,893	年均	0.079	0.226	23.000	23,079	65.940	达板
白家庄	-1,088	-62	年均	0.206	0.590	23.000	23,206	66.304	达板
鲇鱼塘村	1,643	-2,622	年均	0.047	0.134	23.000	23.047	65.848	达板
斜滩	1,950	-1,973	年均	0.046	0.131	23,000	23,046	65.846	达机
陆家塆	498	79	年均	1.112	3.176	23.000	24,112	68.891	达板
菜园	-1,031	-2,657	年均	0.340	0.972	23.000	23,340	66.686	达机
杨柳冲	2,104	1,516	年均	0.427	1.221	23,000	23,427	66.935	达板
蔡溪电	504	489	年均	1.067	3.048	23,000	24.067	68,763	达机
洞脑上	1,104	889	年均	0.669	1.912	23.000	23.669	67.627	达板
赶纸山	-1,772	547	年均	0.072	0.205	23.000	23.072	65.919	达机
非 塆	-2,352	1,366	年均	0.101	0.289	23,000	23,101	66.004	达板
区域最大值	-400	-300	年均	3.219	9,199	23.000	26,219	74.913	达板

表 4.1-66 CO 叠加周边拟在建污染源及保证率日平均现状环境质量后预测结果表

污染物	預測点	X/	Y/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
行领之中的	THERU AA	m	m	时段	TO THE PARTY IN	(µg/m ³)	%	(µg/m³)	(µg/m³)	96	情况
	田新岩	2,809	2,314	保证率日平均	2023/05/01	0.036	0.001	800.000	800.036	20.001	达标
	蒋家塆	-31	-2,041	保证率日平均	2023/02/02	0.023	0.001	800,000	800.023	20.001	达标
	彭家	114	839	保证率目平均	2023/06/21	0.051	0.001	800.000	800.051	20.001	达标
	岩下	138	2,356	保证率日平均	2023/06/17	0.014	0.000	800,000	800.014	20.000	达标
	猫猫冲	-1,043	2.741	保证率目平均	2023/12/30	0.028	0.001	800,000	800.028	20.001	达标
	麻音塘	-735	-2,739	保证率目平均	2023/06/23	0.033	0.001	800.000	800.033	20.001	达标
	羊庄:	-531	-2,332	保证率日平均	2023/06/01	0.036	0.001	800,000	800.036	20.001	达标
	菜溪村	-570	1,381	保证率日平均	2023/07/11	0.024	0.001	800.000	800.024	20.001	达标
	下廖溪	-928	-2,425	保证率日平均	2023/05/16	0.050	0.001	800,000	800.050	20,001	达标
CO	后锁	785	-491	保证率日平均	2023/07/11	0.016	0.000	800.000	800.016	20,000	丛标
	湖南田	659	-2,207	保证率日平均	2023/03/12	0.009	0.000	800.000	800,009	20.000	达标
	姚碶	1,874	-486	保证率日平均	2023/02/05	0.009	0.000	800,000	800.009	20.000	达标
	磨沟	2,587	810	保证率日平均	2023/10/25	0.041	0.001	800.000	800.041	20,001	达标
	白岩塘	2,398	1,345	保证率日平均	2023/07/05	0.043	0,001	800,000	800,043	20,001	达标
	岩坎上	1,183	-331	保证率日平均	2023/05/24	0.015	0.000	800.000	800.015	20.000	达标
	分洲	1,559	-1,678	保证率日平均	2023/06/06	0.006	0.000	800.000	800.006	20.000	达标
	田家	1,842	-2,503	保证率日平均	2023/05/01	0.005	0.000	800.000	800.005	20.000	达标
	辽家塆	1,586	39	保证率日平均	2023/06/10	0.025	0.001	800.000	800.025	20.001	达标
	榴树井	1,998	1,064	保证率日平均	2023/07/05	0.049	0.001	800,000	800.049	20.001	达标

杉木林	1,276	-765	保证率日平均	2023/08/15	110.0	0.000	800.000	800.011	20.000	达析
胜利村	1,595	604	保证率日平均	2023/11/22	0.061	0.002	800.000	800.061	20.002	达杨
高寸滩	2,275	~160	保证率日平均	2023/02/06	0.013	0.000	800.000	800.013	20.000	达村
張家	-1,243	2,600	保证率日平均	2023/12/29	0.038	0.001	800,000	800.038	20,001	达标
上廖溪	-2,097	-1,243	保证率日平均	2023/09/24	0.043	0.001	800.000	800.043	20.001	达标
腊岩	-2,216	-2,494	保证率日平均	2023/10/01	0.047	0.001	800.000	800.047	20.001	达标
中寨	+2,121	-2.706	保证奉目平均	2023/10/06	0.052	0.001	800.000	800.052	20.001	达标
观音滩	157	-2,653	保证率目平均	2023/02/05	0.014	0.000	800.000	800.014	20.000	达标
荒田	-2,749	1,272	保证率目平均	2023/01/03	0.030	0.001	800,000	800.030	20.001	达标
凡溪屯	-2,482	-583	保证零日平均	2023/03/04	0.016	0.000	800,000	800.016	20.000	达标
1.湾	-1.640	2,551	保证率日平均	2023/10/09	0.007	0.000	800.000	800.007	20.000	达标
三脚岩	-1,876	183	保证率日平均	2023/03/26	0.011	0.000	800,000	800.011	20.000	达柯
三寨村	-1,889	-615	保证率日平均	2023/10/02	0.029	0.001	800,000	800.029	20.001	达析
烟塘塆	-1,966	739	保证率目平均	2023/03/28	0.005	0.000	800,000	800.005	20.000	达标
白猫冲	-1,661	1,244	保证幸日平均	2023/02/24	0.009	0.000	800.000	800.009	20.000	达标
竹山溪	-1.354	1,893	保证率日平均	2023/07/08	0.008	0.000	800,000	800.008	20,000	达标
白家庄	-1,088	-62	保证率日平均	2023/08/07	0.026	0.001	800.000	800.026	20.001	达柯
鲇鱼塘村	1,643	-2.622	保证率日平均	2023/05/01	0.005	0.000	800,000	800.005	20.000	达析
斜滩	1,950	-1,973	保证率日平均	2023/06/06	0.005	0.000	800.000	800.005	20.000	达标
陆家塆	498	79	保证率日平均	2023/08/01	0.101	0.003	800.000	800.101	20.003	达标
菜园	-1,031	-2,657	保证率日平均	2023/05/16	0.047	0.001	800.000	800.047	20.001	达标
杨柳冲	2,104	1,516	保证率日平均	2023/08/30	0.039	0.001	800.000	800.039	20.001	达标
蔡溪屯	504	489	保证率日平均	2023/06/10	0.096	0.002	800.000	800.096	20.002	达标
洞脑上	1,104	889	保证奉目平均	2023/08/19	0.063	0.002	800.000	800.063	20.002	达标
赶纸山	-1,772	547	保证率日平均	2023/05/23	0.007	0.000	800.000	800.007	20.000	达标
升垮	-2,352	1,366	保证率日平均	2023/12/25	0.013	0.000	800.000	800.013	20.000	达柯
区域最大值	-200	-200	保证率日平均	2023/04/04	0.531	0.013	800,000	800.531	20.013	达标

表 4.1-67 硫酸雾叠加周边拟在建污染源及 1 小时平均现状环境质量后预测结果表

Same Strander	35 (m) J:	X/	Y/	平均	(1) 200 0-1 (6)	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
污染物	预测点	m	m	时段	出现时间	(μg/m³)	96	(µg/m ⁵)	(µg/m³)	%	情况
	田新岩	2,809	2,314	1 小时	2023/09/09 21:00	11.958	3.986	2.500	14.458	4.819	达标
	蒋家塆	-31	-2,041	1.小时	2023/07/02 21:00	7.550	2.517	2.500	10.050	3.350	达标
	彭家	114	839	1 小时	2023/08/04 23:00	16.873	5.624	2.500	19.373	6.458	达标
	岩下	138	2,356	1 小时	2023/07/28 00:00	9.041	3.014	2.500	11.541	3.847	达标
	猫猫冲	-1,043	2,741	1 小时	2023/02/06 02:00	14.885	4.962	2.500	17.385	5.795	达标
T	麻音塘	-735	-2,739	1 小时	2023/06/25 19:00	7.108	2.369	2.500	9,608	3.203	达标
	羊庄	-531	-2,332	1 小时	2023/09/16 20:00	8,011	2.670	2.500	10,511	3.504	达标
	菜溪村	-570	1,381	1 小时	2023/06/18 23:00	10.750	3.583	2.500	13.250	4.417	达标
	下廖溪	-928	-2,425	1小时	2023/07/23 21:00	8.904	2.968	2.500	11,404	3.801	达标
	后锁	785	-491	1 小时	2023/08/21 00:00	14.638	4.879	2.500	17.138	5.713	达标
	湖南田	659	-2,207	1 小时	2023/05/29 02:00	8.662	2.887	2.500	11.162	3.721	达标
	跳磁	1.874	-486	1 小时	2023/07/10 22:00	7.386	2.462	2.500	9.886	3.295	达标
28:25	磨沟	2,587	810	1小时	2023/08/20 04:00	7.762	2,587	2.500	10.262	3.421	达标
硫酸	白岩塘	2,398	1,345	1 小时	2023/06/30 00:00	10.934	3.645	2.500	13.434	4.478	达标
	岩坎上	1,183	-331	1.小时	2023/07/10 22:00	12,960	4.320	2.500	15,460	5.153	达标
	分洲	1,559	-1,678	1小时	2023/08/21 02:00	5.634	1.878	2.500	8.134	2.711	比标
	田家	1,842	-2,503	1 小时	2023/08/12 19:00	4.502	1.501	2.500	7.002	2.334	(人)
	辽家塆	1,586	39	1 小時	2023/07/02 02:00	9.107	3.036	2.500	11.607	3.869	达标
	榴树井	1,998	1,064	1小时	2023/07/11 00:00	10.804	3.601	2.500	13.304	4.435	达标
	杉木林	1,276	-765	1小时	2023/06/26 20:00	10.098	3.366	2.500	12.598	4.199	达标
	胜利村	1,595	604	1 小时	2023/08/05 03:00	11.116	3.705	2.500	13.616	4.539	达标
1	高号滩	2,275	-160	1 小时	2023/09/19 23:00	7.123	2.374	2.500	9.623	3.208	达标
1	张家	-1,243	2,600	1 小时	2023/02/06 02:00	12916	4.305	2.500	15.416	5.139	达标
	上廖溪	-2,097	-1,243	1 小时	2023/09/14 19:00	9,315	3.105	2.500	11.815	3.938	达标
	腊岩	-2,216	-2,494	1小时	2023/07/15 19:00	10.814	3.605	2.500	13.314	4.438	达标
	中寨	-	-2,706	1小时	2023/06/26 22:00	11.809	3.936	2.500	14,309	4.770	达标

 1 1 1 1 1									77.7	
观音簿	157	-2,653	1小时	2023/05/29 21:00	5.866	1.955	2.500	8.366	2.789	达标
荒田	-2,749	1,272	1小时	2023/05/23 19:00	9.359	3.120	2.500	11.859	3.953	达标
凡溪屯	-2,482	-583	T小时	2023/05/31 23:00	7.299	2.433	2.500	9.799	3.266	达标
上湾	-1,640	2,551	1小时	2023/01/23 05:00	2,015	0.672	2,500	4:515	1.505	达标
三脚岩	-1,876	183	1 小时	2023/05/23 02:00	9,534	3.178	2.500	12.034	4.011	达标
三寨村	-1,889	-615	1 小时	2023/09/27 20:00	7.137	2.379	2.500	9.637	3.212	达标
退塘塆	-1.966	739	1 小时	2023/01/16 23:00	14,231	4.744	2.500	16,731	5.577	达标
白猫冲	-1,661	1,244	1小时	2023/10/31 20:00	22,225	7.408	2.500	24.725	8,242	达标
竹山溪	-1,354	1,893	1 小时	2023/11/02 21:00	11.625	3.875	2.500	14.125	4.708	达标
白家庄	-1,088	-62	1 小时	2023/09/18 21:00	16,622	5.541	2,500	19.122	6.374	达标
鲇鱼塘村	1,643	-2,622	1 小时	2023/08/12 19:00	5.869	1.956	2.500	8.369	2.790	达标
斜滩	1,950	-1,973	1 小时	2023/07/24 00:00	5.613	1.871	2.500	8.113	2:704	达标
陆家均	498	79	1 小时	2023/08/04 22:00	21.047	7.016	2.500	23,547	7.849	达标
菜园	-1,031	-2,657	1.小时	2023/07/23 21:00	9,417	3.139	2.500	11.917	3.972	达标
杨柳冲	2,104	1,516	1 小时	2023/07/06 05:00	14.170	4.723	2.500	16.670	5.557	达标
蔡溪屯	504	489	1 小时	2023/07/03 21:00	21,600	7.200	2.500	24.100	8.033	达标
洞脑上	1,104	889	上小时	2023/07/09 19:00	21,751	7.250	2.500	24.251	8.084	达标
赶纸山	-1,772	547	1.44	2023/10/31 19:00	13.997	4.666	2.500	16.497	5.499	达标
井塆	-2,352	1,366	1 小时	2023/09/29 23:00	13.697	4.566	2.500	16.197	5.399	达标
区域最大值	-100	-300	1 小时	2023/09/17 22:00	155.917	51.972	2.500	158.417	52.806	达标

表 4.1-68 硫酸雾叠加周边拟在建污染源及 24 小时平均现状环境质量后预测结果表

污染物	预测点	X/	Y/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	边柯
3.9549	THEMSTERY	m	m	肘段	ETF-Mind Inf	(μg/m³)	9/4	(μg/m³)	(µg/m³)	%	情况
	阻断岩	2,809	2.314	24 小时	2023/08/16	2,179	2.179	2.500	4.679	4.679	达标
	蒋家均	-31	-2,041	24 小时	2023/05/29	1.127	1.127	2.500	3.627	3.627	达柯
	彭家	114	839	24 小图	2023/07/28	2.259	2.259	2.500	4.759	4.759	边板
	岩下	138	2,356	24 小时	2023/07/28	0.777	0.777	2,500	3.277	3.277	达杨
	猫猫冲	-1,043	2,741	24 小时	2023/03/06	1.120	1.120	2,500	3.620	3.620	达杨
	麻音塘	-735	-2,739	24 小时	2023/10/26	1,270	1.270	2,500	3.770	3,770	达板
	羊庄	-531	-2,332	24 小时	2023/10/26	1.502	1.502	2.500	4.002	4.002	达核
	菜浬村	+570	1,381	24 小时	2023/04/16	0.665	0.665	2.500	3.165	3.165	达板
	下廖溪	-928	-2,425	24 小时	2023/06/01	1.498	1.498	2.500	3.998	3.998	达板
	后锁	785	-491	24 小时	2023/08/18	1,286	1.286	2.500	3.786	3,786	达板
	湖南田	659	-2,207	24 小时	2023/05/17	0.805	0.805	2.500	3.305	3.305	达杭
	跳破	1,874	-486	24 小时	2023/07/07	0.714	0.714	2.500	3,214	3,214	达板
	磨沟	2,587	810	24 小时	2023/11/22	1,439	1.439	2.500	3,939	3,939	达核
	白岩塘	2,398	1,345	24 小时	2023/11/21	2.180	2.180	2.500	4.680	4.680	达核
	岩坎上	1,183	-331	24 小时	2023/07/07	1.552	1.552	2.500	4.052	4.052	达板
	分洲	1,559	-1,678	24 小时	2023/08/02	0.484	0.484	2,500	2.984	2.984	达林
硫酸	田家	1,842	-2,503	24 小时	2023/08/02	0.390	0.390	2.500	2.890	2.890	达林
	辽家塆	1,586	39	24 小时	2023/07/21	1,456	1.456	2.500	3.956	3,956	达核
	瘤树井	1,998	1,064	24 小时	2023/09/07	2.415	2.415	2.500	4.915	4.915	达校
	杉木林	1,276	-765	24 小图	2023/08/02	0.776	0.776	2.500	3.276	3.276	沙杉
	胜利村	1,595	604	24 小时	2023/07/10	2,261	2.261	2.500	4.761	4.761	达校
	高弓洲	2,275	-160	24 小时	2023/07/07	0.991	0.991	2,500	3.491	3.491	达板
	张家	-1,243	2,600	24 小时	2023/03/06	1.023	1.023	2.500	3.523	3.523	边板
	上廖溪	-2,097	-1,243	24 小时	2023/09/27	1.041	1.041	2.500	3.541	3.541	31:4
	腊岩	-2,216	-2,494	24 小时	2023/12/02	1.611	1.611	2,500	4.111	4.111	达板
	中寨	-2,121	-2,706	24 小时	2023/02/16	1.601	1.601	2,500	4.101	4.101	达粉
	观音滩	157	-2,653	24 小府	2023/10/26	0.918	0.918	2.500	3.418	3,418	达核
	荒田	-2,749	1,272	24 小时	2023/01/04	0.709	0.709	2.500	3.209	3.209	达林
	凡後屯	-2,482	+583	24 小时	2023/12/09	0,508	0.508	2.500	3.008	3,008	达核
	土湾	-1,640	2,551	24 小时	2023/11/15	0.140	0.140	2.500	2.640	2,640	达杉
	三脚岩		183	24 小时	2023/10/27	0,702	0.702	2.500	3,202	3,202	达板
	三寨村		-615	24 小时	2023/09/27	0.745	0.745	2.500	3.245	3,245	达板
	堰塘垮		739	24 小时	2023/01/04	1.085	1.085	2,500	3.585	3.585	达板

白猫冲	-1,661	1,244	24 小时	2023/01/04	1,410	1.410	2.500	3.910	3.910	达板
竹山溪	-1,354	1,893	24 小时	2023/02/20	0.853	0.853	2.500	3.353	3,353	送板
白家庄	-1,088	-62	24 小时	2023/04/02	0.904	0.904	2.500	3.404	3,404	达板
鲇鱼塘 村	1,643	-2,622	24 小时	2023/08/02	0.459	0.459	2.500	2.959	2,959	达核
斜滩	1,950	-1,973	24 小时	2023/07/24	0,381	0.381	2.500	2.881	2,881	达板
陆家塆	498	79	24 小时	2023/08/11	5,128	5.128	2.500	7.628	7,628	达核
菜园	-1,031	-2,657	24 小时	2023/06/01	1,443	1.443	2.500	3.943	3,943	达杉
杨柳冲	2,104	1,516	24 小时	2023/08/16	2,883	2.883	2.500	5.383	5,383	达和
蔡溪屯	504	489	24 小时	2023/08/12	3.927	3.927	2,500	6.427	6.427	达札
洞跡上	1,104	889	24 小时	2023/08/11	4.949	4.949	2,500	7.449	7.449	达林
赶纸山	-1,772	547	24 小时	2023/10/31	0.763	0.763	2.500	3.263	3,263	达核
非塆	-2,352	1,366	24 小时	2023/01/04	1.136	1.136	2.500	3.636	3.636	达标
区域最 大值	100	-300	24 小时	2023/07/10	13.333	13.333	2.500	15.833	15.833	达机

表 4.1-69 氯化氢叠加周边拟在建污染源及 1 小时平均现状环境质量后预测结果表

estació.	Antone is	X/	Y/	平均	mued Gar	变化值/	占标率/	现状值/	登加值/	占标率/	达标
污染物	预测点	m	m	时段	出现时间	(μg/m ³)	9/6	(µg/m³)	(µg/m²)	26	情况
	田新岩	2,809	2,314	1小时	2023/03/26 07:00	0.747	1.493	10.000	10.747	21.493	达标
	蒋家塆	-31	-2,041	1 小时	2023/07/02 21:00	1.430	2.861	10.000	11.430	22.861	达标
	彭家	114	839	1小时	2023/08/04 23:00	3.783	7,566	10.000	13.783	27.566	达标
	岩下	138	2,356	1 小时	2023/07/28 00:00	1.825	3.651	10.000	11.825	23.651	达标
	猫猫冲		2,741	1 小时	2023/02/25 02:00	2.140	4,279	10,000	12.140	24.279	达标
	麻音塘	-735		1 小时	2023/09/16 21:00	1.100	2,201	10.000	11.100	22,201	达柯
	羊庄	-531	-2,332		2023/05/18 20:00	1.587	3.175	10.000	11.587	23.175	达杨
	菜溪村	-570	1,381	1 小时	2023/02/24 02:00	3,132	6.264	10.000	13.132	26,264	达板
	下廖溪	-928	-2,425		2023/09/27 22:00	1,420	2,841	10,000	11.420	22.841	达核
	后锁	785	-491	1 小时	2023/08/21 00:00	2.779	5,557	10,000	12,779	25.557	达板
	湖南田	659	-2,207	1 小时	2023/05/29 02:00	1.629	3,258	10,000	11.629	23.258	达板
	跳破	1,874	-486	1 小时	2023/07/10 22:00	1.306	2,611	10.000	11.306	22.611	达板
	應沟	2.587	810	1小时	2023/02/15 08:00	1.005	2,010	10.000	11.005	22.010	达核
	白岩塘	2,398	1,345	1 小时	2023/12/03 08:00	1.101	2.203	10.000	11.101	22,203	达核
	岩坎上		-331	上小时	2023/06/29 23:00				12.509	25.017	达核
		1,183	-		the second district the second	2.509	5.017	10.000			达板
	分洲	1,559	-1,678	1小时	2023/08/21 02:00	0.985	1.971	10.000	10,985	21,971	
	田家	1,842	-2,503		2023/05/04 01:00	0.809	1.619	10.000	10.809	21.619	达村
	辽家塆		39	1小时	2023/07/10 00:00	1.394	2.789	10.000	11.394	22.789	达
HCL	柳树井	1,998	1,064	1小时	2023/12/03 08:00	1,118	2.235	10.000	11.118	22,235	送林
	杉木林	1,276	-765	1小时	2023/06/26 20:00	1,932	3,865	10.000	11.932	23.865	达林
	胜利村		604	1 小时	2023/09/18 22:00	1,515	3.029	10.000	11.515	23.029	达村
	高弓滩		-160	1小时	2023/08/10 01:00	0.988	1.976	10.000	10.988	21.976	达档
	张家	-1,243	2,600	1小时	2023/02/25 02:00	3.982	7.963	10.000	13.982	27.963	达
	上廖溪		-1,243	1 小时	2023/09/27 20:00	1.441	2,882	10.000	11.441	22.882	达
	腊岩	-2,216	-2,494	1 小时	2023/06/26 21:00	1,190	2,380	10,000	11.190	22.380	达林
	中寨	-2,121	-2,706		2023/06/26 21:00	1.775	3,550	10,000	11.775	23.550	达林
	观音滩	157	-2,653		2023/05/29 03:00	0.989	1.978	10,000	10.989	21.978	述
	荒田	-2,749	1,272	1 小时	2023/12/30 03:00	3.022	6.043	10,000	13.022	26.043	达机
	凡溪屯	-2,482	-583	1 小时	2023/12/13 23:00	1.932	3,863	10.000	11.932	23.863	达
	土湾	-1,640	2,551	1 小时	2023/05/20 04:00	0.606	1,212	10.000	10.606	21.212	达林
	三胸岩	-1,876	183	1 小时	2023/01/04 03:00	0.846	1.692	10.000	10.846	21.692	达
	三寨村	-1,889	-615	1小时	2023/11/20 19:00	2.668	5.336	10.000	12.668	25.336	达柱
	展塘塆	-1,966	739	1 小时	2023/03/16 03:00	0.781	1.562	10.000	10,781	21,562	3/: 6
	白猫冲	-1,661	1,244	1 4/10	2023/04/02 23:00	1.031	2.063	10.000	11.031	22.063	达林
	竹山溪		1,893	1 小时	2023/02/20 02:00	1.620	3.240	10.000	11.620	23.240	达杉
	自家庄	-1,088	-62	上小时	2023/09/18 21:00	2.268	4.537	10.000	12.268	24.537	选制
	鲇鱼塘 村	1,643	-2,622	1 344	2023/05/04 01:00	0.850	1.700	10,000	10.850	21.700	达板

斜滩	1.950	-1,973	1 小时	2023/06/23 06:00	0.953	1.906	10.000	10.953	21.906	达标
陆家塆	498	79	1 小时	2023/08/04 22:00	3.813	7.627	10.000	13.813	27.627	达标
菜园	-1,031	-2,657	1小时	2023/09/27 22:00	1.354	2.707	10.000	11.354	22.707	达标
杨柳冲	2,104	1,516	1 小时	2023/09/19 22:00	0,970	1.940	10.000	10.970	21.940	达标
蔡溪屯	504	489	1 小时	2023/07/03-21:00	3.824	7,649	10,000	13.824	27.649	达标
洞脑上	1,104	889	1 小时	2023/09/10 21:00	2,362	4,723	10,000	12.362	24.723	达标
赶纸山	-1,772	547	1 小时	2023/10/12 05:00	3.137	6.273	10,000	13.137	26.273	达标
井塆	-2,352	1,366	1 小时	2023/11/05 06:00	1,515	3.030	10.000	11.515	23.030	达标
区域最大值	0	-600	1 小时	2023-07-06 02:00:00	36.889	73.778	10.000	46.889	93.778	选标

表 4.1-70 氯化氢叠加周边拟在建污染源及 24 小时平均现状环境质量后预测结果表

	× 4.1-70	SW LOTE	A.BLAHA		建17米你以	A 4 104	1 Tracker	E NOOF E	בואואני הויב	HALL.	
污染物	预测点	X/	Υ/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
		m	m	时段		(μg/m³)	7/0	(µg/m³)	(µg/m ³)	%	情况
ICL	田新岩	2,809	2,314	24 小时	2023/08/11	0.132	0.880	10.000	10.132	67.547	达标
	蒋家塆	-31	-2,041	24 小时	2023/05/29	0.156	1.042	10.000	10.156	67.708	达标
	彭家	114	839	24 小时	2023/07/28	0.381	2,541	10.000	10.381	69.208	达标
	岩下	138	2,356	24 小时	2023/07/28	0.109	0.725	10.000	10.109	67.391	达标
	猫猫冲	-1,043	2,741	24 小时	2023/03/21	0.105	0.700	10.000	10.105	67.366	达标
	麻音塘	-735	-2,739	24 小时	2023/10/26	0.136	0.909	10.000	10.136	67.576	达标
	羊庄	-531	-2,332	24 小时	2023/10/26	0.216	1,439	10.000	10.216	68.105	达标
	菜溪村	-570	1.381	24 小时	2023/04/17	0,205	1.364	10,000	10.205	68.031	达标
	下廖溪	-928	-2,425	24 小时	2023/04/28	0.191	1.270	10.000	10.191	67.937	达标
	后锁	785	491	24 小时	2023/07/10	0.191	1.270	10.000	10.191	67.937	达标
	湖南田	659	-2,207	24 小时	2023/08/02	0.121	0.806	10.000	10.121	67.473	达标
	跳廠	1,874	486	24 小时	2023/08/25	0.088	0.589	10,000	10.088	67.256	达标
	磨沟	2,587	810	24 小时	2023/10/31	0.164	1.096	10.000	10.164	67.763	达标
	白岩塘	2,398	1.345	24 小时	2023/09/19	0.156	1.043	10.000	10.156	67.710	达标
	岩坎上	1,183	-331	24 小时	2023/07/07	0.257	1,711	10.000	10,257	68.377	达标
	分洲	1,559	-1,678	24 小时	2023/08/21	0.052	0,345	10.000	10,052	67.012	达标
	田家	1,842	-2,503	24 小时	2023/05/04	0.055	0.366	10.000	10.055	67,032	达标
	辽家塆	1,586	39	24 小时	2023/07/09	0.202	1.345	10.000	10,202	68.011	达标
	榴树井	1,998	1,064	24 小时	2023/09/19	0.174	1.160	10.000	10.174	67.826	达标
	杉木林	1,276	-765	24 小时	2023/07/30	0.120	0.800	10.000	10,120	67.466	达标
	胜利村	1,595	604	24 小时	2023/09/18	0.260	1.735	10.000	10.260	68.402	达标
	高弓傩	2,275	-160	24 小时	2023/07/07	0.121	0.804	10.000	10.121	67.471	达标
	张家	-1,243	2,600	24 小时	2023/02/25	0,242	1.614	10.000	10.242	68,280	达标
	上塵溪	-2,097	-1,243	24 小时	2023/09/27	0.141	0.938	10.000	10.141	67.605	达标
	腊岩	-2,216	-2,494	24 小时	2023/12/02	0.171	1,139	10.000	10.171	67.805	达标
	中寨	-2,121	-2,706	24 小时	2023/02/12	0.159	1.062	10.000	10.159	67.729	达标
	观音滩	157	-2,653	24 小时	2023/05/29	0.129	0.863	10.000	10.129	67.529	达标
	荒田	-2,749	1,272	24 小时	2023/10/31	0.149	0.991	10.000	10.149	67.658	达标
	凡溪屯	-2,482	-583	24 小时	2023/01/29	0.106	0.707	10,000	10.106	67.374	选标
	上湾	-1,640	2,551	24 小时	2023/02/20	0.057	0.380	10.000	10.057	67.047	达标
	三胸岩	-1,876	183	24 小时	2023/01/04	0.099	0.662	10.000	10.099	67.329	达标
	三寨村	-1,889	-615	24 小时	2023/12/13	0.148	0.987	10.000	10,148	67.654	达标
	提惠均	-1,966	739	24 小时	2023/10/27	0.046	0,308	10.000	10.046	66.974	达标
	白猫冲	-1,661	1,244	24 小时	2023/04/02	0.063	0.420	10.000	10.063	67,087	达标
	竹山渓	-1,354	1,893	24 小时	2023/02/20	0.133	0.888	10.000	10.133	67.555	达标
	白家庄	-1,088	-62	24 小时	2023/04/02	0.105	0.702	10.000	10.105	67.369	达标
	鲇鱼塘村	1.643	-2,622	24 小时	2023/05/04	0.069	0.457	10,000	10,069	67.124	达标
	斜滩	1,950	-1,973	24 小时	2023/08/21	0.046	0.309	10.000	10.046	66.976	达标
	陆家塆	498	79	24 小时	2023/08/16	0.768	5.119	10.000	10.768	71.786	达标
	菜园	-1,031	-2,657	24 小时	2023/04/28	0.174	1.159	10.000	10.174	67.825	达标
	杨柳冲	2,104	1,516	24 小时	2023/08/16	0.180	1,202	10.000	10.180	67.868	达标
	蔡溪屯	504	489	24 小时	2023/08/17	0.481	3.209	10,000	10.481	69.876	达标
-	洞脑上	1,104	889	24 小时	2023/08/11	0.374	2,491	10.000	10.374	69.158	达标

 赶纸山	-1,772	547	24 小时	2023/02/06	0.199	1.325	10.000	10.199	67.991	达标
				2023/11/05						
区域最大值	0	-200	24 小时	2023-09-17	3.032	60.640	10.000	13,032	86.882	达标

表 4.1-71 氟化物叠加周边拟在建污染源及 1 小时平均现状环境质量后预测结果表

	表 4.	1-/1	州化初	宣川川	边拟在建污染测	KXX 1 JVD	可一口现	仍平境则	里/口/火火	归木农	
22 10. Abr	预测点	X/	Υ/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	边板
2.982421	1964003.55	m	m	肘段	EII-Wha left	$(\mu g/m^3)$	Va.	(μg/m³)	(µg/m³)	%	情况
	田新岩	2,809	2.314	1 小时	2023/07/23 22:00	0.393	1.967	3.200	3.593	17.967	达标
	格家均	-3L	-2,041	1 小时	2023/06/18 05:00	0.386	1.932	3.200	3.586	17.932	达标
	彭家	114	839	1.4/10	2023/08/15 05:00	0.533	2.664	3,200	3,733	18,664	达板
	岩下	138	2,356	1 小时	2023/09/17 22:00	1.135	5.674	3.200	4.335	21.674	达物
	新雅冲	-1,043	2,741	1小时	2023/04/01 23:00	0.552	2.760	3.200	3.752	18.760	达杨
	麻音塘	-735	-2,739	1小时	2023/08/06 01:00	0,320	1.602	3.200	3.520	17.602	达板
	羊圧	-531	-2,332	1小时	2023/07/02 21:00	0.415	2.076	3,200	3,615	18,076	达机
	菜溪村	-570	1,381	1 小时	2023/07/02 22:00	0.741	3.707	3.200	3.941	19.707	达核
	下廖溪	-928	-2,425	1小时	2023/08/17 20:00	0.433	2.165	3.200	3.633	18.165	达杨
	后锁	785	-491	1 小时	2023/08/21 00:00	0.561	2.805	3.200	3.761	18.805	达核
	湖南田	659	-2.207	1 小时	2023/08/06 05:00	0.374	1.869	3.200	3.574	17.869	达林
	跳礦	1.874	-486	1 小时	2023/08/18 02:00	0,327	1.636	3.200	3,527	17.636	达核
	磨沟	2,587	810	工小时	2023/09/12 00:00	0,273	1.363	3.200	3.473	17.363	达板
	自岩塘	2,398	1,345	1 小时	2023/08/17 06:00	0,368	1.841	3.200	3.568	17.841	达核
	碧坎上	1,183	-331	1小时	2023/07/10 22:00	0.522	2.611	3.200	3.722	18.611	达林
	分洲	1,559	-1,678	1 小时	2023/07/02 04:00	0,219	1.095	3,200	3.419	17,095	达核
	田家	1,842	-2,503	1小时	2023/08/17 21:00	0.266	1.331	3.200	3.466	17.331	达标
	辽家塆	1,586	39	1小时	2023/05/29 01:00	0.351	1.754	3.200	3.551	17.754	达校
	檐树井	1,998	1,064	1 小时	2023/07/10 00:00	0.341	1.706	3.200	3.541	17.706	达核
	杉木林	1,276	-765	1小时	2023/06/26 20:00	0.434	2,172	3,200	3,634	18,172	让核
	胜利村	1,595	604	1小时	2023/08/21 00:00	0.398	1.988	3.200	3.598	17.988	达
	高弓滩	2.275	-160	1 小时	2023/06/29 23:00	0.265	1.326	3.200	3.465	17.326	达
	张家	-1,243	2,600	1小时	2023/02/20 05:00	0,358	1.792	3.200	3.558	17.792	达核
	上慶復	-2,097	-1,243	1小时	2023/05/26 02:00	0.555	2,774	3,200	3.755	18.774	达林
F	脂岩	-2,216	-2,494	1小时	2023/06/26 22:00	0.356	1.778	3.200	3.556	17.778	达林
	中寨	-2,121	-2,706	1小时	2023/07/22 21:00	0.363	1.813	3.200	3.563	17.813	达机
	观音滩	157	-2,653	1小时	2023/06/18 05:00	0.324	1.621	3.200	3.524	17.621	达林
	荒田	-2,749	1,272	1小时	2023/02/06 01:00	0.266	1.329	3.200	3.466	17.329	达林
	凡溪屯	-2,482	-583	1小时	2023/10/24 19:00	0,285	1.425	3.200	3.485	17.425	达林
	土湾	-L,640	2,551	1.小时	2023/10/24 19:00	0,263	1.313	3.200	3.463	17.313	达林
	三脚岩	-1,876	183	1 小时	2023/10/13 20:00	0.835	4.173	3.200	4.035	20.173	达林
	三寨村	-1,889	-615	1小时	2023/08/21 23:00	0.522	2.608	3.200	3.722	18.608	达林
	- 城市均	-1,966	739	1 小时	2023/11/18 18:00	1.008	5.040	3,200	4.208	21.040	达林
	白貓冲	-1,661	1,244	1 小时	2023/10/31 20:00	0.419	2,095	3.200	3,619	18.095	达林
	竹山溪		1,893	1小时	2023/02/24 02:00	0.939	4.697	3.200	4.139	20.697	达核
	白家庄		1	1小时	2023/06/18 23:00	0.761	3.803	3.200	3.961	19.803	达林
	鲇鱼期		-62	1 小时			1.068				达相
	利 新雅	1,643	-2,622		2023/07/22 20:00	0,214		3.200	3.414	17.068	达相
	贴家塆	1,950	-1,973 79	1 小时	2023/07/02 04:00	0.209	1.044	3.200	3.409	17.044	达相
					2023/08/05 00:00	0.682	3.411	3.200	3.882	19.411	
	集园 kr.kimah	-1,031	-2,657	1小时	2023/05/18 20:00	0.411	2.055	3,200	3,611	18,055	沙村
	杨柳冲	2,104	1,516	1.小时	2023/07/08 20:00	0.423	2,117	3.200	3.623	18,117	达村
	蔡溪屯	504	489	1小时	2023/05/30 00:00	1.245	6.223	3.200	4.445	22.223	达机
	制腐し	1,104	889	1小时	2023/07/02 02:00	0.505	2.527	3.200	3.705	18.527	达村
	赶纸山	_	547		2023/10/24 23:00	1.304	6.519	3,200	4,504	22.519	达村
	井塆	-2,352	1,366	1小时	2023/10/31 20:00	0.464	2.321	3.200	3.664	18.321	达林
	区域最大值	-500	-600	1 小时	2023/05/05 00:00	11,129	55,647	3.200	14.329	71.647	达板

表 4.1-72 氟化物叠加周边拟在建污染源及 24 小时平均现状环境质量后预测结果表

污染物 预测点 X/	Y/ 平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
------------	-------	------	------	------	------	------	------	----

		m	m	附段		(µg/m³)	0/0	(µg/m³)	(µg/m³)	%	情况
	田斯岩	2,809	2,314	24 小时	2023/08/16	0.052	0.736	0.620	0.672	9,593	选格
	務家垮	-31	-2,041	24 小时	2023/08/02	0.042	0.600	0.620	0.662	9.457	达杉
	彭家	114	839	24 小时	2023/09/09	0.069	0.982	0.620	0,689	9,840	达标
	岩下	138	2,356	24 小时	2023/09/17	0.060	0.861	0.620	0.680	9,718	达林
	猫猫冲	-1,043	2,741	24 小时	2023/04/01	0.024	0.346	0.620	0.644	9,203	达机
	麻音塘	-735	-2,739	24 小时	2023/08/06	0.035	0.499	0.620	0.655	9,356	达
	羊圧	-531	-2,332	24 小时	2023/08/06	0.037	0.536	0.620	0.657	9,393	达
	菜溪村	-570	1,381	24 小时	2023/07/02	0.046	0.656	0.620	0.666	9,513	达柱
	下廖溪	-928	-2,425	24 小时	2023/08/06	0.044	0.622	0.620	0.664	9.479	达
	后帧	785	-491	24 小时	2023/08/02	0.044	0.634	0.620	0.664	9.491	边
	湖南田	659	-2,207	24 小图	2023/08/06	0.040	0.569	0.620	0.660	9,426	i):
	跳破	1,874	-486	24 小时	2023/08/21	0.028	0.393	0.620	0.648	9.250	达
	脈沟	2,587	810	24 小时	2023/07/10	0.050	0.708	0.620	0.670	9,565	达
	白岩塘	2,398	1,345	24 小时	2023/07/10	0.056	0.795	0.620	0.676	9.652	达
	岩块上	1,183	-331	24 小时	2023/07/07	0.041	0.581	0.620	0.661	9,438	3/2
	分洲	1,559	-1,678	24 小时	2023/08/07	0.015	0.221	0.620	0.635	9.078	达
	田家	1.842	-2,503	24 小时	2023/08/17	0.013	0.188	0.620	0.633	9.045	达
	辽家垮	1.586	39	24 小时	2023/07/07	0.039	0.564	0.620	0.659	9,421	达
	樹树井	1,998	1,064	24 小时	2023/07/10	0.061	0.878	0.620	0.681	9.735	达
	杉木林	1,276	-765	24 小时	2023/07/30	0.028	0.400	0.620	0.648	9,257	达
	胜利村	1,595	604	24 小时	2023/07/10	0,066	0.939	0.620	0.686	9,797	达)
	高弓雉	2,275	-160	24 小时	2023/07/07	0.029	0.412	0.620	0.649	9,269	达
	张家	-1,243	2,600	24 小时	2023/02/20	0.023	0.332	0.620	0.643	9.189	达
	上廖溪	-2,097	-1,243	24 小时	2023/12/10	0.036	0.521	0.620	0.656	9,378	达
F	腊岩	-2,216	-2,494	-	2023/02/12	0.035	0.504	0.620	0.655	9,361	达
	小寨	-2,121	-2,706	24 小时	2023/02/12	0.038	0.550	0.620	0.658	9,407	达
	观音滩	157			2023/08/02	0.033	0.477	0.620	0.653	9,334	达
	荒田	-2,749	1,272	24 /MI	2023/01/04	0.017	0.243	0.620	0.637	9,100	边
	凡溪屯	-2,482	-583	24 小时	2023/09/27	0.021	0.297	0.620	0.641	9.155	达
	上海	-1,640	2,551	24 小时	2023/02/24	0.017	0.238	0.620	0.637	9.095	达
	三脚岩	-1,876	183	24 小时	2023/10/31	0.056	0.796	0.620	0.676	9.653	込
	三寨村	-1,889	-615	24 小时	2023/05/24	0.028	0.406	0.620	0.648	9.263	达
	/ 振坊 均	-1,966	739	24 小时	2023/11/18	0.028	0.634	0.620	0.664	9,491	达
	白粒冲	-1,661	1,244	24 / (8)	2023/01/04	0.032	0.463	0.620	0.652	9,320	达
					2023/02/24					9,590	达
	竹山猴 白家庄		1,893 -62	24 小时	2023/02/24	0.051	0.733	0.620	0.671	9,353	达
	si si si si si si si si si si	1,643	1 10 10	24 小时	2023/06/18	0.014	0.204	0.620	0.634	9,061	达
	斜滩	1,950	-1 973	24 小时	2023/08/07	0.014	0.203	0.620	0.634	9,060	达
	陆家塆	498	79	24 小时	2023/08/05	0.102	1.454	0.620	0.722	10.311	达
	菜园	-1,031		24 小时	2023/08/05	0.039	0.550	0.620	0.659	9.408	达
	杨柳冲		1,516	24 小时	2023/07/10	0.052	0.744	0.620	0.672	9,601	达
	蔡溪屯	504	489	24 小时	2023/08/11	0.147	2.098	0.620	0.767	10.955	达
	洞脑上	1,104		24 小时							达
	赶纸山		889 547		2023/08/04	0.117	1.675	0.620	0.737	10.532	达
	Charles and the same of the sa			24 小时	2023/10/24	0.069	0.981	0.620	0.689	9,839	_
	井塆 区域最 大值	-2,352 -400	-200	24 小时	2023/10/31	0.026	0,372	0.620	1.602	9,229	达达

表 4.1-73 氯气叠加周边拟在建污染源及 1 小时平均现状环境质量后预测结果表

污染物	预测点	X/	Y/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
		:171	-m-	时段	FE WEATH	(µg/m³)	9/4	(µg/m³)	(µg/m³)	9/6	情况
	田新岩	2,809	2,314	1小时	2023/03/26 07:00	0,045	0.045	15.000	15.045	15.045	达标
200	蒋家塆	-31	-2,041	1 小时	2023/08/02 07:00	0.062	0.062	15.000	15.062	15.062	选标
-5%	彭家	114	839	1 小时	2023/07/11 21:00	0.086	0.086	15.000	15.086	15.086	达标
	岩下	138	2,356	1 小时	2023/04/16 21:00	0.054	0.054	15.000	15.054	15.054	达标

			_							
黏貓冲	-1,043	2,741	1小时	2023/02/25 02:00	0.204	0.204	15.000	15.204	15.204	达标
麻音塘	-735	-2,739	1小时	2023/05/10 07:00	0.053	0.053	15.000	15.053	15.053	送标
羊庄	-531	-2,332	1.小时	2023/05/10 07:00	0.054	0.054	15.000	15.054	15.054	达标
菜溪村	-570	1,381	1 小时	2023/07/01 20:00	0.067	0.067	15.000	15.067	15.067	达标
下廖溪	-928	-2,425	工业时	2023/05/10 07:00	0.071	0.071	15.000	15.071	15.071	达杨
后锁	785	-491	1 小时	2023/10/27 08:00	0.075	0.075	15.000	15.075	15.075	达标
湖南田	659	-2,207	1小时	2023/12/19 09:00	0.043	0.043	15,000	15.043	15.043	达杨
跳破	1,874	-486	1 小时	2023/12/04 09:00	0.054	0.054	15.000	15.054	15.054	达板
磨沟	2.587	810	1 小時	2023/02/15 08:00	0.064	0.064	15.000	15.064	15.064	达板
白岩塘	2,398	1,345	1 小时	2023/02/15 08:00	0.066	0.066	15.000	15.066	15.066	达板
岩块上	1,183	-331	1 小时	2023/12/04 09:00	0.054	0.054	15,000	15.054	15.054	达梅
分洲	1,559	-1,678	1 小时	2023/06/23 06:00	0.052	0.052	15.000	15.052	15.052	边板
田家	1,842	-2,503	1.小时	2023/06/23 06:00	0.038	0.038	15.000	15.038	15.038	达标
辽京姆	1,586	39	1小时	2023/12/23 09:00	0.050	0.050	15,000	15.050	15.050	达杨
瘤树井	1,998	1,064	1 小时	2023/02/15 08:00	0.070	0.070	15.000	15.070	15.070	达梅
杉木林	1,276	-765	1小时	2023/01/23 10:00	0.068	0.068	15.000	15,068	15,068	边板
胜利村	1,595	604	1 小时	2023/03/29 07:00	0.077	0.077	15.000	15.077	15.077	达板
高弓滩	2.275	-160	1小时	2023/12/23 09:00	0.046	0.046	15,000	15.046	15.046	达机
张家	-1,243	2,600	1 小时	2023/02/25 02:00	0,436	0.436	15.000	15.436	15.436	达板
上塵溪	-2,097	-1,243	1小时	2023/02/25 08:00	0.062	0.062	15,000	15.062	15.062	达杨
腊岩	-2,216	-2,494	1 小时	2023/09/24 02:00	0.037	0.037	15.000	15.037	15.037	达板
中寨	-2,121	-2,706	1.小时	2023/07/17 22:00	0.042	0.042	15.000	15.042	15.042	达板
观音滩	157	-2,653	1 小时	2023/08/02 07:00	0,048	0.048	15,000	15.048	15.048	达杨
荒田	-2,749	1,272	1小时	2023/12/30 03:00	0.263	0.263	15,000	15.263	15.263	达柯
凡溪屯	-2,482	-583	1 小时	2023/12/26 09:00	0.061	0.061	15,000	15.061	15.061	达板
上湾	-1,640	2,551	1 小时	2023/02/20 02:00	0.145	0.145	15.000	15.145	15.145	达板
三脚岩	-1.876	183	1小时	2023/08/06 20:00	0.059	0.059	15.000	15.059	15.059	达板
三寨村	-1,889	-615	1小时	2023/12/26 09:00	0.078	0.078	15,000	15.078	15.078	达杨
趣期均	-1,966	739	1 小时	2023/03/16 03:00	0.077	0.077	15.000	15.077	15.077	边板
白猫冲	-1,661	1,244	17小时	2023/04/02 23:00	0.102	0.102	15,000	15.102	15.102	达板
竹山溪	-1,354	1,893	1小时	2023/03/06 18:00	0.043	0.043	15,000	15.043	15.043	达杨
白家庄		-62	1 小时	2023/07/17 21:00	0.079	0.079	15.000	15.079	15.079	达杨
鲇鱼塘 村	1,643	-2,622	1.小时	2023/12/19 09:00	0.044	0.044	15.000	15.044	15.044	达机
斜滩	1,950	-1,973	1-小时	2023/06/23 06:00	0.053	0.053	15,000	15.053	15.053	达机
陆家塆	498	79	1小时	2023/07/04 22:00	0.106	0.106	15.000	15.106	15.106	达板
菜园	-1,031	-2,657	1小时	2023/05/10 07:00	0.069	0.069	15,000	15.069	15.069	达杉
杨柳冲	2,104	1,516	1 小时	2023/12/03 08:00	0.059	0.059	15.000	15.059	15.059	达林
蔡溪屯	504	489	1小时	2023/05/13 20:00	0.097	0.097	15.000	15.097	15.097	达核
洞斯上	1,104	889	1小时	2023/03/26 07:00	0.070	0.070	15.000	15.070	15.070	达核
赶纸山	-1,772	547	1小时	2023/03/09 18:00	0.037	0.037	15.000	15.037	15.037	达核
井塆	-2,352	1,366	1 小时	2023/03/13 19:00	0.147	0.147	15.000	15.147	15.147	达核
区域最大值	-300	100	1 小时	2023/11/05 06:00	0.908	0.908	15.000	15,908	15.908	达板

表 4.1-74 氯气叠加周边拟在建污染源及 24 小时平均现状环境质量后预测结果表

污染物	45 doi: 35	X/	Y/	平均	IN TRUE ST	变化值/	占标率/	现状值/	叠加值/	占标率/	选标
17.9640	预测点	m	m	时段	出现时间	(µg/m³)	%	(µg/m³)	(µg/m³)	%	情况
	田新岩	2,809	2,314	24 小时	2023/05/13	0.005	0.018	15,000	15.005	50.018	达标
	蒋家坞	-31	-2,041	24 小时	2023/01/14	0.005	0.017	15.000	15,005	50.017	达标
	彭家	114	839	24 小时	2023/07/06	0.012	0.039	15,000	15.012	50.039	达标
	岩下	138	2,356	24 1/41/1	2023/06/28	0.006	0.020	15.000	15.006	50,020	达标
额	雅猫冲	-1,043	2,741	24 小时	2023/02/24	0.010	0.032	15.000	15.010	50.032	达标
	麻音塘	-735	-2,739	24 小时	2023/02/02	0,007	0.024	15.000	15.007	50.024	达标
	羊庄	-531	-2,332	24 小时	2023/02/02	0.008	0.025	15,000	15.008	50.025	达标
	菜溪村	-570	1,381	24 小时	2023/07/01	0.008	0.025	15.000	15.008	50.025	达标
	下壓緩	-928	-2,425	24 小时	2023/05/10	0.009	0.028	15.000	15.009	50.028	达标

后锁	785	-491	24 小时	2023/10/27	0.005	0.016	15,000	15.005	50.016	达标
湖南田	659	-2,207	24 小时	2023/12/19	0,003	0.010	15.000	15,003	50.010	达标
跳破	1,874	-486	24 小时	2023/07/21	0.004	0.013	15,000	15,004	50.013	达标
磨裆	2,587	810	24 小时	2023/12/07	0.008	0.027	15,000	15,008	50,027	达标
白岩塘	2,398	1,345	24 小时	2023/07/04	0.007	0.024	15.000	15.007	50.024	达标
岩坎上	1,183	-331	24 小时	2023/07/21	0,006	0.021	15.000	15,006	50.021	达标
分洲	1,559	-1,678	24 小时	2023/12/19	0.003	0.010	15,000	15,003	50.010	达标
田家	1,842	-2,503	24 기내	2023/12/19	0.003	0.011	15,000	15,003	50.011	达标
辽家塆	1,586	39	24 小时	2023/07/21	0.006	0.021	15,000	15.006	50.021	达标
榴树井	1,998	1.064	24 小村	2023/07/04	0.009	0.029	15.000	15,009	50.029	达标
杉木林	1,276	-765	24 小时	2023/10/27	0.004	0.013	15,000	15.004	50,013	达标
胜利村	1,595	604	24 기세	2023/07/04	0.012	0.039	15.000	15,012	50.039	达标
高弓滩	2,275	-160	24 小时	2023/07/21	0.004	0.013	15,000	15.004	50.013	达标
张家	-1,243	2,600	24 小时	2023/02/25	0.029	0.098	15,000	15,029	50.098	达标
上廖溪	-2,097	-1,243	24 小时	2023/12/10	0.011	0.035	15.000	15.011	50.035	达标
腊岩	-2,216	-2,494	24 1/11/	2023/09/24	0.013	0.044	15.000	15.013	50.044	达标
中寨	-2,121	-2,706	24 小时	2023/02/12	0.011	0.036	15.000	15.011	50.036	达标
观音滩	157	-2,653	24 小时	2023/07/28	0.003	0.010	15.000	15,003	50.010	达标
荒田	-2,749	1,272	24 小时	2023/12/30	0.012	0.042	15.000	15.012	50.042	达标
凡溪屯	-2,482	-583	24 小时	2023/12/09	0.005	0.017	15,000	15,005	50.017	达标
上灣	-1,640	2,551	24 小时	2023/02/20	0.013	0.045	15.000	15,013	50.045	达标
三脚岩	-1,876	183	24 小时	2023/08/06	0.003	0.012	15.000	15,003	50.012	达标
三寨村	-1,889	-615	24 小时	2023/12/09	0,008	0.027	15,000	15,008	50.027	达标
堰塘坞	-1,966	739	24 小时	2023/03/16	0.003	110.0	15,000	15.003	50.011	达标
白猫冲	-1,661	1,244	24 小时	2023/04/02	0.006	0.020	15,000	15,006	50.020	达标
竹山溪	-1,354	1,893	24 小时	2023/05/01	0.004	0.013	15.000	15,004	50.013	达标
白家庄	-1,088	-62	24 小时	2023/07/17	0.005	0.018	15,000	15,005	50.018	达标
鲇鱼塘村	1,643	-2,622	24 小时	2023/12/19	0.003	110.0	15,000	15.003	50,011	达标
斜滩	1,950	-1,973	24 기내	2023/12/19	0.003	0.009	15,000	15,003	50,009	达标
陆家塆	498	79	24 小时	2023/07/04	0.024	180.0	15,000	15.024	50.081	达标
菜园	-1,031	-2,657	24 小时	2023/05/10	0.008	0.027	15,000	15,008	50.027	达标
杨柳冲	2,104	1,516	24 小时	2023/05/13	0.007	0.024	15.000	15.007	50.024	达标
蔡溪屯	504	489	24 小时	2023/07/04	0.022	0.072	15.000	15.022	50,072	达标
洞脑上	1,104	889	24 小时	2023/07/04	0.013	0.042	15.000	15.013	50.042	达标
赶纸山	-1,772	547	24 小时	2023/05/01	0,003	0.009	15.000	15,003	50,009	达标
升均	-2,352	1,366	24 小时	2023/03/13	0,006	0.021	15.000	15.006	50.021	达标
区域最大值	-200	-300	24 小时	2023/04/22	0.128	0.427	15,000	15,128	50.427	达标

表 4.1-75 五氧化二磷叠加周边拟在建污染源及 1 小时平均现状环境质量后预测结果表

污染物	预测点	X/	Y/	平均	出现时间	变化值/	占标率/	现状值/	骨加值/	占标率/	达标
1,7,245,410	190,000,500	m	m	时段	113 19K n.d. [43]	(µg/m³)	96	(µg/m³)	(µg/m³)	%	情况
	田新岩	2,809	2,314	1 小財	2023/02/01 08:00	0.013	0.009	0.010	0.023	0.016	达标
	蔣家博	-31	-2,041	1 小时	2023/07/28 20:00	0.014	0.009	0.010	0.024	0.016	达标
	影家	114	839	1 小时	2023/06/19 06:00	0.033	0.022	0.010	0.043	0.029	达标
	岩下	138	2,356	1 小市	2023/06/28 20:00	0.015	0.010	0.010	0.025	0.016	达标
	猫猫冲	-1.043	2,741	1 小时	2023/02/25 02:00	0.097	0.065	0.010	0.107	0.071	达标
	麻音塘	+735	-2,739	1 小时	2023/05/10 07:00	0.012	0.008	0.010	0.022	0.015	达标
五氧化二磷	羊庄	-531	-2,332	1 小时	2023/01/27 17:00	0.015	0.010	0.010	0,025	0.016	达标
	菜溪村	-570	1,381	上小时	2023/05/28 00:00	0.019	0.012	0.010	0.029	0.019	达标
JI. #514L 84	下廖溟	-928	-2,425	1小时	2023/05/10 07:00	0.017	0.011	0.010	0.027	0.018	达标
	后锁	785	-491	1小时	2023/01/23 10:00	0.026	0.018	0.010	0.036	0.024	达标
1 1510-51	湖南田	659	-2,207	1 小时	2023/09/22 05:00	0.012	0.008	0.010	0.022	0.015	达标
	跳戰	1,874	-486	1.小时	2023/07/11 06:00	0.016	0.011	0.010	0.026	0.018	达标
	磨沟	2,587	810	1 小时	2023/02/05 09:00	0.017	0.011	0.010	0.027	0.018	达标
	白岩塘	2,398	1,345	1 小时	2023/02/15 08:00	0.021	0.014	0.010	0.031	0.021	达标
	岩坎上	1,183	-331	1 小时	2023/07/11 06:00	0.026	0.017	0.010	0.036	0.024	达标
	分洲	1,559	-1,678	1小时	2023/06/23 06:00	0.016	0.011	0.010	0.026	0.017	达标

田家	1,842	-2,503 1 小时	2023/06/23 06:00	0.010	0.007	0.010	0.020	0.013	达标
辽家塆	1,586	39 1 小时	2023/07/09 22:00	0.016	0.011	0.010	0.026	0.018	达标
桐树井	1,998	1,064 1 小时	2023/02/15 08:00	0.024	0.016	0.010	0.034	0.023	达标
杉木林	1,276	-765 1 小时	2023/01/23 10:00	0.026	0.017	0.010	0.036	0.024	达标
胜利村	1,595	604 1 小时	2023/02/15 08:00	0.025	0.017	0.010	0.035	0.023	达标
高弓滩	2,275	-160 1 小时	2023/06/13 03:00	0.013	0.009	0.010	0.023	0.016	达标
张家	-1,243	2,600 1 小时	2023/02/25 02:00	0.127	0.085	0.010	0.137	0.092	达标
上廊澳	-2,097	-1,243 1 小时	2023/02/25 08:00	0.016	0.011	0.010	0.026	0.018	达标
推岩	-2,216	-2,494 1 小时	2023/02/18 17:00	0.014	0.009	0.010	0.024	0.016	达标
川塘	-2,121	-2,706 1 小时	2023/11/08 03:00	0.013	0.009	0.010	0.023	0.015	达标
观音渊	157	-2,653 1 小时	2023/10/26 06:00	0.013	0.009	0.010	0.023	0.015	达标
売田	-2,749	1,272 1 小时	2023/12/30 03:00	0.131	0.087	0.010	0.141	0.094	达标
凡溪屯	-2,482	-583 1 小时	2023/12/26 09:00	0.017	0.012	0.010	0.027	0.018	达标
土湾	-1.640	2,551 1 小时	2023/05/20 04:00	0.011	0.007	0.010	0.021	0.014	达标
三脚岩	-1,876	183 1 小时	2023/08/06 20:00	0.023	0.016	0.010	0.033	0.022	达标
三寨村	-1,889	-615 1 小时	2023/12/26 09:00	0.021	0.014	0.010	0.031	0.021	达标
堰塘塆	-1,966	739 1 小时	2023/03/16 03:00	0.028	0.019	0.010	0.038	0.025	达标
白猫冲	-1,661	1,244 1 小时	2023/04/02 23:00	0.042	0.028	0.010	0.052	0.035	达标
竹山溪	-1,354	1,893 1 小时	2023/06/18 03:00	0.014	0.009	0.010	0.024	0.016	达标
白家庄	-1,088	-62 1 小时	2023/12/26 09:00	0.027	0.018	0.010	0.037	0.025	达标
鲇鱼塘村	1,643	-2,622 1 小时	2023/12/05 08:00	0.011	0.007	0.010	0.021	0.014	达标
斜滩	1,950	-1,973 1 小时	2023/06/23 06:00	0.015	0.010	0.010	0.025	0.017	达标
陆家塆	498	79 1 小时	2023/06/30 06:00	0.035	0.023	0.010	0.045	0.030	达标
菜园	-1,031	-2,657 1 小时	2023/05/10 07:00	0.016	0.011	0.010	0.026	0.018	达标
杨柳冲	2,104	1,516 1 小时	2023/12/03 08:00	0.020	0.014	0.010	0.030	0.020	达标
蔡溪屯	504	489 1 小时	2023/10/14 07:00	0.038	0.025	0.010	0.048	0.032	达标
洞脑上	1,104	889 1 小时	2023/03/26 07:00	0.029	0.019	0.010	0.039	0.026	达标
赶纸山	-1.772	547 1 小时	2023/10/27 22:00	0.011	0.007	0.010	0.021	0.014	达标
井塆	-2,352	1,366 [小时	2023/11/05 06:00	0.073	0.049	0.010	0.083	0.055	达标
区域最大值	-300	100 1 小时	2023/09/18 21:00	0.840	0.560	0.010	0.850	0.566	达标

表 4.1-76 五氧化二磷叠加周边拟在建污染源及 24 小时平均现状环境质量后预测结果表

污染物	रक अंते के	X/	Υ/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
台架物	预测点	m	m	时段	2039CP3.143	(µg/m³)	0/0	(μg/m³)	(µg/m³)	%	情况
	田新岩	2,809	2,314	24 小时	2023/01/08	0.002	0.004	0.100	0.102	0.204	达标
	蒋家琦	-31	-2,041	24 小时	2023/03/20	0.001	0.002	0.100	0.101	0.202	达标
	彭家	114	839	24 小时	2023/07/06	0.003	0.005	0.100	0.103	0.205	达标
	岩下	138	2,356	24 小时	2023/06/28	0.001	0.003	0.100	0.101	0.203	达标
	猫猫冲	-1,043	2,741	24 小时	2023/03/21	0.005	0.009	0.100	0.105	0.209	达标
	麻音塘	-735	-2,739	24 小时	2023/02/02	0.002	0.005	0.100	0.102	0.205	达标
	羊庄	-531	-2,332	24 小时	2023/02/02	0.003	0.005	0.100	0.103	0.205	达标
1	菜溪村	-570	1,381	24 小时	2023/07/01	0.002	0.004	0.100	0.102	0.204	达标
	下廖溪	-928	-2,425	24 小时	2023/02/11	0.003	0.006	0.100	0.103	0.206	达标
	后锁	785	-491	24 小时	2023/10/27	0.001	0.003	0.100	0.101	0.203	达标
〔氧化二磷	湖南田	659	-2,207	24 小时	2023/05/11	0.001	0.001	0.100	0.101	0.201	达标
	LIGHTAN	1,874	-486	24.小时	2023/07/11	0.001	0.001	0.100	0.101	0.201	达标
1 1	磨构	2,587	810	24 小时	2023/12/07	0.002	0.004	0.100	0.102	0.204	丛标
	白岩塘	2,398	1.345	24 小时	2023/11/07	0.002	0.004	0.100	0.102	0.204	丛标
	岩块上	1,183	-331	24 小时	2023/07/11	0.001	0.002	0.100	0.101	0.202	达标
	分洲	1,559	-1,678	24 小时	2023/06/23	0.001	0.001	0.100	0.101	0.201	达标
	田家	1,842	-2,503	24 小时	2023/12/19	0.001	0.001	0.100	0.101	0.201	达标
	辽家塆	1,586	39	24 小时	2023/06/07	0.001	0.003	0.100	0.101	0.203	达标
	榴树井	1,998	1,064	24 小时	2023/11/07	0.002	0.005	0.100	0.102	0.205	达标
1	杉木林	1,276	-765	24 小时	2023/01/23	0.001	0.002	0.100	0.101	0.202	达标
	胜利村	1,595	604	24 小时	2023/12/07	0.003	0.007	0.100	0.103	0.207	达标
	高弓滩	2,275	-160	24 小时	2023/06/13	0.001	0.002	0.100	0.101	0.202	达标
	张家	-1,243	2,600	24 小时	2023/02/25	0.007	0.015	0.100	0.107	0.215	达标

上摩溪	-2,097	-1,243	24 小时	2023/12/18	0.003	0.006	0.100	0.103	0.206	达标
腊岩	-2,216	-2,494	24 小时	2023/12/02	0.003	0.006	0.100	0.103	0.206	达标
中寨	-2,121	-2,706	24 小时	2023/02/12	0.003	0.006	0.100	0.103	0.206	达标
观音滩	157	-2,653	24 小时	2023/07/28	0.001	0.002	0.100	0.101	0.202	达标
荒田	-2,749	1,272	24 小时	2023/12/30	0.006	0.013	0.100	0.106	0.213	达标
凡溪屯	-2,482	-583	24 小时	2023/12/09	0.001	0.003	0.100	0.101	0.203	达标
土湾	-1,640	2,551	24 小时	2023/12/26	0.001	0.001	0.100	0.101	0.201	达标
三脚岩	-1,876	183	24 小时	2023/08/06	0.001	0.002	0.100	0.101	0.202	达标
三寨村	-1,889	-615	24 小时	2023/12/09	0.003	0.005	0.100	0.103	0.205	达标
堰塘塆	-1,966	739	24 小时	2023/03/16	0.001	0.002	0.100	0.101	0.202	达标
白猫冲	-1,661	1,244	24 小时	2023/04/02	0.002	0.004	0.100	0.102	0.204	丛标
竹山渓	-1,354	1,893	24 小时	2023/05/25	0.001	0.002	0.100	0.101	0.202	达标
白家庄	-1,088	-62	24 小时	2023/12/09	0.002	0.004	0.100	0.102	0.204	达标
鲇鱼塘村	1,643	-2,622	24.小时	2023/12/19	0.001	0.001	0.100	0.101	0.201	达标
斜滩	1,950	-1,973	24 小时	2023/06/23	0.001	0.001	0.100	0.101	0.201	达标
陆家塆	498	79	24.小时	2023/07/21	0.005	0.010	0.100	0.105	0.210	达标
菜园	-1,031	-2,657	24 小时	2023/02/11	0.003	0.006	0.100	0.103	0.206	达标
杨柳冲	2,104	1,516	24 小时	2023/01/30	0.003	0.005	0.100	0.103	0.205	达标
泰溪屯	504	489	24 小时	2023/07/04	0.007	0.014	0.100	0.107	0.214	达标
洞脑上	1,104	889	24 小时	2023/06/12	0.004	0.007	0.100	0.104	0.207	达标
赶纸山	-1,772	547	24 小时	2023/10/27	0.001	0.002	0.100	0.101	0.202	达标
井垮	-2,352	1,366	24 小时	2023/11/05	0.003	0.006	0.100	0.103	0.206	达标
区域最大值	-300	100	24 小时	2023/09/18	0.035	0.071	0.100	0.135	0.271	达标

表 4.1-77 甲醛叠加周边拟在建污染源及 1 小时平均现状环境质量后预测结果表

污染物	预测点	X/	Y/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
32810	mpanh	m	m	时段	an sent ha	(µg/m³)	%	(µg/m²)	(µg/m³)	%	情况
	田新岩	2,809	2,314	1-4-18	2023/06/11 23:00	0.0007	0.0015	19.0000	19.0007	38.0015	达板
	蒋家塆	-31	-2,041	1小时	2023/07/28 20:00	0.0009	0.0019	19,0000	19.0009	38.0019	达标
	彭家	114	839	1 小时	2023/07/14 06:00	0.0019	0.0039	19.0000	19.0019	38.0039	达标
	岩下	138	2,356	1 小时	2023/07/14 06:00	0.0008	0.0015	19,0000	19,0008	38.0015	达标
	猫猫冲	-1,043	2,741	1 小时	2023/08/22 06:00	0.0029	0.0057	19.0000	19.0029	38.0057	达板
	麻音塘	-735	-2,739	1.小时	2023/05/24 22:00	0.0007	0.0015	19.0000	19.0007	38.0015	达析
Ī	羊庄:	-531	-2,332	1小时	2023/08/28 04:00	0.0008	0.0017	19,0000	19.0008	38.0017	达杨
	菜溪村	-570	1,381	1 小时	2023/07/01 21:00	0.0012	0.0023	19.0000	19.0012	38.0023	达标
	下廖溪	-928	-2,425	1 小时	2023/05/10 07:00	0.0009	0.0018	19.0000	19,0009	38.0018	达标
	后锁	785	491	1 小时	2023/07/11 06:00	0.0015	0.0029	19.0000	19,0015	38.0029	达柯
	湖南田	659	-2,207	1 小时	2023/05/11 06:00	0.0008	0.0017	19.0000	19,0008	38.0017	达标
	跳破	1,874	-486	1 小时	2023/08/27 01:00	0.0009	0.0018	19.0000	19.0009	38.0018	达杨
	鹏沟	2,587	810	1小时	2023/02/15 08:00	0.0010	0.0020	19.0000	19.0010	38.0020	达板
	白岩塘	2,398	1,345	1 小时	2023/12/03 08:00	0.0011	0.0022	19.0000	19.0011	38.0022	达板
intex	岩坎上	1,183	-331	1 小时	2023/07/11 06:00	0.0011	0.0022	19.0000	19.0011	38.0022	达板
山縣	分洲	1,559	-1.678	1 小时	2023/06/23 06:00	0.0009	0.0018	19.0000	19.0009	38.0018	达柯
	田家	1,842	-2,503	1小时	2023/06/23 06:00	0.0006	0.0013	19,0000	19,0006	38.0013	达杭
	辽家塆	1,586	39	1 小时	2023/02/06 08:00	0.0010	0.0020	19.0000	19,0010	38.0020	达板
	榴树井	1,998	1,064	1.小时	2023/12/03 08:00	0.0011	0.0023	19.0000	19.0011	38.0023	达板
	杉木林	1.276	-765	1 小时	2023/01/23 10:00	0.0014	0.0028	19.0000	19.0014	38.0028	达柄
	胜利村	1,595	604	1 小时	2023/02/15 08:00	0.0014	0.0028	19,0000	19,0014	38,0028	达标
	高弓滩	2.275	-160	1 小時	2023/07/09 22:00	0.0008	0.0016	19.0000	19.0008	38.0016	达板
	张家	-1,243	2,600	1小时	2023/02/25 02:00	0.0087	0.0175	19.0000	19.0087	38.0175	达板
	上廖溪	-2,097	-1.243	1小时	2023/02/25 08:00	0.0009	0.0018	19,0000	19.0009	38.0018	达杨
	腊岩	-2,216	-2,494	1 小时	2023/02/18 17:00	0.0008	0.0016	19.0000	19.0008	38.0016	达标
	中寨	-2,121	-2,706	1 小时	2023/06/20 20:00	0.0008	0.0016	19,0000	19,0008	38.0016	达板
	观音滩	157	-2,653	1 小时	2023/10/26 06:00	0.0007	0.0014	19.0000	19,0007	38.0014	达板
	荒田	-2,749	1,272	1 小时	2023/10/31 19:00	0.0048	0.0097	19.0000	19,0048	38.0097	达核
	凡渠屯	-2,482	-583	1 小时	2023/04/01 19:00	0,001.0	0.0020	19,0000	19,0010	38.0020	达标
	土湾	-1,640	2,551	1小时	2023/05/20 04:00	0.0005	0.0009	19,0000	19.0005	38.0009	达板

三脚岩	-1,876	183	1小时	2023/08/16 21:00	0.0009	0.0019	19.0000	19.0009	38.0019	达标
三寨村	-1,889	-615	1小时	2023/12/26 09:00	0.0012	0.0023	19,0000	19.0012	38.0023	达标
堰塘塆	-1,966	739	T小时	2023/10/27 22:00	0.0009	0.0018	19.0000	19.0009	38.0018	达标
自狐沙	-1,661	1,244	1 小时	2023/05/28 19:00	0.0017	0.0034	19.0000	19,0017	38.0034	达标
竹山渓	-1,354	1,893	1 小时	2023/03/07 18:00	0.0009	0.0018	19.0000	19,0009	38.0018	达标
白家庄	-1,088	-62	1 小时	2023/10/13 07:00	0.0013	0.0026	19.0000	19,0013	38.0026	达标
鲇鱼塘村	1,643	-2,622	1小时	2023/06/23 06:00	0,0005	0.0010	19,0000	19,0005	38.0010	达标
納滩	1,950	-1.973	1小时	2023/06/23 06:00	0.0008	0.0017	19,0000	19,0008	38.0017	达标
陆家均	498	79	1 小时	2023/10/13 17:00	0.0018	0.0037	19.0000	19.0018	38.0037	达标
菜园	-1,031	-2.657	1 小时	2023/05/10 07:00	0.0009	0.0017	19.0000	19.0009	38.0017	达标
杨柳冲	2,104	1,516	1 小时	2023/12/03 08:00	0.0010	0.0019	19.0000	19.0010	38,0019	丛标
蔡溪屯	504	489	1小时	2023/03/26 07:00	0.0018	0.0036	19.0000	19.0018	38.0036	达标
洞脑上	1,104	889	1 小时	2023/03/26 07:00	0.0014	0.0029	19.0000	19.0014	38.0029	达标
赶纸山	-1,772	547	1.4-84	2023/10/27 22:00	0.0010	0.0021	19.0000	19.0010	38.0021	达标
井塆	-2,352	1,366	1 4-195	2023/03/13 19:00	0.0018	0.0036	19.0000	19.0018	38.0036	达标
区域最大值	-300	100	1 小厨	2023/05/25 23:00	0.0406	0.0812	19.0000	19.0406	38.0812	达标

表 4.1-78 氨气叠加周边拟在建污染源及 1 小时平均现状环境质量后预测结果表

污染物	预测点	X/	Y/	平均	出现时间	变化值/	占标章/	现状值/	叠加值/	占标率/	达板
123642	4.4.4.4.	m	in	时段	ED-50063 1/d	(µg/m³)	96	(µg/m³)	(µg/m³)	%	情涉
	田新岩	2,809	2,314	1 小时	2023/08/01 05:00	0.385	0.192	120,000	120.385	60.192	达彩
	落家埼	-31	-2,041	1小时	2023/05/17 20:00	0.534	0.267	120,000	120.534	60,267	达林
	彭家	114	839	1小时	2023/07/31 04:00	1.710	0.855	120.000	121.710	60.855	达核
	岩下	138	2,356	1 小时	2023/09/04 20:00	0.678	0.339	120,000	120.678	60.339	达粉
	猫猫冲	-1,043	2,741	1 小时	2023/02/24 02:00	1.402	0.701	120.000	121.402	60.701	达板
	麻音塘	-735	-2,739	1 小时	2023/09/16 21:00	0.429	0.215	120,000	120.429	60.215	丛板
	羊圧	-531	-2.332	1 小时	2023/09/16 21:00	0.507	0.253	120.000	120,507	60.253	达林
	菜溪村	-570	1,381	1 4 184	2023/09/19 19:00	0.782	0.391	120.000	120.782	60.391	达书
	下壓僕	-928	-2,425	1 小时	2023/05/10 07:00	0.474	0.237	120.000	120.474	60.237	达林
	后锁	785	-491	1小时	2023/08/17 21:00	1.459	0.729	120.000	121.459	60.729	达粉
	测南阳	659	-2,207	1 小时	2023/09/06 22:00	0.707	0.354	120.000	120.707	60.354	达衫
	路線	1,874	-486	1 小时	2023/06/28 03:00	0.553	0.276	120.000	120.553	60.276	达标
	磨沟	2,587	810	1.小时	2023/09/12 00:00	0.483	0.242	120,000	120.483	60.242	达林
Ī	白岩塘	2.398	1,345	1 小时	2023/12/03 08:00	0.570	0.285	120.000	120.570	60.285	达林
	岩坎上	1,183	-331	1 小时	2023/05/27 02:00	0.766	0.383	120.000	120.766	60.383	达标
	分洲	1,559	-1,678	1 小时	2023/05/04 01:00	0.476	0.238	120.000	120.476	60,238	达林
1	田家	1,842	-2,503	1 小时	2023/05/04 02:00	0.403	0.202	120,000	120.403	60,202	达林
	辽家塆	1,586	39	1 小时	2023/07/10 22:00	0.832	0.416	120,000	120.832	60.416	达林
NH3	榴树井	1,998	1,064	1 小时	2023/02/15 08:00	0.580	0,290	120,000	120.580	60,290	达粉
	杉木林	1,276	-765	1小时	2023/08/21 02:00	0.762	0.381	120,000	120.762	60,381	达粉
	胜利杜	1,595	604	1 小时	2023/09/12 00:00	1.046	0.523	120.000	121.046	60.523	达机
	高号准	2,275	-160	1 小时	2023/08/18 02:00	0.460	0.230	120,000	120.460	60.230	达机
	张家	-1,243	2,600	1 小时	2023/02/25 02:00	2.934	1.467	120.000	122.934	61.467	达林
	上廖溪			1 小时	2023/05/26 02:00	0.560	0.280	120.000	120.560	60.280	丛林
	腊岩	-2,216	-2,494	1 小附	2023/10/03 03:00	0.379	0.190	120.000	120.379	60.190	达粉
	中寨	-2,121	-2,706	1.小时	2023/06/20 20:00	0.407	0.204	120,000	120.407	60,204	达林
	观音滩	157	-2,653	1 4-84	2023/07/02 21:00	0.406	0.203	120.000	120.406	60.203	达标
	荒田	-2,749	1,272	1 小时	2023/12/30 03:00	1.654	0.827	120.000	121.654	60.827	丛林
	凡溪电	-2,482	-583	上小时	2023/12/26 09:00	0.465	0.232	120.000	120.465	60.232	达机
	土湾	-1,640		1小时	2023/05/20 04:00	0.260	0.130	120,000	120,260	60.130	达林
1	三脚岩	-1,876	183	1 小时	2023/04/03 23:00	0.738	0.369	120.000	120.738	60.369	达林
	三寨村	-1,889	-615	1 小时	2023/09/27 20:00	0.757	0.379	120,000	120.757	60.379	达林
	堰塘塆	-1,966	739	1小时	2023/10/31 20:00	1.843	0.922	120.000	121.843	60.922	达标
	白猫冲	-1,661	1,244	1 小时	2023/10/12 05:00	1.920	0.960	120,000	121.920	60,960	达林
	竹山溪	-1,354		1 小时	2023/09/29 23:00	1,674	0.837	120,000	121.674	60,837	达棒
1	白家庄	-1,088	-62	1小时	2023/08/30 20:00	0.657	0.329	120,000	120.657	60,329	达杉
	鲇鱼塘村	1,643		1小时	2023/06/18 04:00	0.355	0.177	120,000	120,355	60,177	达核

斜滩	1,950	-1,973	1小时	2023/06/23 06:00	0.405	0.203	120,000	120.405	60.203	达标
陆家塆	498	79	1小时	2023/08/21 00:00	2.781	1.391	120.000	122.781	61.391	达标
菜园	-1,031	-2,657	1 小时	2023/05/10 07:00	0.456	0.228	120.000	120.456	60,228	达标
杨柳冲	2,104	1,516	1小时	2023/12/03 08:00	0,541	0.270	120.000	120.541	60,270	达标
蔡溪屯	504	489	1 小时	2023/08/11 05:00	2,307	1.153	120,000	122.307	61,153	达标
洞廊上	1,104	889	1 小时	2023/09/19 22:00	1.177	0.589	120,000	121.177	60,589	达标
赶纸山	-1,772	547	1小时	2023/09/18 21:00	0.653	0.326	120,000	120.653	60,326	达标
井塆	-2,352	1,366	1小时	2023/01/05 17:00	1.515	0.758	120,000	121.515	60,758	达标
区域最大值	0	200	1 小时	2023/07/01 04:00	11.575	5.788	120,000	131.575	65.788	达标

表 4.1-79 NMHC 叠加周边拟在建污染源及 1 小时平均现状环境质量后预测结果表

污染物	预测点	X/	Y/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达析
. 3/11/13		m	177	材段		(µg/m')	%	(µg/m²)	(µg/m³)	0/0	情况
	田新岩	2,809		工小时	2023/09/19 22:00	22,148	1.107	480.000	502.148	25.107	达标
1	為家塢	-31		1小时	2023/09/11 19:00	49.361	2.468	480.000	529.361	26,468	达板
	彭家	114	839	1 4 17	2023/09/29 22:00	65.550	3.278	480.000	545.550	27.278	达析
1	岩下	138		1小时	2023/09/17 22:00	61.111	3.056	480,000	541.111	27.056	达杨
	描描冲	-1.043		1小时	2023/11/03 01:00	70.855	3.543	480.000	550.855	27.543	达标
	麻音塘	-735	_	1 小时	2023/07/02 21:00	38.085	1.904	480.000	518,085	25.904	达板
	羊庄	-531		1 小时	2023/09/06 22:00	59.915	2.996	480.000	539.915	26,996	达板
-	菜溪村	-570		1 小时	2023/07/28 00:00	40.323	2.016	480,000	520.323	26,016	达杉
	下應緩	-928	-2,425	1小时	2023/05/17 20:00	47.918	2.396	480,000	527.918	26,396	达核
-	后锁	785	-491	1小时	2023/05/29 01:00	55.946	2,797	480,000	535,946	26,797	达板
	湖南田	659	-2,207	1 小时	2023/08/17 21:00	35.117	1.756	480,000	515.117	25,756	达板
	施敏	1,874	-486	1 小时	2023/06/29 23:00	30.105	1.505	480.000	510.105	25.505	达板
	磨狗	2.587	810	1 小时	2023/09/12 00:00	28.684	1,434	480.000	508.684	25.434	达板
	白岩坳	2,398	1,345	1 小时	2023/09/18 22:00	29.701	1,485	480.000	509.701	25,485	达板
	岩坎上	1,183	-331	工小时	2023/05/29 01:00	53.321	2.666	480.000	533,321	26.666	达板
	分洲	1,559	-1,678	1小时	2023/05/27 02:00	21.928	1.096	480.000	501.928	25,096	达板
	田家	1,842	-2,503	1 小时	2023/08/17 21:00	17.445	0.872	480.000	497,445	24.872	达标
	辽家塆	1,586	39	1 小时	2023/09/12 00:00	40,431	2.022	480.000	520.431	26.022	达标
	榴树井	1,998	1,064	1 小时	2023/09/18 22:00	33.426	1.671	480.000	513,426	25.671	达标
	杉木林	1,276	-765	1.小时	2023/08/18 02:00	36.811	1.841	480,000	516.811	25.841	达标
	胜利村	1,595	604	1 小时	2023/07/08 20:00	34.956	1.748	480,000	514.956	25.748	达标
NMHC	而引維	2,275	-160	1 小时	2023/05/29 01:00	33.274	1.664	480.000	513.274	25,664	达标
NMITIC	张家	-1,243	2,600	1 小时	2023/03/28 02:00	54.841	2.742	480.000	534.841	26,742	达标
	上廖溪	-2,097	-1,243	1 小时	2023/09/14 19:00	75.461	3.773	480.000	555.461	27,773	达板
	脂岩	-2,216	-2,494	1 小时	2023/09/06 20:00	31.980	1.599	480,000	511.980	25,599	达杉
	中寨	-2,121	+2,706	1 小时	2023/09/02 21:00	36.554	1.828	480,000	516.554	25.828	达粉
	观音滩	157	-2,653	1小时	2023/06/18 04:00	35,606	1.780	480,000	515,606	25,780	达板
	荒田	-2,749	1,272	1 小时	2023/05/23 19:00	43.959	2.198	480.000	523.959	26.198	达板
	凡溪屯	-2,482	-583	1 小时	2023/08/06 20:00	33.019	1.651	480.000	513.019	25.651	达板
	上湾	-1,640	2,551	1 小时	2023/07/13 20:00	3.138	0.157	480.000	483.138	24.157	达标
	三胂岩	-1,876	183	1 小时	2023/04/13 21:00	48,620	2.431	480.000	528.620	26,431	达标
	三寨村	-1,889	-615	1 小时	2023/08/06 20:00	57.435	2.872	480,000	537.435	26.872	达板
	處塘塆	-1,966	739	1.小时	2023/09/29 23:00	127.780	6.389	480,000	607.780	30.389	达板
	白貓冲	-1,661	1.244	1 小时	2023/09/19 19:00	35.205	1.760	480.000	515.205	25.760	达标
	竹山溪	-1,354	1,893	1 小时	2023/07/02 22:00	33.437	1.672	480.000	513.437	25,672	丛板
	白家庄	-1,088	-62	上小时	2023/08/22 06:00	112.365	5.618	480.000	592,365	29.618	达板
	鲇鱼塘村	1,643	-2,622	1小时	2023/08/17 21:00	22.485	1.124	480,000	502,485	25.124	达林
	領滩	1,950	-1,973	1 小时	2023/06/13 20:00	22,287	1.114	480,000	502.287	25.114	达标
	陆家塆	498	79	1 小时	2023/09/18 22:00	68.297	3.415	480.000	548.297	27.415	达标
	菜园	-1,031		1 小时	2023/08/17 20:00	43.270	2.163	480.000	523.270	26,163	达核
	杨柳冲	2,104		1 小时	2023/09/19 22:00	27.324	1.366	480.000	507.324	25,366	达林
1	蔡溟屯	504	489	1 小时	2023/09/19 22:00	66.354	3.318	480,000	546.354	27,318	达杉
	洞脑上	1,104	889	1小时	2023/09/19 22:00	48.491	2,425	480,000	528.491	26,425	达杉
1	赶纸山	-1,772	1	1小时	2023/09/29 23:00	66.881	3.344	480,000	546.881	27,344	达杨

井埼	-2,352	1,366	1 小时	2023/11/02 21:00	53.926	2.696	480.000	533.926	26,696	达标
区域最大值	-300	-100	1 小时	2023/05/30 00:00	410.635	20.532	480,000	890.635	44.532	达标

表 4.1-80 硫化氢叠加周边拟在建污染源及 1 小时平均现状环境质量后预测结果表

写染物	预侧点	X/	Y/.	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达梅
4.34440)		m	m	时段	ED Wend Inf	(μg/m³)	%	(µg/m³)	(µg/m³)	9/4	情初
	四新岩	2,809	2,314	1 小时	2023/06/11 23:00	0.022	0.218	7.000	7.022	70.218	达标
	蒋家塆	-31	-2,041	1 小时	2023/07/28 20:00	0.024	0.235	7.000	7,024	70.235	达标
	彭家	114	839	1 小时	2023/07/14 06:00	0.051	0.511	7.000	7.051	70.511	达板
	岩下	138	2,356	1小时	2023/06/18 22:00	0.027	0.266	7.000	7,027	70.266	边板
	猫猫冲	-1,043	2,741	1 小時	2023/02/24 02:00	0.112	1.119	7.000	7.112	71,119	达村
	麻音塘	-735	-2,739	1 小时	2023/06/15 23:00	0.020	0.195	7.000	7,020	70.195	边板
	羊庄	-531	-2,332	1 小时	2023/03/11 05:00	0.022	0.221	7.000	7.022	70.221	达粉
	菜溪村	-570	1,381	1小时	2023/01/12 17:00	0.035	0.347	7,000	7.035	70,347	达制
	下廖溪	-928	-2,425	1 小时	2023/05/10 07:00	0.025	0.253	7.000	7.025	70.253	达林
	后锁	785	-491	1小时	2023/01/23 10:00	0.035	0.347	7.000	7.035	70.347	达林
	湖南田	659	-2,207	1小时	2023/05/11 06:00	0.019	0.189	7.000	7,019	70.189	达林
	踹職	1,874	-486	1.小时	2023/08/27 01:00	0.023	0.234	7.000	7.023	70.234	达林
	磨沟	2,587	810	1 小时	2023/02/15 08:00	0.025	0.245	7.000	7.025	70.245	达林
	白岩塘	2,398	1,345	1 4-19	2023/12/03 08:00	0.030	0.297	7.000	7:030	70.297	达机
	岩坎上	1,183	-331	1 小时	2023/08/27 01:00	0.030	0.304	7.000	7,030	70.304	达机
	分洲	1,559	-1,678	1小时	2023/06/23 06:00	0.023	0.234	7.000	7:023	70.234	达
	田家	1,842	-2,503	1 4/6	2023/06/23 06:00	0.015	0.154	7,000	7,015	70.154	达机
	辽家均	1.586	39	1 小时	2023/08/15 03:00	0.026	0.265	7.000	7.026	70.265	达
	柳树井	1,998	1,064	1 小时	2023/12/03 08:00	0.030	0.304	7.000	7.030	70.304	达标
	杉木林	1,276	-765	1 小时	2023/01/23 10:00	0.035	0.353	7.000	7.035	70.353	达林
	胜利村	1,595	604	1 小时	2023/02/15 08:00	0.034	0.343	7.000	7.034	70.343	达相
	高号唯	2,275	-160	1 小时	2023/06/13 03:00	0.021	0.207	7.000	7.021	70.207	达
		-1,243	2,600	1 小时	2023/02/25 02:00	0.149	1.489	7.000	7.149	71.489	边
	光家 上陸漢			1小时							达村
H2S		-2,097	-1,243 -2,494		2023/02/25 08:00	0.025	0.248	7.000	7.025	70.248	
	腊岩	-2,216		1小时	2023/10/03 03:00	0.022	0.224	7,000	7.022	70.224	达林
	中寨	-2,121	-2,706	1小时	2023/06/20 20:00	0.025	0.252	7.000	7.025	70.252	达村
	观音滩	157	-2,653	1小时	2023/10/26 06:00	0.020	0.195	7.000	7.020	70,195	边机
	荒田	-2,749	1,272	1小时	2023/10/31 19:00	0.105	1.047	7.000	7,105	71.047	达林
	凡溪屯	-2,482	-583	1小时	2023/08/09 19:00	0.026	0.255	7.000	7.026	70.255	达档
	上湾	-1,640	2,551	1 小时	2023/05/20 04:00	0.011	0.110	7.000	7,011	70.110	述
	三脚岩	-1,876	183	1小时	2023/08/06 20:00	0.038	0.382	7.000	7:038	70.382	达机
	三寨村	-1,889	-615	1 小时	2023/12/26 09:00	0.032	0.318	7.000	7.032	70.318	达
	堰塘塆	-1,966	739	1小时	2023/10/31 20:00	0.063	0.631	7.000	7:063	70.631	达
	白貓冲	-1,661	1,244	1 小时	2023/10/12 05:00	0.079	0.791	7.000	7,079	70.791	达
	竹山溪		1,893	1 小时	2023/09/29 23:00	0.038	0.376	7.000	7.038	70.376	达林
	白家庄	-1.088	-62	1小时	2023/12/26 09:00	0.031	0.309	7.000	7,031	70.309	达林
	鲇鱼塘 村	1,643	-2,622	1 小时	2023/12/19 09:00	0.013	0.133	7,000	7,013	70,133	达棒
	斜滩	1,950	-1.973	1 小时	2023/06/23 06:00	0.022	0.220	7.000	7.022	70.220	达林
	陆家坞	498	79	1 小时	2023/08/21 00:00	0.056	0.556	7.000	7,056	70.556	达林
	集団	-I,03I	-2,657	1 2500	2023/05/10 07:00	0.024	0.244	7.000	7.024	70.244	边棒
	杨柳冲	2.104	1,516	1 小时		0.028	0.278	7,000	7.028	70.278	达林
	蔡溪电	504	489	1 4/18		0.054	0.539	7.000	7.054	70.539	达
	洞脑上	1,104	889	1 小时		0.040	0.400	7.000	7.040	70,400	边
	赶纸山		547	1 小时		0.024	0.244	7.000	7.024	70.244	达料
	炸馬	-2,352	1,366	1小时	A the format and when the first control by the	0.076	0.763	7,000	7.076	70,763	达
	区域最大值	-300	100	1 小时	Supplied the state	0.569	5.686	7.000	7.569	75.686	达核

表 4.1-81 锰及其化合物叠加周边拟在建污染源及 24 小时平均现状环境质量后预测结果表

污染物 预测点	X/	Y/	平均	出现时间	变化值/	占标率/	现状值/	叠加值/	占标率/	达标
(2 8540 Thronter)	m	m	时段	THE SERVICES LED	(µg/m³)	96	(µg/m²)	(µg/m³)	1/6	情况

稀贵金属资源循环利用项目环境影响报告书

				11.	67-2-103-2-03-4-112-2						
	田新岩	2,809	2,314	24 小时	2023/11/22	0.121	1.212	0.000	0.121	1.212	达标
	蒋家塆	-31	-2,041	24 小时	2023/10/26	0,053	0.527	0.000	0.053	0.527	选标
	彭家	114	839	24 小时	2023/12/19	0.044	0.436	0.000	0.044	0.436	达标
	岩下	138	2,356	24 小时	2023/01/04	0.039	0.387	0.000	0.039	0,387	达标
	猫猫冲	-1,043	2,741	24 小时	2023/01/04	0.030	0.299	0.000	0.030	0.299	达标
	麻音塘	-735	-2,739	24 小时	2023/02/08	0.061	0.608	0.000	0.061	0.608	达标
	羊庄	-531	-2,332	24 小时	2023/02/08	0.070	0.701	0.000	0.070	0.701	达标
	菜溪村	-570	1,381	24 小时	2023/10/27	0.023	0.227	0.000	0.023	0,227	达标
	下廖溪	-928	-2,425	24 小时	2023/02/12	0.069	0.687	0.000	0.069	0.687	达标
	后锁	785	-491	24 小时	2023/04/12	0.066	0.656	0.000	0.066	0.656	达标
	湖南田	659	-2,207	24 小时	2023/09/03	0.043	0.432	0.000	0.043	0.432	达标
	跳破	1,874	-486	24 小时	2023/05/17	0.053	0.525	0.000	0.053	0.525	达标
	磨沟	2,587	810	24 小时	2023/11/17	0.043	0.426	0.000	0.043	0.426	达标
	白岩塘	2,398	1,345	24 小时	2023/11/21	0.079	0.793	0.000	0.079	0.793	达标
	岩块上	1,183	-331	24 小时	2023/10/27	0.054	0.540	0.000	0.054	0.540	达标
	分洲	1,559	-1,678	24 小时	2023/05/17	0.035	0.351	0.000	0.035	0.351	达标
	田家	1,842	-2,503	24 小时	2023/08/06	0.031	0.313	0.000	0.031	0.313	达标
	辽家塆	1.586	39	24 小时	2023/10/26	0.051	0.511	0.000	0.051	0.511	达标
	榴树并	1,998	1,064	24 小时	2023/08/03	0.082	0.825	0.000	0.082	0.825	达标
	杉木林	1.276	-765	24 小时	2023/01/04	0.072	0.717	0.000	0.072	0.717	达标
	胜利村	1,595	604	24 小时	2023/08/03	0.065	0.654	0.000	0.065	0.654	达标
	高弓維	2,275	-160	24 小时	2023/05/29	0.036	0.361	0.000	0.036	0,361	达标
	张家	-1,243	2,600	24 小时	2023/01/04	0.015	0.150	0.000	0.015	0.150	达标
锰及其	上廖溪	-2,097		24 小时	2023/12/02	0.039	0.391	0.000	0.039	0,391	达标
化合物	腊岩	-2,216		24 小时	2023/02/18	0.057	0.574	0.000	0.057	0.574	达标
	中寨	-2,121		24 小时	2023/02/18	0.052	0.524	0.000	0.052	0.524	达标
	观音滩	157		24 小时	2023/02/23	0.050	0.497	0.000	0.050	0.497	达标
	荒田	-2,749	1,272	24 小时	2023/12/26	0.011	0.112	0.000	0.011	0.112	达标
	凡溪屯	-2.482	-583	24 小时	2023/12/14	0.026	0.255	0.000	0.026	0.255	达标
	土湾	-1,640	2,551	24 小时	2023/04/27	0.002	0.022	0.000	0.002	0.022	达标
	三脚岩	-1,876	183.	24 小州	2023/10/27	0.028	0.281	0.000	0.028	0.281	边标
	三寨村	-1.889	-615	24 小时	2023/03/24	0.033	0.334	0.000	0.033	0.334	达标
	婚期均	-1,966	739	24 小时	2023/01/04	0.041	0.412	0.000	0.041	0.412	达标
	白貓冲	-1,661	1,244	24 小时	2023/01/04	0.050	0.504	0.000	0.050	0.504	达标
	竹山溪	-1,354	1,893	24 小时	2023/12/20	0.037	0.367	0.000	0.037	0.367	达奶
	白家庄	-1,088	-62	24 小时	2023/12/14	0.044	0.442	0.000	0.044	0.442	达标
	貼鱼塘 村	1,643		24 小时	2023/08/06	0,031	0.307	0.000	0.031	0.307	达标
	斜滩	1.950	-1.973	24 小时	2023/08/06	0.034	0.345	0.000	0.034	0.345	选标
	陆家塆	498	79	24 小时	2023/02/12	0.172	1.724	0.000	0.172	1.724	达标
	菜园	-1,031		24 小时	2023/02/08	0.066	0.663	0.000	0.066	0.663	达标
	杨柳冲	2,104		24 小时	2023/08/16	0.082	0.821	0.000	0.082	0.821	达标
	蔡溪屯	504	489	24 小时	2023/12/09	0.153	1.533	0.000	0.153	1,533	达标
	洞脑上	1,104	889	24 小时	2023/07/30	0.182	1.817	0.000	0.182	1,817	达标
	赶纸山	-1,772	547	24 小时	2023/12/25	0.022	0.218	0.000	0.022	0.218	达标
	井塆	-2,352	1,366	24 小时	2023/01/04	0.036	0.360	0.000	0.036	0,360	达标
	区域最大值			24 小时	2023/01/04	1.640	16.395	0.000	1.640	16.395	达标

4.1.3.10 大气环境影响预测结果图

(1) 贡献浓度质量分布图

详见图4.1-9~4.1-41。

(2) 叠加现状浓度后短期浓度分布图

详见图4.1-42~4.1-61。

(3) 叠加现状浓度后长期浓度分布图

详见图4.1-62~4.1-65。

4.1.3.11 非正常工况排放大气环境影响预测结果及评价

2023年玉屏气象站全年气象条件下,非正常排放时评价区 SO₂、NO₂、PM₁₀、氟化物、硫酸雾、五氧化二磷、氯气、氨气、甲醛、H₂S、氯化氢、非甲烷总烃、二噁英的典型小时浓度预测结果见表4.1-82,对各保护目标的影响见4.1-83~4.1-95。

污染物	平均时间	贡献浓度最大值	占标率(%)	超标倍数
SO:	1 小时	417.135	82,427	达标
NO ₂	1 小时	113.784	56.892	达标
PM ₁₀	1小时	1367.984	303.997	2.04
氟化物	1 小时	28,607	143.033	0.43
硫酸雾	1小时	337.515	112.505	0.13
五氧化二磷	1 小时	4.383	2.922	达标
氯气	1小时	300.615	300.615	2.01
氨气	1 小时	113.886	56,943	达标
甲醛	1 小时	1.949	3.899	达标
H ₂ S	1 小时	29.272	292.719	1.93
氯化氢	1 小时	1028.184	2056,369	19.56
NMHC	1 小时	80.419	4.021	达标
二噁英	1 小时	0.000001239615	34,434	达标

表 4.1-82 非正常情况下污染物最大小时落地浓度单位: ug/m3

丰 41 02	北下骨排放骨太 60.	,影响预测结果统计表
75 4.1-0.3	3E IL W 4E UX 4V 35 301	* 夏シ岬 TUL 7世 355 元 577 T 1 727

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
行架彻	DOMESTIC	m	m	时段	(µg/m³)	स्म अद्राप्त ।च	%	情况
	田新岩	2,809	2,314	1 小时	10.720	2023/03/26 07:00	2.144	达标
	蒋家塆	-31	-2,041	1 小时	12.819	2023/08/02 07:00	2.564	达标
	彭家	114	839	1 小时	15.915	2023/07/06 21:00	3.183	达标
	岩下	138	2,356	1 小时	10.483	2023/10/09 07:00	2.097	达标
	猫猫冲	-1,043	2,741	1小时	56.165	2023/02/25 02:00	11.233	达标
	麻音塘	-735	-2,739	1小时	11.541	2023/05/10 07:00	2.308	达标
	羊庄	-531	-2,332	1 小时	12.251	2023/05/10 07:00	2.450	达标
	菜溪村	-570	1,381	1 小时	12.275	2023/06/18 21:00	2.455	达标
	下廖溪	-928	-2,425	1 小时	14.952	2023/05/10 07:00	2.990	达标
502	后锁	785	-491	1 小时	17.690	2023/10/27 08:00	3.538	达标
	湖南田	659	-2,207	1 小时	7,748	2023/12/19 09:00	1,550	达标
SO2	跳破	1,874	-486	1 小时	11.620	2023/12/04 09:00	2.324	达标
	磨沟	2,587	810	1 小时	14.185	2023/02/15 08:00	2.837	达析
	白岩塘	2,398	1,345	1 小时	16.646	2023/02/15 08:00	3.329	达标
	岩坎上	1,183	-331	1 小时	12.164	2023/01/23 10:00	2,433	达标
	分洲	1,559	-1,678	1 小时	11,353	2023/06/23 06:00	2,271	达标
	田家	1,842	-2,503	1 小时	8.341	2023/12/19 09:00	1.668	达梅
	辽家塆	1,586	39	1小时	11.328	2023/12/23 09:00	2.266	达标
	榴树井	1,998	1,064	1 小时	17.588	2023/02/15 08:00	3.518	达标
	杉木林	1,276	-765	1 小时	15.918	2023/01/23 10:00	3.184	达标
	胜利村	1,595	604	1 小时	17.473	2023/03/29 07:00	3.495	达标
	高弓滩	2,275	-160	1 小財	9.701	2023/12/04 09:00	1.940	达标

稀贵金属资源循环利用项目环境影响报告书

张家	-1,243	2,600	上小时	75.154	2023/02/25 02:00	15.031	达标
上廖溪	-2,097	-1,243	1 小时	13.252	2023/02/25 08:00	2.650	达标
腊岩	-2,216	-2,494	1 小时	7.696	2023/09/24 05:00	1.539	达标
中寨	-2,121	-2,706	1 小时	8.233	2023/07/17 22:00	1.647	达标
观音滩	157	-2,653	1小时	10.336	2023/08/02 07:00	2.067	达标
荒田	-2,749	1,272	1 小时	72.538	2023/12/30 03:00	14,508	达标
凡溪屯	-2,482	-583	1 小时	13.960	2023/12/26 09:00	2.792	达标
土湾	-1,640	2,551	1小时	30.494	2023/04/01 23:00	6.099	达标
三脚岩	-1,876	183	1 小时	13.694	2023/10/21 18:00	2.739	达标
三寨村	-1,889	-615	1 小时	17.096	2023/12/26 09:00	3.419	达标
堰塘塆	-1,966	739	1 小时	17.125	2023/03/16 03:00	3.425	达标
白猫冲	-1,661	1,244	1 小时	31.866	2023/04/02 23:00	6.373	达标
竹山溪	-1,354	1,893	1 小时	9.768	2023/05/28 22:00	1.954	达标
白家庄	-1,088	-62	1 小时	19.635	2023/12/26 09:00	3.927	达标
鲇鱼塘村	1,643	-2,622	1 小时	9.450	2023/12/19 09:00	1.890	达标
斜滩	1,950	-1,973	1.小时	11.601	2023/06/23 06:00	2.320	达标
陆家塆	498	79	1 小时	17.656	2023/06/07 23:00	3.531	达标
菜园	-1,031	-2,657	1 小时	14.436	2023/05/10 07:00	2.887	达标
杨柳冲	2,104	1,516	1 小时	14.047	2023/12/03 08:00	2.809	达标
蔡溪屯	504	489	I 小时	17.125	2023/05/13 20:00	3.425	达标
洞脑上	1,104	889	1 小时	16.770	2023/03/26 07:00	3.354	达标
赶纸山	-1,772	547	1 小时	6.134	2023/08/09 04:00	1.227	达标
井塆	-2,352	1,366	1小时	41.473	2023/11/05 06:00	8.295	达标
区域最大值	-300	100	1 小时	417.135	2023/09/18 21:00	83.427	达标

表 4.1-84 非正常排放状态 NO2 影响预测结果统计表

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
75-8-10	19000022	m	m	时段	(µg/m³)	THE SATURE THE	%	情况
	田新岩	2,809	2,314	1 小时	6.101	2023/03/26 07:00	3.051	达标
	蒋家塆	-31	-2,041	1 小时	6.939	2023/08/02 07:00	3.469	达标
	彭家	114	839	1 小时	12.210	2023/06/19 06:00	6.105	达标
	岩下	138	2,356	L小时	6.439	2023/06/28 20:00	3,220	达标
	猫猫冲	-1,043	2,741	1 小时	30.323	2023/02/24 02:00	15.161	达标
	麻音塘	-735	-2,739	I 小时	6.111	2023/05/10 07:00	3.055	达标
	羊庄	-531	-2,332	1 小时	6.372	2023/05/10 07:00	3.186	达标
	菜溪村	-570	1,381	1 小时	7.913	2023/05/28 00:00	3.956	达标
	下廖溪	-928	-2,425	1 小时	8.349	2023/05/10 07:00	4.175	达标
	后锁	785	-491	1 小时	9.619	2023/01/23 10:00	4.810	达标
	湖南田	659	-2,207	1 小时	4.829	2023/05/11 06:00	2.414	达柯
	跳破	1,874	-486	1 小时	6.454	2023/12/04 09:00	3.227	达标
	磨沟	2,587	810	1小时	8.155	2023/02/15 08:00	4.077	达标
NO2	白岩塘	2,398	1,345	1 小时	9.167	2023/02/15 08:00	4.584	达标
NO2	岩坎上	1,183	-331	1小时	9.224	2023/07/11 06:00	4.612	达标
	分洲	1,559	-1,678	1 小时	7.147	2023/06/23 06:00	3.573	达标
	田家	1,842	-2,503	1 小时	4.793	2023/06/23 06:00	2.396	达柯
	辽家塆	1,586	39	1 小时	7.015	2023/02/05 09:00	3.507	达标
	榴树井	1,998	1,064	1小时	10.212	2023/02/15 08:00	5.106	达标
	杉木林	1,276	-765	1 小时	10.829	2023/01/23 10:00	5.414	达标
	胜利村	1,595	604	I小时	10,535	2023/02/15 08:00	5.267	达析
	高弓滩	2,275	-160	1 小时	5.395	2023/06/13 03:00	2.697	达标
	张家	-1,243	2,600	1 小时	52,386	2023/02/25 02:00	26.193	达标
	上廖溪	-2,097	+1,243	1 小时	7.865	2023/02/25 08:00	3.933	达标
	腊岩	-2,216	-2,494	I小时	5.411	2023/02/18 17:00	2.706	达柯
	中寨	-2,121	-2,706	1 小时	5.534	2023/10/02 05:00	2.767	达标
	观音滩	157	-2,653	I小时	5.413	2023/07/28 20:00	2.706	达标
	荒田	-2,749	1,272	1 小时	42.183	2023/12/30 03:00	21.092	达标

稀贵金属资源循环利用项目环境影响报告书

凡溪屯	-2,482	-583	L小时	8.066	2023/12/26 09:00	4.033	达标
土湾	-1,640	2,551	1 小时	8.069	2023/05/20 04:00	4.034	达标
三脚岩	-1,876	183	1 小时	7.868	2023/08/06 20:00	3.934	达标
三寨村	-1,889	-615	1 小时	10,125	2023/12/26 09:00	5.062	达标
堰塘塆	-1,966	739	1 小时	9.373	2023/03/16 03:00	4.687	达标
白猫冲	-1,661	1,244	1 小时	13.741	2023/04/02 23:00	6.870	达标
竹山溪	-1,354	1,893	1 小时	5.625	2023/03/06 18:00	2.812	达标
白家庄	-1,088	-62	1 小时	10.976	2023/12/26 09:00	5.488	达标
鲇鱼塘村	1,643	-2,622	1.小时	4.752	2023/12/19 09:00	2.376	达标
斜滩	1,950	-1,973	1 小时	6.963	2023/06/23 06:00	3.482	达标
陆家塆	498	79	1小时	11.630	2023/06/30 06:00	5.815	达标
菜园	-1,031	-2,657	1 小时	8.048	2023/05/10 07:00	4.024	达标
杨柳冲	2,104	1,516	1 小时	8.667	2023/12/03 08:00	4.333	达标
蔡溪屯	504	489	1 小时	13.401	2023/10/14 07:00	6.700	达标
洞脑上	1,104	889	1 小时	11.714	2023/03/26 07:00	5.857	达标
赶纸山	-1,772	547	1.4/10	5.613	2023/10/27 22:00	2.807	达标
井塆	-2,352	1,366	1 小时	21.218	2023/11/05 06:00	10.609	达标
区域最大值	-300	100	1 小时	113,784	2023/09/18 21:00	56.892	达标

表 4.1-85 非正常排放状态 PM10 影响预测结果统计表

污染物	预测点	X/	Υ/	平均	最大贡献值/	出现时间	占标率/	达村
15 分(17)	现现是	m	m	时段	(µg/m³)	TT 25K hat lint	%	情况
	田新岩	2,809	2,314	1小时	42.841	2023/03/26 07:00	9.520	达柯
	蒋家塆	-31	-2,041	1 小时	52.128	2023/08/02 07:00	11.584	达杨
	彭家	114	839	1 小时	64.713	2023/07/06 21:00	14.381	达村
	岩下	138	2,356	1 小时	41,389	2023/10/09 07:00	9.198	达杭
	猫猫冲	-1,043	2,741	1 小时	211.190	2023/02/25 02:00	46.931	达板
	麻音塘	-735	-2,739	1 小时	46.696	2023/05/10 07:00	10.377	达杭
	羊庄	-531	-2,332	1 小时	49.466	2023/05/10 07:00	10.993	达板
	菜溪村	-570	1,381	1 小时	48,996	2023/09/17 18:00	10.888	达核
	下廖溪	-928	-2,425	1 小时	60.343	2023/05/10 07:00	13.409	达杉
	后锁	785	-491	L小时	70.240	2023/10/27 08:00	15.609	达林
	湖南田	659	-2,207	1 小时	31.246	2023/12/19 09:00	6.944	达林
	姚碶	1,874	-486	1 小时	46.663	2023/12/04 09:00	10.370	达林
	磨淘	2,587	810	1 小时	56.566	2023/02/15 08:00	12.570	达林
	白岩塘	2,398	1,345	1 小时	65.578	2023/02/15 08:00	14.573	达林
	岩坎上	1,183	-331	1 小时	47.195	2023/12/04 09:00	10.488	达林
	分洲	1,559	-1,678	I 小时	44.727	2023/06/23 06:00	9.939	达柱
	田家	1,842	-2,503	1 小时	34.036	2023/12/19 09:00	7.563	达林
PM10	辽家塆	1,586	39	1小时	45.520	2023/12/23 09:00	10.116	达林
	榴树井	1,998	1,064	1 小时	68.358	2023/02/15 08:00	15.191	达机
	杉木林	1,276	-765	1 小时	61.040	2023/01/23 10:00	13.564	达林
	胜利村	1,595	604	1小时	69.125	2023/03/29 07:00	15.361	达村
	高弓滩	2,275	-160	1 小时	38.914	2023/12/04 09:00	8.647	达机
	张家	-1,243	2,600	1 小时	291,780	2023/02/25 05:00	64.840	达村
	上廖溪	-2,097	-1,243	1 小时	53.028	2023/02/25 08:00	11.784	达标
	腊岩	-2,216	-2,494	1.小时	30.580	2023/02/12 11:00	6.795	达核
	中寨	-2,121	-2,706	1 小时	33,172	2023/07/17 22:00	7,372	达书
	观音滩	157	-2,653	I小时	42.125	2023/08/02 07:00	9.361	达村
	荒田	-2,749	1,272	1 小时	256.669	2023/12/30 03:00	57.037	达杉
	凡溪屯	-2,482	-583	1 小时	55.810	2023/12/26 09:00	12,402	达林
	土湾	-1,640	2,551	1 小时	136.408	2023/04/01 23:00	30.313	达村
	三脚岩	-1,876	183	I小时	55.044	2023/10/21 18:00	12.232	达杉
	三寨村	-1,889	-615	1 小时	68,339	2023/12/26 09:00	15.186	达核
	堰塘塆	-1,966	739	I小时	67.187	2023/03/16 03:00	14.931	达核
	白猫冲	-1,661	1,244	1 小时	123,377	2023/04/02 23:00	27.417	达核

竹山溪	-1,354	1,893	L小时	39.413	2023/05/28 22:00	8.759	达标
白家庄	-1,088	-62	1 小时	76.499	2023/12/26 09:00	17.000	达标
鲇鱼塘村	1,643	-2,622	1 小时	38.605	2023/12/19 09:00	8.579	达标
斜滩	1,950	-1,973	1小时	46.000	2023/06/23 06:00	10,222	达标
陆家塆	498	79	1小时	73.060	2023/06/21 05:00	16:236	达标
菜园	-1,031	-2,657	1 小时	58.289	2023/05/10 07:00	12.953	达标
杨柳冲	2,104	1,516	1 小时	54.611	2023/12/03 08:00	12.136	达标
蔡溪屯	504	489	1 小时	68,234	2023/05/13 20:00	15.163	达标
洞脑上	1,104	889	1 小时	63.475	2023/03/26 07:00	14.106	达标
赶纸山	-1,772	547	1 小时	24.414	2023/08/09 04:00	5.425	达标
井塆	-2,352	1,366	1 小时	153,451	2023/11/05 06:00	34.100	达标
区域最大值	-300	100	1 小时	1,367.984	2023/09/18 21:00	303,997	超标

表 4.1-86 非正常排放状态氟化物影响预测结果统计表

污染物	预测点 -	X/	Y/	平均	最大贡献值/	東京原理主管	占标率/	达析
う無初	13年6月2日	m	m	时段	(µg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	1小时	1.594	2023/03/26-07:00	7.972	达标
	蒋家塆	-31	-2,041	1 小时	2.111	2023/08/02 07:00	10.555	达标
	彭家	114	839	T小时	2.806	2023/06/27 23:00	14.031	达核
	岩下	138	2,356	1 小时	1.564	2023/06/28 19:00	7.819	达板
	猫猫冲	-1,043	2,741	1 小时	5.237	2023/02/25 02:00	26:187	达核
	麻音塘	-735	-2,739	1 小时	1.904	2023/05/10 07:00	9.519	达核
	羊庄	-531	-2,332	1小时	2.022	2023/05/10 07:00	10.111	达杉
	菜溪村	-570	1,381	1 小时	1.898	2023/04/17 21:00	9.491	达核
	下廖溪	-928	-2,425	1 小时	2.370	2023/05/10 07:00	11.848	达林
	后锁	785	-491	1小时	2.614	2023/10/27 08:00	13.071	达核
	湖南田	659	-2,207	1小时	1.265	2023/12/19 09:00	6.323	达核
	跳破	1,874	-486	1 小时	1.821	2023/12/04 09:00	9.104	达林
	磨沟	2,587	810	1 小时	2.172	2023/02/15 08:00	10.859	达标
	白岩塘	2,398	1,345	1小时	2,403	2023/02/15 08:00	12.014	达核
	岩坎上	1,183	-331	1 小时	1.845	2023/05/19 07:00	9.227	达专
	分洲	1,559	-1,678	L小时	1.523	2023/06/23 06:00	7.615	达杉
	田家	1,842	-2,503	1 小时	1.468	2023/12/19 09:00	7.338	达杉
	辽家塆	1,586	39	1 小时	1.770	2023/12/23 09:00	8.850	达核
	榴树井	1,998	1,064	1 小时	2.330	2023/02/15 08:00	11.652	达标
	杉木林	1,276	-765	1小时	2.340	2023/10/27 08:00	11.699	达专
F	胜利村	1,595	604	1 小时	2.461	2023/03/29 07:00	12.305	达核
	高弓滩	2,275	-160	1 小时	1.575	2023/12/23 09:00	7.876	达核
	张家	-1,243	2,600	1 小时	14.774	2023/02/25 05:00	73.868	达核
	上塵溪	-2,097	-1,243	1 小时	1.968	2023/02/25 08:00	9.838	达杉
	腊岩	-2,216	-2,494	1小时	1.269	2023/02/12 11:00	6.346	达核
	中寨	-2,121	-2,706	1 小时	1.315	2023/07/17 22:00	6.576	达林
	观音滩	157	-2,653	1小时	1.749	2023/08/02 07:00	8.747	达标
	荒田	-2,749	1,272	1 小时	6.161	2023/12/30 03:00	30.806	达核
	凡溪屯	-2,482	-583	1 小时	2.062	2023/12/26 09:00	10.308	达林
	土湾	-1,640	2,551	1 小时	8.558	2023/04/01.23:00	42.788	达标
	三脚岩	-1,876	183	1小时	1,573	2023/10/13 07:00	7.864	达核
	三寨村	-1,889	-615	1 小时	2.518	2023/12/26 09:00	12.588	达书
	堰塘塆	-1,966	739	I小时	1.753	2023/03/16 03:00	8.764	达核
	白猫冲	-1,661	1,244	1 小时	4.439	2023/04/02.23:00	22.196	达杭
	竹山溪	-1,354	1,893	1 小时	1.447	2023/05/28 22:00	7,237	达核
	白家庄	-1,088	-62	1 小时	2.579	2023/12/26 09:00	12.896	达机
	鲇鱼塘村	1,643	-2,622	L小时	1.626	2023/12/19 09:00	8.132	达杉
	斜滩	1,950	-1,973	1 小时	1.651	2023/06/23 06:00	8.253	达核
	陆家塆	498	79	I小时	3.510	2023/06/21 05:00	17.551	达核
	菜园	-1,031	-2,657	1 小时	2.291	2023/05/10 07:00	11.454	达杭

杨柳冲	2,104	1,516	L小时	1.896	2023/03/26 07:00	9.480	达标
蔡溪屯	504	489	1 小时	2.883	2023/07/14 22:00	14.414	达标
洞脑上	1,104	889	1 小时	2.217	2023/09/19 07:00	11.086	达标
赶纸山	-1,772	547	1 小时	0.963	2023/04/18 20:00	4.813	达标
井塆	-2,352	1,366	1 小时	3.735	2023/11/05 06:00	18.676	达标
区域最大值	-300	100	L小时	28,607	2023/12/23 17:00	143.033	超标

表 4.1-87 非正常排放状态硫酸雾影响预测结果统计表

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达析
J 3K 170	- 9 - 9	m	m	肘段	(μg/m ¹)	(TI-S/Cn.) [n]	%	情况
	田新岩	2,809	2,314	1 小时	10.116	2023/07/08 00:00	3.372	达柯
	蒋家塆	-31	-2,041	1 小时	10.556	2023/07/27.23:00	3.519	达标
	彭家	114	839	1.小时	20,698	2023/07/14 06:00	6.899	达杭
	岩下	138	2,356	上小时	15.070	2023/06/18 22:00	5.023	达有
	猫猫冲	-1,043	2,741	L小时	71.181	2023/02/24 02:00	23.727	达杭
	麻音塘	-735	-2,739	1 小时	10.059	2023/06/01 22:00	3.353	达标
	羊庄	-531	-2,332	I 小时	10.837	2023/09/03 21:00	3.612	达机
	菜溪村	-570	1,381	1 小时	18.103	2023/01/12 17:00	6.034	达杭
	下廖溪	-928	-2,425	I 小时	11.611	2023/08/26 06:00	3.870	达核
	后锁	785	+491	1 小时	12.802	2023/01/23 10:00	4.267	达标
	湖南田	659	-2,207	1小时	7.774	2023/05/03 04:00	2.591	达标
	跳破	1,874	-486	1 小时	9.940	2023/08/27 01:00	3.313	达杨
	磨沟	2,587	810	1小时	11.449	2023/06/29 21:00	3.816	达标
	白岩塘	2,398	1,345	1 小时	11,550	2023/07/28 21:00	3.850	达杭
	岩坎上	1,183	-331	1 小时	14.336	2023/08/27 01:00	4.779	达村
	分洲	1,559	-1,678	1小时	8.396	2023/06/23 06:00	2.799	达杭
	田家	1,842	-2,503	1 小时	5.696	2023/08/12 19:00	1.899	达板
	辽家塆	1,586	39	1 小时	12.109	2023/07/09 22:00	4.036	达杭
	榴树井	1,998	1,064	1 小时	12.605	2023/07/02 23:00	4.202	达机
	杉木林	1,276	-765	1小时	13.430	2023/01/23 10:00	4.477	达杭
	胜利村	1,595	604	1 小时	12.810	2023/07/02 01:00	4.270	达机
	高弓滩	2,275	-160	L小时	11.551	2023/08/15 22:00	3.850	达杭
CE ME	张家	-1,243	2,600	1 小时	52,005	2023/02/20 02:00	17.335	达杭
硫酸	上廖溪	-2,097	-1,243	1 小时	11.053	2023/09/28 21:00	3.684	达机
	腊岩	-2,216	-2,494	1 小时	11.075	2023/08/08 21:00	3.692	达板
	中寨	-2,121	-2,706	1小时	12.062	2023/06/20 20:00	4.021	达标
	观音滩	157	-2,653	1 小时	11,226	2023/07/27 23:00	3.742	达杭
	売田	-2,749	1,272	1 小时	46.812	2023/01/05 17:00	15.604	达杭
	凡溪屯	-2,482	-583	1 小时	14.056	2023/08/09 19:00	4.685	达杨
	土湾	-1,640	2,551	1 小时	2.915	2023/03/06 18:00	0.972	达机
	三脚岩	-1,876	183	1 小时	24.871	2023/08/06 20:00	8.290	达核
	三寨村	-1,889	-615	1 小时	14.476	2023/12/08 19:00	4.825	达村
	堰塘塆	-1,966	739	1小时	49.129	2023/12/30 03:00	16.376	达标
	白猫冲	-1,661	1,244	1 小时	47.107	2023/10/24 23:00	15.702	达板
	竹山溪	-1,354	1,893	1 小时	18.737	2023/05/25 23:00	6.246	达杭
	白家庄	-1,088	-62	1 小时	17.419	2023/08/07 21:00	5.806	达标
	鲇鱼塘村	1,643	-2,622	1.小时	5.556	2023/12/19 09:00	1.852	达机
	斜滩	1,950	-1,973	上小时	8.023	2023/06/23 06:00	2.674	达板
	陆家塆	498	79	i 小时	23.295	2023/06/18 20:00	7.765	达板
	菜园	-1,031	-2,657	1 小时	11.649	2023/09/06 21:00	3.883	达杭
	杨柳冲	2,104	1,516	1 小时	11.510	2023/07/20 20:00	3.837	达板
	蔡溪屯	504	489	1 小时	24.529	2023/06/09 21:00	8.176	达机
	洞脑上	1,104	889	1 小时	14.613	2023/03/26 07:00	4.871	达板
	赶纸山	-1,772	547	1 小时	15.715	2023/04/02 22:00	5.238	达标
	井塆	-2,352	1,366	1 小时	54.572	2023/10/09 20:00	18.191	达标
	区域最大	-200	100	1小时	337,515	2023/04/02 23:00	112.505	超标

表 4.1-88 非正常排放状态氯化氢影响预测结果统计表

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
15 58 10	13/1/6/17/55	m	m	时段	(µg/m³)	स्य क्यान वि	%	情况
	田新岩	2,809	2,314	1 小时	29.971	2023/03/26 07:00	59.941	达柯
	蒋家塆	-31	-2,041	1小时	35.464	2023/08/02 07:00	70.929	达标
	彭家	114	839	1 小时	51.984	2023/06/19 06:00	103,968	超柯
	岩下	138	2,356	1 小时	33.609	2023/06/28 20:00	67,217	达标
	猫猫冲	-1,043	2,741	1小时	172.564	2023/02/25 02:00	345.128	超板
	麻音塘	-735	-2,739	1.小时	31,031	2023/05/10 07:00	62,062	达标
	羊庄	-531	-2,332	1 小时	32.254	2023/05/10 07:00	64.507	达板
	菜溪村	-570	1,381	1 小时	40.252	2023/07/01 20:00	80.504	达杭
	下廖溪	-928	-2,425	1 小时	42.177	2023/05/10 07:00	84.353	达杭
	后锁	785	-491	I小时	49.055	2023/10/27 08:00	98.110	达板
	湖南田	659	-2,207	1 小时	23,411	2023/12/19 09:00	46.822	达杭
	跳破	1,874	-486	1 小时	32.607	2023/12/04 09:00	65.215	达标
	磨沟	2,587	810	1 小时	40.288	2023/02/15 08:00	80.576	达杭
	白岩塘	2,398	1,345	1 小时	45.775	2023/02/15 08:00	91.549	达核
	岩坎上	1,183	-331	1小时	41.353	2023/07/11 06:00	82.706	达板
	分洲	1,559	-1,678	1 小时	35.058	2023/06/23 06:00	70.116	达板
	田家	1,842	-2,503	1小时	23.759	2023/06/23 06:00	47.517	达杭
	辽家塆	1,586	39	1 小时	33.924	2023/02/05 09:00	67.849	达板
	榴树井	1,998	1,064	1 小时	50.794	2023/02/15 08:00	101.589	超板
	杉木林	1,276	-765	1 小时	52.719	2023/01/23 10:00	105.439	超板
	胜利村	1,595	604	1 小时	51.087	2023/03/29 07:00	102.173	超标
	高号維	2,275	-160	1 小时	25.562	2023/12/23 09:00	51.124	达林
	张家	-1,243	2,600	1 小时	290,727	2023/02/25 02:00	581.455	超标
HCL	上廖溪	-2,097	+1,243	1 小时	38.960	2023/02/25 08:00	77.919	达机
	腊岩	-2,216	-2,494	1 小时	24.665	2023/09/24-05:00	49.330	达林
	中寨	-2,121	-2,706	1小时	26.965	2023/08/26 05:00	53.930	达杉
	观音滩	157	-2.653	1小时	27.512	2023/08/02 07:00	55.023	达标
	荒田	-2,749	1,272	1 小时	237,925	2023/12/30 03:00	475.850	超板
	凡溪屯	-2,482	-583	1小时	39.839	2023/12/26 09:00	79.679	达标
	土湾	-1,640	2,551	1 小时	44,589	2023/05/20 04:00	89.178	达板
	三脚岩	-1,876	183	1小时	43.471	2023/08/06 20:00	86.942	达核
	三寨村	-1,889	-615	1小时	49.836	2023/12/26 09:00	99.672	达核
	堰塘塆	-1,966	739	1 小时	53.877	2023/03/16 03:00	107.755	超标
	自猫冲	-1,661	1,244	1小时	77.100	2023/04/02 23:00	154,199	超机
	竹山溪	-1,354	1,893	1小时	28.409	2023/03/06 18:00	56.819	达粒
	白家庄	-1,088	-62	1 小时	54.683	2023/12/26 09:00	109.365	超机
	鲇鱼塘村	1,643	-2,622	1 小时	24.656	2023/12/19 09:00	49.312	达机
	斜滩	1,950	-1,973	1 小时	34.475	2023/06/23 06:00	68.950	达核
	結家塆	498	79	1 小时	56.001	2023/06/30 06:00	112.002	超板
	菜园	-1,031	-2,657	1 小时	40.755	2023/05/10 07:00	81.509	达机
	杨柳冲	2,104	1,516	1 小时	42.807	2023/12/03 08:00	85.615	达板
	蔡溪屯	504	489	1小时	61.582	2023/07/25 06:00	123.164	超机
	洞牖上	1,104	889	1小时	56.889	2023/03/26 07:00	113.778	超析
	赶纸山	-1,772	547	1 小时	24.141	2023/10/27 22:00	48.282	达机
	井塆	-2,352	1,366	1 小时	120,846	2023/11/05 06:00	241.692	超机
	区域最大值	-300	100	1 小时	1,028,184	2023/09/18.21:00	2,056.369	超板

表 4.1-89 非正常排放状态氯气影响预测结果统计表

Seattle Afric	355 Shi .45	X/	Y/	平均	最大贡献值/	the Till their first	占标率/	达标
污染物 预测点 一	m	m m	时段	(µg/m³)	出现时间	5/0	情况	
ibri	田新岩	2,809	2,314	1 小时	14.595	2023/03/26 07:00	14.595	达标
- Me	蒋家琦	-31	-2,041	1小时	20.107	2023/08/02 07:00	20.107	达标

稀贵金属资源循环利用项目环境影响报告书

彭家	114	839	L小时	28.003	2023/07/11 21:00	28,003	达标
岩下	138	2,356	1 小时	17.637	2023/04/16 21:00	17.637	达标
猫猫冲	-1,043	2,741	1 小时	66.718	2023/02/25 02:00	66.718	达标
麻音塘	-735	-2,739	1 小时	17.094	2023/05/10 07:00	17.094	达标
羊庄	-531	-2,332	1小时	17.394	2023/05/10 07:00	17.394	达梅
菜溪村	-570	1,381	1小时	21.910	2023/07/01 20:00	21.910	达标
下廖溪	-928	-2,425	1 小时	22.932	2023/05/10 07:00	22.932	达标
后锁	785	-491	1 小时	24.407	2023/10/27 08:00	24.407	达标
湖南田	659	-2,207	1.小时	14.078	2023/12/19 09:00	14.078	达标
跳破	1,874	-486	1 小时	17.402	2023/12/04 09:00	17.402	达标
磨沟	2,587	810	1 小时	20.572	2023/02/15 08:00	20.572	达标
白岩塘	2,398	1,345	1 小时	21,556	2023/02/15 08:00	21.556	达标
岩坎上	1,183	-331	1 小时	17.488	2023/12/04 09:00	17.488	达标
分洲	1,559	-1,678	1 小时	16.718	2023/06/23 06:00	16.718	达标
田家	1,842	-2,503	1 小时	12.361	2023/06/23 06:00	12.361	达标
辽家塆	1,586	39	1.小时	16.377	2023/12/23 09:00	16,377	达标
榴树井	1,998	1,064	1 小时	22.750	2023/02/15 08:00	22.750	达标
杉木林	1,276	-765	1 小时	21.814	2023/01/23 10:00	21.814	达析
胜利村	1,595	604	1 小时	24.798	2023/03/29 07:00	24.798	达标
高弓滩	2,275	~160	I 小时	14.861	2023/12/23 09:00	14.861	达标
张家	-1,243	2,600	1 小时	140,797	2023/02/25 02:00	140,797	超标
上塵溪	-2,097	-1,243	1 小时	20.066	2023/02/25 08:00	20.066	达柯
腊岩	-2,216	-2,494	1 小时	11.908	2023/07/17 22:00	11.908	达标
中寨	-2,121	-2,706	1 小时	13.676	2023/07/17 22:00	13.676	达标
观音滩	157	-2,653	1小时	15.734	2023/08/02 07:00	15,734	达柯
荒田	-2,749	1,272	1 小时	85.374	2023/12/30 03:00	85.374	达桥
凡溪屯	-2,482	-583	1 小时	19:858	2023/12/26 09:00	19.858	达标
土湾	-1,640	2,551	1小时	47.741	2023/02/20 02:00	47.741	达标
三脚岩	-1,876	183	1 小时	19.407	2023/08/06 20:00	19.407	达标
三寨村	-1,889	-615	1 小时	25.090	2023/12/26 09:00	25.090	达板
堰塘塆	-1,966	739	1 小时	25.128	2023/03/16 03:00	25.128	达板
白猫冲	-1,661	1,244	1 小时	33.505	2023/04/02 23:00	33.505	达标
竹山溪	-1,354	1,893	1 小时	13.854	2023/03/06 18:00	13.854	达标
白家庄	-1,088	-62	1 小时	25.725	2023/07/17 21:00	25.725	达杨
鲇鱼塘村	1,643	-2,622	1 小时	14.330	2023/12/19 09:00	14.330	达析
斜滩	1,950	-1,973	1 小时	17.026	2023/06/23 06:00	17.026	达杨
陆家塆	498	79	I小时	34.484	2023/07/04 22:00	34.484	达标
菜园	-1,031	-2,657	1 小时	22,271	2023/05/10 07:00	22.271	达标
杨柳冲	2,104	1,516	1小时	19.053	2023/12/03 08:00	19.053	达柯
蔡溪屯	504	489	1 4/10	31.607	2023/05/13 20:00	31.607	达杨
洞脑上	1,104	889	1 小时	22.469	2023/03/26 07:00	22.469	达村
赶纸山	-1,772	547	1 小时	11.788	2023/03/09 18:00	11.788	达标
井塆	-2,352	1,366	1 小时	47.984	2023/03/13 19:00	47.984	达桥
区域最大值	-300	100	1 小时	300.615	2023/11/05 06:00	300.615	超析

表 4.1-90 非正常排放状态硫化氢影响预测结果统计表

污染物	预测点	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
75 06770	TAMAND YES	m	m	时段	(µg/m³)	ED SANT Ind	%	情况
	田新岩	2,809	2,314	L小时	0.900	2023/07/08 00:00	8.998	达标
	蒋家塆	-31	-2,041	1 小时	0.927	2023/07/27 23:00	9.274	达标
	彭家	114	839	1 小时	1.859	2023/07/14 06:00	18.590	达标
LION	岩下	138	2,356	1 小时	1.331	2023/06/18 22:00	13.313	达标
H2S	猫猫冲	-1,043	2,741	1小时	6.239	2023/02/24 02:00	62.387	达标
	麻音塘	-735	-2,739	1 小时	0.888	2023/06/01 22:00	8.884	达标
	羊圧	-531	-2,332	I 小时	0.961	2023/09/03 21:00	9.609	达标
	菜溪村	-570	1,381	1 小时	1.605	2023/01/12 17:00	16.047	达标

稀贵金属资源循环利用项目环境影响报告书

下廖溪	-928	-2,425	L小时	1.026	2023/08/26 06:00	10.262	达板
后锁	785	+491	1 小时	1.153	2023/01/23 10:00	11.531	达标
湖南田	659	-2,207	1 小时	0.685	2023/09/07 18:00	6.847	达标
跳戦	1,874	-486	1 小时	0.891	2023/08/27 01:00	8,912	达标
磨沟	2,587	810	1小时	1.015	2023/06/29 21:00	10.150	达柯
白岩塘	2,398	1,345	1 小时	1.027	2023/07/28 21:00	10.268	达杨
岩坎上	1,183	-331	1 小时	1.279	2023/08/27 01:00	12,786	达村
分洲	1,559	-1,678	1小时	0.731	2023/06/23 06:00	7.308	达村
田家	1,842	-2,503	1 小时	0.502	2023/08/12 19:00	5.016	达板
辽家塆	1,586	39	1 小时	1.075	2023/07/09 22:00	10.748	达杭
榴树井	1,998	1,064	1小时	1.115	2023/07/02 23:00	11.149	达板
杉木林	1,276	-765	1 小时	1.181	2023/01/23 10:00	11,811	达板
胜利村	1,595	604	1 小时	1.124	2023/07/02 01:00	11.243	达杭
高弓滩	2,275	-160	1 小时	1.020	2023/08/15 22:00	10.199	达杭
张家	-1,243	2,600	1 小时	4.572	2023/02/20 02:00	45.721	达机
上廖溪	-2,097	-1,243	1.小时	0.980	2023/09/28 21:00	9.799	达机
腊岩	-2,216	-2,494	1 小时	0.984	2023/08/08 21:00	9.840	达机
中寨	-2,121	-2,706	1 小时	1.074	2023/06/20 20:00	10.740	达标
观音滩	157	-2,653	1 小时	0.989	2023/07/27 23:00	9.891	达杭
荒田	-2,749	1,272	1 小时	4.119	2023/01/05 17:00	41.193	达核
凡溪屯	-2,482	-583	1 小时	1,243	2023/08/09 19:00	12.432	达机
土湾	-1,640	2,551	1 小时	0.247	2023/04/17 19:00	2.473	达核
三脚岩	-1,876	183	1 小时	2.172	2023/08/06 20:00	21,719	达核
三寨村	-1,889	-615	1 小时	1.286	2023/12/08 19:00	12,864	达标
堰塘垮	-1.966	739	1小时	4.270	2023/12/30 03:00	42.697	达林
白猫冲	-1,661	1,244	1 小时	4.118	2023/10/24 23:00	41.180	达标
竹山溪	-1,354	1,893	1 小时	1.642	2023/05/25 23:00	16.416	达杭
白家庄	-1,088	-62	1 小时	1.540	2023/08/07 21:00	15,397	达村
鲇鱼塘村	1,643	-2,622	1 小时	0.465	2023/12/19 09:00	4.650	达核
斜滩	1,950	-1,973	1 小时	0.693	2023/06/23 06:00	6.931	达标
陆家塆	498	79	1 小时	2.054	2023/06/18 20:00	20.542	达板
菜园	-1,031	-2,657	1 小时	1.030	2023/08/26 06:00	10.299	达板
杨柳冲	2,104	1,516	1 小时	1.018	2023/07/20 20:00	10,178	达核
蔡溪屯	504	489	1 小时	2.162	2023/06/09 21:00	21.617	达标
洞脑上	1,104	889	1 小时	1.291	2023/03/26 07:00	12.914	达林
赶纸山	-1,772	547	1 小时	1.375	2023/04/02 22:00	13.747	达核
井塆	-2,352	1,366	I小时	4.762	2023/10/09 20:00	47.621	达杉
区域最大值	-200	100	1 小时	29.272	2023/04/02 23:00	292.719	超杭

表 4.1-91 非正常排放状态五氧化二磷影响预测结果统计表

SCI-STU Min	Zasale Jr	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达标
污染物	预测点	m	m	时段	(µg/m³)	田 规 时 间	%	情况
	田新岩	2,809	2,314	1 小时	0.077	2023/03/26 07:00	0.051	达标
	蒋家塆	-31	-2,041	1小时	0.084	2023/08/02 07:00	0.056	达标
	彭家	114	839	1小时	0.165	2023/06/19 06:00	0.110	达标
	岩下	138	2,356	1小时	0.080	2023/06/28 20:00	0.053	达标
	猫猫冲	-1,043	2,741	1小时	0,522	2023/02/25 02:00	0.348	达标
	麻音塘	+735	-2,739	1 小时	0.076	2023/05/10 07:00	0.050	达标
Tibit IV - TW	羊庄	-531	-2,332	1小时	0.080	2023/05/10 07:00	0.053	达标
五氧化二磷	菜溪村	-570	1,381	1 列附	0.097	2023/05/28 00:00	0.065	达标
	下廖溪	-928	-2,425	1 小时	0.101	2023/05/10 07:00	0.068	达标
	后领	785	-491	1小时	0.133	2023/01/23 10:00	0.089	达标
	湖南田	659	-2,207	1小时	0.062	2023/09/22 05:00	0.041	达标
	跳政	1,874	-486	1 小时	0.085	2023/07/11 06:00	0.056	达标
	磨沟	2,587	810	1 小时	0.099	2023/02/15 08:00	0.066	达标
	白岩塘	2,398	1,345	1 小时	0.122	2023/02/15 08:00	0.081	达标

稀贵金属资源循环利用项目环境影响报告书

岩坎上	1,183	-331	1 小时	0.131	2023/07/11 06:00	0.087	达标
分洲	1,559	-1,678	1 小时	0.087	2023/06/23 06:00	0.058	达标
田家	1,842	-2,503	1 小时	0.056	2023/06/23 06:00	0.037	达标
辽家塆	1,586	39	1 小时	0.083	2023/02/05 09:00	0.055	达标
榴树井	1,998	1,064	1 小时	0.137	2023/02/15 08:00	0.091	达标
杉木林	1,276	-765	1 小时	0.139	2023/01/23 10:00	0,093	达标
- 胜利村	1,595	604	1 小时	0.136	2023/02/15 08:00	0.090	达标
高弓滩	2,275	-160	1 小时	0.067	2023/06/13 03:00	0.045	达标
张家	-1,243	2,600	1 小时	0.689	2023/02/25 02:00	0.460	达标
上廖溪	-2,097	-1,243	1小时	0.095	2023/02/25 08:00	0,063	达标
腊岩	-2,216	-2,494	1 小时	0.071	2023/02/18 17:00	0.047	达标
中寨	-2,121	-2,706	1 小时	0.069	2023/10/02 05:00	0,046	达标
观音滩	157	-2,653	1小时	0.068	2023/07/28 20:00	0.045	达标
荒田	-2,749	1,272	1 小时	0.699	2023/12/30 03:00	0.466	达标
凡溪屯	-2,482	-583	1 小时	0.100	2023/12/26 09:00	0.067	达标
土湾	-1,640	2,551	1 小时	0.077	2023/05/20 04:00	0.051	达标
三脚岩	-1,876	183	1小时	0.125	2023/10/21 18:00	0.083	达标
三寨村	-1,889	-615	1 小时	0.123	2023/12/26 09:00	0.082	达标
堰塘塆	-1,966	739	1小时	0.153	2023/03/16 03:00	0,102	达标
白猫冲	-1,661	1,244	1 小时	0.240	2023/04/02 23:00	0.160	达标
竹山溪	-1,354	1,893	1小时	0.072	2023/06/18 03:00	0.048	达标
白家庄	-1,088	-62	1 小时	0.153	2023/12/26 09:00	0.102	达标
鲇鱼塘村	1,643	-2,622	1 4 4 1	0.061	2023/12/05 08:00	0,041	达标
斜滩	1,950	-1,973	1 小时	0.086	2023/06/23 06:00	0.057	达标
陆家垮	498	79	1 小时	0.177	2023/06/30 06:00	0,118	达标
菜园	-1,031	-2,657	1 小时	0.098	2023/05/10 07:00	0.065	达标
杨柳冲	2,104	1,516	1 小时	0.113	2023/12/03 08:00	0.075	达标
蔡溪屯	504	489	1.小时	0.190	2023/10/14 07:00	0.126	达标
洞脑上	1,104	889	1 小时	0.153	2023/03/26 07:00	0.102	达标
赶纸山	-1,772	547	1 小时	0.056	2023/10/27 22:00	0.037	达标
井塆	-2,352	1,366	1 小时	0.390	2023/11/05 06:00	0.260	达标
区域最大值	-300	100	1 小时	4.383	2023/09/18 21:00	2.922	达标

表 4.1-92 非正常排放状态氨气影响预测结果统计表

se itu dhe	255 SML de	X/	Y/	平均	最大贡献值/	का मतान है कि	占标率/	达标
污染物	预测点	m	m	时段	(μg/m³)	出现时间	14.595 20.107 28.003 17.637 66.718 17.094 17.394 21.910 22.932 24.407 14.078 17.402 20.572 21.556 17.488 16.718 12.361 16.377	情况
	田新岩	2,809	2,314	1 小时	14.595	2023/03/26 07:00	14.595	达标
	蒋家塆	-31	-2,041	1 小时	20.107	2023/08/02 07:00	20.107	达标
	彭家	114	839	1 小时	28.003	2023/07/11.21:00	28.003	达梅
	岩下	138	2,356	1小时	17.637	2023/04/16 21:00	17.637	达标
	猫猫冲	-1,043	2,741	1 小时	66.718	2023/02/25 02:00	66.718	达析
	麻音塘	-735	-2,739	1 小时	17.094	2023/05/10 07:00	17.094	达标
	羊庄	-531	-2,332	1 小时	17.394	2023/05/10 07:00	17.394	达板
	菜溪村	-570	1,381	1小时	21.910	2023/07/01 20:00	21.910	达板
	下廖溪	-928	-2,425	1 小时	22.932	2023/05/10 07:00	22.932	达杨
	后锁	785	-491	1 小时	24.407	2023/10/27 08:00	24.407	达板
JAC.	湖南田	659	-2,207	1 小时	14.078	2023/12/19 09:00	14.078	达标
	跳破	1,874	-486	1 小时	17.402	2023/12/04 09:00	17,402	达柯
	磨沟	2,587	810	1 小时	20.572	2023/02/15 08:00	20.572	达杨
	白岩塘	2,398	1,345	I小时	21.556	2023/02/15 08:00	21.556	达析
	岩坎上	1,183	-331	1 小时	17.488	2023/12/04 09:00	17.488	达标
	分洲	1,559	-1,678	I小时	16.718	2023/06/23 06:00	16.718	达标
	田家	1,842	-2,503	1小时	12.361	2023/06/23 06:00	12,361	达标
	辽家塆	1,586	39	1 小时	16.377	2023/12/23 09:00	16.377	达特
	榴树井	1,998	1,064	1 小时	22.750	2023/02/15 08:00	22.750	达梅
	杉木林	1,276	-765	1 小时	21.814	2023/01/23 10:00	21.814	达椅
	胜利村	1,595	604	1小时	24.798	2023/03/29 07:00	24.798	达标

稀贵金属资源循环利用项目环境影响报告书

of Time	2.222	1 4126	i das	11.55	1	11000	71. ke
高弓滩	2,275	-160	L小时	14.861	2023/12/23 09:00	14.861	达标
张家	-1,243	2,600	1 小时	140,797	2023/02/25 02:00	140.797	超标
上慶選	-2,097	-1,243	I小时	20.066	2023/02/25 08:00	20.066	达标
腊岩	-2,216	-2,494	1 小时	11,908	2023/07/17 22:00	11.908	达标
中赛	-2,121	-2,706	1 小时	13.676	2023/07/17 22:00	13.676	达标
观音滩	157	-2,653	1 小时	15.734	2023/08/02 07:00	15.734	达标
荒田	-2,749	1,272	1 小时	85.374	2023/12/30 03:00	85.374	达标
凡溪屯	-2,482	-583	1 小时	19.858	2023/12/26 09:00	19.858	达标
土湾	-1,640	2,551	1.小时	47.741	2023/02/20 02:00	47.741	达标
三脚岩	-1,876	183	1 小时	19.407	2023/08/06 20:00	19.407	达标
三寨村	-1,889	-615	1 小时	25,090	2023/12/26 09:00	25.090	达标
堰塘塆	-1,966	739	1 小时	25.128	2023/03/16 03:00	25.128	达标
白猫冲	-1,661	1,244	1 小时	33.505	2023/04/02.23:00	33.505	达标
竹山渓	-1,354	1,893	1 小时	13.854	2023/03/06 18:00	13.854	达标
白家庄	-1,088	-62	1 小时	25.725	2023/07/17 21:00	25.725	达标
鲇鱼塘村	1,643	-2,622	1.小时	14,330	2023/12/19 09:00	14,330	达标
斜滩	1,950	-1,973	1 小时	17.026	2023/06/23 06:00	17.026	达标
陆家塆	498	79	1 小时	34,484	2023/07/04 22:00	34.484	达标
菜园	-1,031	-2,657	1 小时	22,271	2023/05/10 07:00	22.271	达标
杨柳冲	2,104	1,516	1 小时	19.053	2023/12/03 08:00	19.053	达标
蔡溪屯	504	489	1 小时	31.607	2023/05/13 20:00	31.607	达杨
洞脑上	1,104	889	1 小时	22.469	2023/03/26 07:00	22.469	达标
赶纸山	-1,772	547	1 小时	11.788	2023/03/09 18:00	11.788	达标
井塆	-2,352	1,366	1小时	47.984	2023/03/13 19:00	47.984	达标
区域最大值	-300	100	上小时	300,615	2023/11/05 06:00	300,615	超析

表 4.1-93 非正常排放状态 NMHC 影响预测结果统计表

污染物	0535 AND . Ar	X/	Y/	平均	最大贡献值/	112 Still 114 (51	占标率/	达标
万米初	预测点	m	m	时段	(µg/m³)	出现时间	%	情况
	田新岩	2,809	2,314	1 小时	2,509	2023/03/26 07:00	0.125	达标
	蒋家塆	-31	-2,041	1 小时	3.120	2023/07/28 20:00	0.156	达标
	彭家	114	839	L小时	5.999	2023/06/19 06:00	0.300	达标
	岩下	138	2,356	1 小时	2.861	2023/06/28 20:00	0.143	达标
	猫猫冲	-1,043	2,741	1 小时	14.217	2023/02/24 02:00	0.711	达标
	麻音塘	-735	-2,739	1 小时	2.549	2023/05/10 07:00	0.127	达标
	羊庄	-531	-2,332	1小时	2.824	2023/08/28 04:00	0.141	达标
	菜溪村	-570	1,381	1 小时	3.616	2023/05/28 00:00	0.181	达标
	下廖溪	-928	-2,425	1 小时	3.553	2023/05/10 07:00	0.178	达标
	后锁	785	-491	1 小时	4.509	2023/01/23 10:00	0.225	达标
	湖南田	659	-2,207	1 小时	2.475	2023/05/11 06:00	0.124	达标
	跳破	1,874	-486	1小时	3.053	2023/07/11 06:00	0.153	达标
	磨沟	2,587	810	1 小时	3.556	2023/02/15 08:00	0.178	达标
NMHC	白岩塘	2,398	1,345	1小时	3.952	2023/12/03 08:00	0.198	达标
	岩坎上	1,183	-331	1 小时	4.760	2023/07/11 06:00	0.238	达标
	分洲	1,559	-1,678	1 小时	3.395	2023/06/23 06:00	0.170	达标
	田家	1,842	-2,503	1 小时	2.272	2023/06/23 06:00	0.114	达标
	辽家塆	1,586	39	1.小时	3.402	2023/02/05 09:00	0.170	达标
	榴树井	1,998	1,064	1 小时	4.094	2023/12/03 08:00	0.205	达标
	杉木林	1,276	-765	T小时	4.944	2023/01/23 10:00	0.247	达标
	胜利村	1,595	604	1 小时	4.708	2023/02/15 08:00	0.235	达标
	高弓滩	2,275	-160	1 小时	2,737	2023/07/09 22:00	0,137	达标
	张家	-1,243	2,600	1 小时	28.418	2023/02/25 02:00	1.421	达标
	上塵溪	-2,097	-1,243	1 小时	3.363	2023/02/25 08:00	0.168	达标
	腊岩	-2,216	-2,494	1 小时	2.635	2023/02/18 17:00	0.132	达标
	中寨	-2,121	-2,706	I小时	2.636	2023/10/02 05:00	0.132	达标
	观音滩	157	-2,653	1 小时	2.582	2023/07/28 20:00	0.129	达标

稀贵金属资源循环利用项目环境影响报告书

荒田	-2,749	1,272	L小时	20.692	2023/10/31 19:00	1.035	达标
凡溪屯	-2,482	-583	1 小时	3.271	2023/12/26 09:00	0.164	达标
上湾	-1,640	2,551	1 小时	2.066	2023/05/20 04:00	0.103	达标
三脚岩	-1,876	183	1 小时	4.514	2023/08/06 20:00	0.226	达标
三寨村	-1,889	-615	1 小时	4.263	2023/12/26 09:00	0.213	达标
堰塘塆	-1,966	739	1 小时	4.090	2023/03/16 03:00	0.205	达标
白猫冲	-1,661	1,244	1 小时	4.837	2023/03/06 21:00	0.242	达标
竹山溪	-1,354	1,893	1小时	2.616	2023/06/18 03:00	0.131	达标
白家庄	-1,088	-62	1.小时	4.511	2023/10/13 07:00	0.226	达标
鲇鱼塘村	1,643	-2,622	1 小时	1.845	2023/12/19 09:00	0.092	达标
斜滩	1,950	-1,973	1 小时	3.204	2023/06/23 06:00	0.160	达标
陆家塆	498	79	1 小时	5.367	2023/04/07 07:00	0.268	达标
菜园	-1,031	-2,657	1 小时	3.405	2023/05/10 07:00	0.170	达标
杨柳冲	2,104	1,516	1 小时	3.586	2023/12/03 08:00	0.179	达标
蔡溪屯	504	489	1 小时	5.568	2023/05/19 06:00	0.278	达标
洞脑上	1,104	889	1.小时	5.254	2023/03/26 07:00	0.263	达标
赶纸山	-1,772	547	1 小时	3.118	2023/10/27 22:00	0.156	达标
井塆	-2,352	1,366	1 小时	12.045	2023/03/13 19:00	0.602	达标
区域最大值	-300	100	1 小时	80.419	2023/05/25 23:00	4.021	达标

表 4.1-94 非正常排放状态甲醛影响预测结果统计表

污染物	预测点	X/	Y/	平均	最大页献值/	出现时间	占标率/	达标
75条物	顶柳点	m	m	时段	(µg/m³)	四级时间	%	情况
	田新岩	2,809	2,314	1 小时	0.035	2023/06/11 23:00	0.071	达杨
	蒋家塆	-31	-2,041	1 小时	0.045	2023/07/28 20:00	0.089	达村
	彭家	114	839	1 小时	0.093	2023/07/14 06:00	0.185	达村
	岩下	138	2,356	1 小时	0.037	2023/07/14 06:00	0.074	达板
	猫猫冲	-1,043	2,741	1 小时	0.138	2023/08/22 06:00	0.276	达杭
	麻音塘	-735	-2,739	1 小时	0.036	2023/05/24 22:00	0.071	达板
	辛庄	-531	-2,332	1小时	0.040	2023/08/28 04:00	0.080	达标
	菜溪村	-570	1,381	1 小时	0.056	2023/07/01 21:00	0.112	达专
	下廖溪	-928	-2,425	L小时	0.044	2023/05/10 07:00	0.087	达林
	后锁	785	+491	1 小时	0.071	2023/07/11 06:00	0.141	达杉
	湖南田	659	-2,207	1 小时	0.040	2023/05/11 06:00	0.080	达杉
	跳破	1,874	-486	1 小时	0.043	2023/08/27 01:00	0.085	达村
	磨沟	2,587	810	1小时	0.047	2023/02/15 08:00	0.094	达林
	白岩塘	2,398	1,345	1 小时	0.052	2023/12/03 08:00	0.103	达林
	岩坎上	1,183	-331	I 小时	0.053	2023/07/11 06:00	0.107	达林
	分洲	1,559	-1,678	1 小时	0.044	2023/06/23 06:00	0.088	达林
甲醛	田家	1,842	-2,503	1 小时	0.030	2023/06/23 06:00	0.060	达林
	辽家塆	1,586	39	1小时	0.048	2023/02/06 08:00	0.096	达机
	榴树井	1,998	1,064	1 小时	0.055	2023/12/03 08:00	0.110	达林
	杉木林	1,276	-765	1小时	0.067	2023/01/23 10:00	0.133	达村
	胜利村	1,595	604	1 小时	0.066	2023/02/15 08:00	0.133	达林
	高弓滩	2,275	-160	1 小时	0.037	2023/07/09 22:00	0.075	达村
	张家	-1,243	2,600	1 小时	0.420	2023/02/25 02:00	0.839	达标
	上廖溪	-2,097	-1,243	1.小时	0.044	2023/02/25 08:00	0.088	达机
	腊岩	-2,216	-2,494	1 小时	0.037	2023/02/18 17:00	0.075	达书
	中寨	-2,121	-2,706	T小时	0.039	2023/06/20 20:00	0.079	达村
	观音滩	157	-2,653	1 小时	0.033	2023/10/26 06:00	0.067	达杉
	荒田	-2,749	1,272	1 小时	0.232	2023/10/31 19:00	0.465	达杉
	凡溪屯	-2,482	-583	1 小时	0.048	2023/04/01 19:00	0.096	达林
	土湾	-1,640	2,551	1 小时	0.022	2023/05/20 04:00	0.045	达杉
	三脚岩	-1,876	183	1 小时	0.045	2023/08/16 21:00	0.090	达核
	三寨村	-1,889	-615	I小时	0.056	2023/12/26 09:00	0.111	达核
	堰塘塆	-1,966	739	1 小时	0.042	2023/10/27 22:00	0.085	达核

白猫冲	-1,661	1,244	L小时	0.082	2023/05/28 19:00	0.163	达标
竹山渓	-1,354	1,893	1 小时	0.042	2023/03/07 18:00	0.085	达标
白家庄	-1,088	-62	1 小时	0.062	2023/10/13 07:00	0.124	达标
鲇鱼塘村	1,643	-2,622	1 小时	0.024	2023/06/23 06:00	0,047	达标
斜滩	1,950	-1,973	1 小时	0.040	2023/06/23 06:00	0.081	达标
陆家塆	498	79	1 4/10	0.088	2023/10/13 17:00	0.176	达标
菜园	-1,031	-2,657	1 小时	0.042	2023/05/10 07:00	0.083	达标
杨柳冲	2,104	1,516	1 小时	0.046	2023/12/03 08:00	0.093	达标
蔡溪屯	504	489	1.小时	0.087	2023/03/26 07:00	0.173	达标
洞脑上	1,104	889	1 小时	0.069	2023/03/26 07:00	0.139	达标
赶纸山	-1,772	547	1 小时	0.050	2023/10/27.22:00	0.101	达标
井塆	-2,352	1,366	1 小时	0.086	2023/03/13 19:00	0.172	达标
区域最大值	-300	100	1 小时	1.949	2023/05/25 23:00	3.899	达标

表 4.1-95 非正常排放状态二噁英影响预测结果统计表

污染物	预测点 -	X/	Y/	平均	最大贡献值/	出现时间	占标率/	达板
(5)米利	19000175	m	m	时段	(μg/m³)	HESTER (ed.	1/0	情况
	田新岩	2,809	2,314	1小时	0.000000019586	2023/02/01 08:00	0.544	达标
	蒋家塆	-31	-2,041	1小时	0.000000020543	2023/07/28 20:00	0.571	达板
	彭家	114	839	1 小时	0.000000048701	2023/06/19 06:00	1,353	达核
	岩下	138	2,356	L小时	0.000000021582	2023/06/28 20:00	0.600	达标
	猫猫冲	-1,043	2,741	1 小时	0,000000142865	2023/02/25 02:00	3,968	达杉
	麻音塘	-735	-2,739	1 小时	0.000000018223	2023/05/24 22:00	0,506	达杉
	羊庄	-531	-2,332	1 小时	0.000000021454	2023/01/27 17:00	0,596	达机
	菜溪村	-570	1,381	1 小时	0.000000027197	2023/05/28 00:00	0.755	达林
	下廖溪	-928	-2,425	1 小时	0.000000024777	2023/05/10 07:00	0.688	达林
	后锁	785	-491	1.小时	0.000000038493	2023/01/23 10:00	1.069	达林
	湖南田	659	-2,207	1 小时	0.000000017346	2023/09/22 05:00	0.482	达林
	跳破	1,874	-486	f 小时	0.000000023889	2023/07/11 06:00	0.664	达林
	磨沟	2,587	810	1 小时	0.000000024535	2023/02/05 09:00	0.682	达板
	白岩塘	2,398	1,345	13/10	0.000000030728	2023/02/15 08:00	0.854	达杉
	岩坎上	1,183	-331	1 小时	0.000000038303	2023/07/11 06:00	1.064	达
	分洲	1,559	-1,678	1 小时	0.000000022495	2023/06/23 06:00	0.625	送枝
	田家	1,842	-2,503	1 小时	0.000000014136	2023/06/23 06:00	0,393	达林
	辽家塆	1,586	39	1.小时	0.000000024157	2023/07/09 22:00	0.671	达核
	榴树井	1,998	1,064	1小时	0.000000035261	2023/02/15 08:00	0.979	达林
- 噁英类	杉木林	1,276	-765	1 小时	0.000000037308	2023/01/23 10:00	1,036	达林
	胜利村	1,595	604	1 小时	0.000000036381	2023/02/15 08:00	1.011	达林
	高弓滩	2,275	-160	1 小时	0.000000019474	2023/06/13 03:00	0,541	达林
	张家	-1,243	2,600	1 小时	0.000000187799	2023/02/25 02:00	5,217	达杉
	上廖溪	-2,097	-1,243	1小时	0.000000023724	2023/02/25 08:00	0.659	达机
	腊岩	-2,216	-2,494	1 小时	0.000000020553	2023/02/18 17:00	0.571	达林
	中賽	-2,121	-2,706	1 3/41	0.000000019294	2023/11/08 03:00	0.536	达林
	观音滩	157	-2,653	1 小时	0.000000019135	2023/10/26 06:00	0.532	达林
	荒田	-2,749	1,272	1 小时	0.000000193352	2023/12/30 03:00	5.371	透椒
	凡溪屯	-2,482	-583	1 小时	0.000000025137	2023/12/26 09:00	0.698	达棒
	土湾	-1,640	2,551	1小时	0.000000015199	2023/05/20 04:00	0.422	达杨
	三脚岩	-1,876	183	1 小时	0.000000033974	2023/08/06 20:00	0.944	达
	三寨村	-1,889	-615	1 小时	0.000000030880	2023/12/26 09:00	0,858	达机
	堰塘塆	-1,966	739	1小时	0.000000041271	2023/03/16 03:00	1.146	达标
	白猫冲	-1,661	1,244	1小时	0.0000000061121	2023/04/02 23:00	L698	达标
	竹山溪	-1,354	1,893	1小时	0.000000020502	2023/06/18 03:00	0.569	送板
	白家庄	-1,088	-62	1小时	0.000000039684	2023/12/26 09:00	1.102	达标
	鲇鱼塘村	1,643	-2,622	1 小时	0.000000015825	2023/12/05 08:00	0,440	达标
	斜滩	1,950	-1,973	1 小时	0.000000021729	2023/06/23 06:00	0.604	达粉
	陆家塆	498	79	1 小时	0.000000051331	2023/06/30 06:00	1,426	达村

稀贵金属资源循环利用项目环境影响报告书

菜园	-1,031	-2,657	1小时	0.000000023881	2023/05/10 07:00	0.663	达标
杨柳冲	2,104	1,516	1小时	0.000000029618	2023/12/03 08:00	0.823	达标
蔡溪屯	504	489	1 小时	0.000000055976	2023/10/14 07:00	1.555	达标
洞脑上	1,104	889	1小时	0.000000041753	2023/03/26 07:00	1.160	达标
赶纸山	-1,772	547	1小时	0.000000015714	2023/10/27 22:00	0.436	达标
井塆	-2,352	1,366	1小时	0.000000107158	2023/11/05 06:00	2,977	达标
区域最大值	-300	100	1小时	0.000001239615	2023/09/18 21:00	34.434	达标

从表4.1-83~表4.1-95可知,项目完全投产后,出现非正常排放情况时,SO2、NO2、五氧化二磷、氨气、甲醛、非甲烷总烃、二噁英贡献浓度最大值和各环境敏感点贡献值范围均未出现超标; PM₁₀、氟化物、硫酸雾、氯气、H₂S、氯化氢贡献浓度最大值均出现超标,最大超标倍数分别为2.04倍、0.43倍、0.13倍、2.01倍、1.93倍、19.56倍; PM₁₀、氟化物、硫酸雾、H₂S 在敏感点处贡献值浓度未超标; 氯化氢贡献值浓度在彭家、猫猫冲、榴树井、杉木林、胜利村、张家、荒田、堰塘塆、白猫冲、白家庄、陆家塆、蔡溪屯、洞脑上、井塆均超标; 氯气贡献值浓度在张家出现超标。总体来说,非正常工况状况下,非正常排放对保护目标处的影响较大,为进一步减小对周边环境空气的影响,应避免非常排放情况出现,必须采取定期检查生产设施及废气处理设施,保证环保设施的正常运行。

4.1.3.12 大气环境防护距离

本评价采用《环境影响评价技术导则大气环境》(HJ2.2-2018)中推荐的大气环境防护距离模式计算大气环境防护距离,根据要求,本项目为新建项目,大气防护距离污染源主要为新增污染源。计算大气防护距离污染源源强为有组织和无组织排放源。预测范围为 2000m×2000m 的矩形范围,预测范围内的网格点精度为 50m,根据结果显示,预测范围内均没有超标点,无大气环境防护区域。

4.1.3.13 污染物排放量核算

(1) 有组织排放量核算

本项目有组织排放量核算见表 4.1-96。

表 4.1-96 大气污染物有组织排放量核算表

序号	排放口 编号	污染物	核算排放浓度(mg/m³)	核算排放速率(kg/h)	核算年排放量 (t/a)
			主要排放	i i	
1	DA001	颗粒物	3.66	0.349	1.944
-1	DA001	NOx	15.29	1.461	7.11

稀贵金属资源循环利用项目环境影响报告书

序号	排放口 编号	污染物	核算排放浓度 (mg/m³)	核算排放速率 (kg/h)	核算年排放量 (t/a)
		SO ₂	7.92	0.757	3.739
		五氧化二磷	0.0017	0.00016	0.001
		氟化物	0.22	0.021	0.02
		砷 (As)	0.02	0.002	0.010
		镍 (Ni)	0.001	0.00007	0.0004
		钴 (Co)	0.0002	0.00001	0.00007
		铜 (Cu)	0.006	0.0005	0.0026
		锰 (Mn)	0.003	0.00025	
		铅 (Pb)	0.11	0.011	
		锑 (Sb)	0.007	0.0007	
		锡 (Sn)	0.007	0.0007	
		镉 (Cd)	0.000004	0.0000004	
		铬 (Cr)	0.0006	0.00006	
		硫酸雾	0.36	0.034	
	-	HC1	0.23	0.022	
		颗粒物	20.00	0.114	
		NOx	200.01	1.136	
		SO ₂	136.48	0.775	2.145
		CO	60.28	0.342	1.312
		HCl	41.68	0.237	0.424
2	DA004	非甲烷总烃	1.03	0.006	0.013
_		铬 (Cr)	0,0001	0.000001	0.000005
		铅 (Pb)	0.01	0.00008	0.000004
		二噁英	0.34ngTEQ/Nm3	1.907 µ g/h	1.312 0.424 0.013 0.000005 0.000004 9.872mg/a 0.004 0.012 2.475 12.426 5.884 0.013 0.024
		氟化物	0.0004	0.002	
		五氧化二磷	0.0018	0.010	0.001 0.002 0.010 0.0004 0.00007 0.0026 0.0004 0.0052 0.003 0.0034 0.000002 0.00016 0.165 0.031 0.531 5.316 2.145 1.312 0.424 0.013 0.000005 0.000004 9.872mg/a 0.004 0.012 2.475 12.426 5.884 0.013
颗粒物					
			NOx		
			SO ₂		
			0.013		
			0.024		
			0.010		
			镍 (Ni)		0.0004
			0.00007		
			钴 (Co) 铜 (Cu)	0.0026	
上要	排放口合				
	it		锰 (Mn) 铅 (Pb)		0.052004
			锑 (Sb)		
			锡(Sn)		5,15,15
			镉 (Cd)		
			铬 (Cr)		844161814181
			硫酸雾		
			HCI		
			CO		
			二噁英		
			非甲烷总烃 一般排放	П	7177
		颗粒物	3.82	0.732	3.514
1	DA002	硫酸雾	4.13	0.095	
	D/1002	H ₂ S	0.18	0.004	
		非甲烷总烃	0.80	0.04	
2	DA003	颗粒物	0.01	0.001	
		颗粒物	9.58	0.019	0.055
				0.019	0.055
3	DA005	NOx	145.00	0.200	(1017

序号	排放口编号	污染物	核算排放浓度 (mg/m³)	核算排放速率(kg/h)	核算年排放量 (t/a)
		Cl ₂	0.512	0.051	0.414
		HC1	1.840	0.184	1.503
		H ₂ S	0.023	0.002	0.018
		非甲烷总烃	0.294	0.029	0.233
	D. 1005	NOx	0.002	0.0002	0.002
4	DA006	二氧化氯	0.008	0.001	0.006
		硫酸雾	0.007	0.001	0.005
		NH ₃	0.664	0.066	0.526
		HF	0.0003	0.00003	0.0002
		颗粒物	0.001	0.0001	0.002
		H ₂ S	0.62	0.007	0.059
		甲醛	0.04	0.0005	0.004
5	DA007	非甲烷总烃	12.37	0.148	1.176
		氨气	11.69	0.140	1.111
		HCI	3.82	0.046	0.363
6	DA008	颗粒物	0.0003	0.00008	0.00008
		Cl ₂	0.17	0.006	0.044
7	DA009	HCI	0.68	0.022	0.175
		NOx	0.22	0.007	0.057
8	DA010	NH ₃	0.334	0.01	1.486
0		NH ₃	5.0	0.475	0.475
9	DA011	H_2S	0.1	0.0012	0.01
		硫酸雾	0.00004	0.000002	0.00001
		HC1	0.022	0.0010	0.0081
10 D		HF	0.001	0.00005	0.0004
	DA012	NOx	0.003	0.00015	0.0012
		NH ₃	0.004	0.00020	0.0016
		颗粒物	0.005	0.00022	0.0018
		铅 (Pb)	0.00007	0.00058	0.00058
1	DA013	非甲烷总烃	0.0022	0.0195	0.00001
			颗粒物		3.575
			硫酸雾		0.558
			H ₂ S		0.106
			非甲烷总烃		1.488
			NOx		0.887
én	A		SO ₂		0.069
一般	排放口合		Cl ₂		0.458
	it		HCl		2.049
			二氧化氯		0.006
			NH ₃		3.125
			HF		0.0006
			甲醛		0.004
			铅 (Pb)		0.00058
			其他排放		
1	1	1	1	1	1
其他	排放口合				
	ìt	1	1	1	1
			有组织排放	合计	
			颗粒物	- C- C-	6.050
			NOx		13.313
			5.953		
			SO ₂ 五氧化二磷		0.013
有组	织排放总		氟化物		0.015
	il		辨(As)		0.010
	_		镍 (Ni)		0.0004
			钴 (Co)		0.00007
			铜 (Cu)		0.0026

稀贵金属资源循环利用项目环境影响报告书

序号	排放口 编号	污染物	核算排放浓度 (mg/m³)	核算排放速率(kg/h)	核算年排放量 (t/a)
			锰 (Mn)		0.0004
			铅 (Pb)		0.052584
			锑 (Sb)		0.003
			锡 (Sn)		0.0034
			镉 (Cd)		0.000002
			铬 (Cr)		0.000165
			硫酸雾		0.723
			HCl		2.504
			CO		1,312
			二噁英		9.872mg/a
			二氧化氯		0.006
			非甲烷总烃		1.501
			Cl ₂		0.458
			甲醛		0.004
			NH ₃		3.125
			H ₂ S		0.106

(2) 无组织排放量核算表

无组织排放量核算见表 4.1-97。

表 4.1-97 大气污染物无组织排放量核算表

19	排放口			主面运 洗胜器	污染物排放	放标准	核算年排
序号	编号	产污环节	污染物	主要污染防治措施	标准名称	浓度限值 (mg/m³)	放量 (t/a)
	1		颗粒物		/	1	0.38
			NOx		GB16297-1996	0.12	0.022
			SO ₂		GB16297-1996	0.4	0.033
			P ₂ O ₅		GB16297-1996	0.135	0.0002
			HF		GB16297-1996	0.02	0.005
			砷 (As)		1	1	0.0026
			镍 (Ni)		GB16297-1996	0.04	0.00010
			钴 (Co)		1	1	0.000018
1	WZ1	富集车间	铜 (Cu)	加强通风	1	1	0.0007
			锰 (Mn)		GB16297-1996	0.15	0.00010
			铅 (Pb)		GB16297-1996	0.006	0.013
			锑 (Sb)		1	1	0.0009
			锡 (Sn)		GB16297-1996	0.24	0.00002
			镉 (Cd)		GB16297-1996	0.04	0.00000
			铬 (Cr)		1	1	0.00004
			HCI		GB 31573-2015	0.05	0.008
			非甲烷总烃		GB 31573-2015	4.0	0.018
			硫酸雾	加强装卸管理	GB 31573-2015	0.3	0.000293
2	WZ2	酸储罐	HCI	加强装卸管理	GB 31573-2015	0.05	0.101
	-			无组织排放总计			
				颗粒物		0.3	8
				NOx		0.0	22
				SO ₂		0.0	33
				P_2O_5		0.00	002
无组织排放总计				0.0	05		
		+		0.00	26		
				镍 (Ni)		0.000	101
				钴(Co)		0.000	018
				铜 (Cu)		0.00	07
				锰 (Mn)		0.000	108
				铅 (Pb)		0.0	13

锑 (Sb)	0.0009
锡 (Sn)	0.000023
镉 (Cd)	0.000001
铬 (Cr)	0.00004
HCI	0.109
非甲烷总烃	0.018
硫酸雾	0.018

(3) 大气污染物年排放量核算

大气污染物年排放量核算见表 4.1-98。

表 4.1-98 大气污染物年排放量核算表

序号	污染物	年排放量(t/a)
1	颗粒物	6.430
2	NOx	13.335
3	SO2	5.986
4	五氧化二磷	0.013
5	氟化物	0.030
6	砷 (As)	0.0126
7	镍(Ni)	0.000501
8	钴 (Co)	0.000088
9	铜 (Cu)	0.0033
10	锰 (Mn)	0.000508
11	铅 (Pb)	0.065584
12	锑 (Sb)	0.0039
13	锡 (Sn)	0.003423
14	镉 (Cd)	0.000003
15	铬 (Cr)	0.000205
16	硫酸雾	0.741
17	HCl	2.613
18	CO	1.312
19	二噁英	9.872mg/a
20	二氧化氯	0.006
21	非甲烷总烃	1.519
22	Cl2	0.458
23	甲醛	0.004
24	NH ₃	3.125
25	H ₂ S	0.106

(4) 非正常排放量核算

大气污染物非正常排放量核算见表 4.1-99。

表 4.1-99 污染物非正常排放核算表

			最为	大值	单次	Discount les		
污染源	非正常排放原因	污染物名称	排放浓度 (mg/ m³)	排放速率 (kg/h)	持续 时间 (h)	年发生频次(次)	应对措施	
		颗粒物	354.88	33.909				
		NOx	19.11	1.826	1			
		SO ₂	79.24	7.572				
D. 1.001	设施故障,污染	五氧化二磷	0.17	0.016			及时检修, 短时不	
DA001	物取消效率下降	氟化氢	22.31	2.132	2~4	1~2 能恢复正	能恢复正常,则停	
排气筒	到 0%	砷 (As)	2.22	0.212			产检修	
		镍 (Ni)	0.07	0.007				
		钴 (Co)	0.02	0.001				
		铜 (Cu)	0.57	0.054				

		锰(Mn)	0.26	0.025			
		铅 (Pb)	11.35	1.084			
		锑 (Sb)	0.75	0.071	1		
		锡 (Sn)	0.72	0.069			
		镉 (Cd)	0.0004	0.00004	1 1		
		铬 (Cr)	0.004	0.0004	+ 1		
				77.570	- 1		
		硫酸雾	7.20	0.688	1		
	MARIAN ALION ALION	HCI week dates	22.66	2.165	-		72 n.1.45 45 n.1.7
DA002	设施故障,污染	颗粒物	79.57	1.83			及时检修,短时不
排气筒	物取消效率下降	硫酸雾	206.63	4.753	2~4	1~2	能恢复正常,则例
10 314	到 0%	H ₂ S	17,93	0.412			产检修
DA003	设施故障,污染	非甲烷总烃	20.14	1.007			及时检修,短时不
排气筒	物取消效率下降到 0%	颗粒物	2.00	0.100	2~4	1~2	能恢复正常,则代 产检修
		颗粒物	2000.10	11.361			
		NOx	400.01	2.272	1		
		SO ₂	682.41	3.876			
		CO	60.28	0.342			
DA004	设施故障,污染	HCl	2103.57	11.948			及时检修,短时不
排气筒	物取消效率下降	非甲烷总烃	10.28	0.058	2~4	1-2	能恢复正常,则何
2-II- (10)	到 0%	铬 (Cr)	0.01	0.00008			产检修
		铅 (Pb)	0.01	0.00007			1/2
		二噁英	2.64	14.98			
		HF	39.31	0.223			
		P ₂ O ₅	8.80	0.05			
		Cl ₂	168.88	16.89			
		HCI	110.48	11.05			
		H ₂ S	0.23	0.023			
	设施故障,污染	非甲烷总烃	0.29	0.029			及时检修,短时不
DA006	物取消效率下降	NOx	0.30	0.030	2~4	1-2	能恢复正常,则何
排气筒	到 0%	二氧化氯	0.80	0.080	2~4	1-2	产检修
	±1 070	硫酸雾	0.50	0.050			/ TM F3
		NH ₃	1,32	0.132			
		HF	0.01	0.0005			
		颗粒物	0.002	0.0002			
		H ₂ S	1.23	0.015			
DA007	设施故障,污染	甲醛	2.01	0.024			及时检修,短时不
排气筒	物取消效率下降	非甲烷总烃	82.46	0.990	2~4	1~2	能恢复正常,则何
54F (1m)	到 0%	氨气	116.86	1.402			产检修
		HCI	76.45	0.917			
DA008 排气筒	设施故障,污染物取消效率下降到0%	颗粒物	0.26	0.0008	2~4	1~2	及时检修,短时才能恢复正常,则代 产检修
a littara	设施故障,污染	Cl ₂	51.70	1.680			及时检修,短时不
DA009	物取消效率下降	HCl	93.15	3.027	2~4	1~2	能恢复正常,则作
排气筒	到0%	NOx	61.03	1.984	24	1-2	产检修
	设施故障,污染	1104	51.05	1.701			及时检修,短时不
DA010 排气筒	物取消效率下降到0%	NH ₃	62.53	1.876	2~4	1~2	能恢复正常,则作
B. C. C. C.	设施故障,污染	NH ₃	25.00	0.3			及时检修,短时7
DA011 排气筒	物取消效率下降 到 0%	H ₂ S	0.10	0.0012	2~4	1~2	能恢复正常,则作 产检修
		硫酸雾	0.0004	0.00002			
		HCI	0.44	0.0205			
D. 4 4 4 4	设施故障,污染	HF	0.02	0.0010			及时检修, 短时2
DA012	物取消效率下降	NOx	0.03	0.0015	2~4	1~2	能恢复正常,则何
排气筒	到 0%	NH3	0.01	0.0003			产检修
	24070	颗粒物	0.22	0.0102			1 102-109
		铅 (Pb)	0.42	0.0193	1		

DA013 排气筒	设施故障,污染物取消效率下降到0%	非甲烷总烃	10.60	0.007	2~4	1~2	及时检修,短时不 能恢复正常,则停 产检修
--------------	-------------------	-------	-------	-------	-----	-----	-----------------------------

4.1.3.14 大气环境影响评价自查表

本项目大气环境影响评价自查情况详见表 4.1-100。

表 4.1-100 建设项目大气环境影响评价自查表

	[作内容				自引	查项目				
评价	评价等级	一級☑ 二級□						三級口		
等级 与范 围	评价范围	边长=5	0km□	边长	£ 5~50	km□		边长=5km☑		
	SO ₂ +NO _x 排 放量	≥2000	500	~2000	t/a 🗆		<500t/s	a 🗷		
评价因子	评价因子	基本污染物 (NO ₂ 、SO ₂ 、PM ₁₀ 、PM _{2.5} 、CO) 其他污染物 (硫酸雾、硫化氢、氯化氢、氯气、非甲烷 总烃、五氧化二磷、氟化物、镍、锰、甲醛、砷、铬、 二噁英)					包括二次 PM2.5□ 不包括二次 PM2.5☑			
评价标准	评价标准	国家标准区	地	方标准口		附	ķ D ⊘			
.,	环境功能区	一类	Χn		二类区	2		一类区和二	类区口	
	评价基准年					23) 年				
现状 评价	环境空气质 量现状调查 数据来源	长期例行监	測数据☑	主管部	门发布	的数据□	1	现状补充监测☑		
	现状评价		j	去标区☑				不达标区口		
污染源	调查内容	本项目非正常	本项目正常排放源□ 本项目非正常排放源☑ 拟替代的污染源☑ 现有污染源☑				污染源☑ 源		域污染 源ロ	
94.14	预测模型	AERMOD☑			000□	EDMS	/AEDT:	CALPMFF	网格 模型	其他也
	预测范围	边长≥5	0km¤	边长	边长 5~50km☑			边长=5km□		
预测因子		预测因子(PM ₁₀ 、PM ₂₅ 、NO ₂ 、SO ₂ 、CO、硫酸雾、硫化氢、氯化氢、氯气、非甲烷总烃、五氧化二磷、氟化物、镍、锰、铅、砷、甲醛、二噁英)						包括二次 PM2.5□ 不包括二次 PM2.5☑		
大气 环境	正常排放短 期浓度贡献 大气			大占标率≤100%		C 4項目最大占标率>100%口				
	正常排放年	一类区	C	san最大占标	支大占标率≤10%□			C ₅或н最大占标率>10%□		
影 预 河	均浓度贡献值	二类区	C	_{◆項目} 最大占标率≤30%☑				C *****最大占标率>30%口		
	非正常排放 lh浓度贡献 值	非正常持续II h	付长 (2)	c _{非主常} 占	c #±*占标率≤100%□			c _{非正常} 占标率>100%☑		
	保证率日平 均浓度和年 平均浓度叠 加值		C	ᇓ达标☑	»达标☑			Cam不达标口		
	区域环境质 量的整体变 化情况		J	k≤-20%□				k>-20	%□	
环境	污染源监测			2.5、NO ₂ 、SO ₂ 氢、氯气、非			织废气监 织废气监		无监测	п

稀贵金属资源循环利用项目环境影响报告书

监测 计划		烷总烃、五氧化二磷 锰、甲醛、砷、铅			
	环境质量监测	监测因子: (PM ₁₀ 、PM 硫酸雾、硫化氢、氯化 烷总烃、五氧化二磷 锰、甲醛、砷、铅	2氢、氯气、非甲 、氟化物、镍、	监测点位数 (2)	无监测口
	环境影响		可以接受口	不可以接受□	
评价	大气环境防 护距离		距()厂界最	b远()m	
结论	污染源年排 放量	SO ₂ : (5.986) t/a	NO _x : (13.335) t/a	颗粒物: (6.430) t/a	VOCs: (1.519) t/a

4.2 地表水环境影响预测与评价

4.2.1 施工期地表水环境影响分析

施工期生产废水来源于洗砂、混凝土养护和浇筑等施工环节产生的生产废水,这些废水特点是悬浮物较高,根据调查资料类比,废水中 SS 高达 3000~4000mg/L,pH 可达 11~12,应设置沉淀池(加入絮凝剂),静置 2h 以上,使废水中的悬浮物浓度低于 70mg/L 后回用于施工。部分燃油机械在维修、运行和清洗过程中,还将产生少量的含油废水,使水体中的石油类污染物浓度增高,这部分废水应通过沉淀池、隔油池处理后全部回用。

本项目不设置施工营地,施工人员为周边居民或租住于周边民房,如厕依托现有 厂区卫生间。

4.2.2 营运期地表水环境影响评价

根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)"7.1.2 一级、二级、水污染影响型三级 A 与水文要素影响型三级评价应定量预测建设项目水环境影响,水污染物影响型三级 B 评价可不进行水环境影响预测"。根据 1.5.2 节判定,本项目地表水环境影响评价工作级别为三级 B。根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)"8.1.2 一级、二级、水污染影响型三级 A 及水文要素影响型三级评价。主要评价内容包括: a) 水污染控制和水环境影响减缓措施有效性评价; b) 依托污水处理设施的环境可行性评价。

本项目地表水评价等级为三级 B, 因此, 本次地表水环境影响预测与评价内容, 主要开展环境影响减缓措施有效性进行评价和依托污水处理设施的环境可行性评价。

4.2.2.1 水污染控制和水环境影响减缓措施有效性进行评价

(1) 生活污水

本项目生活污水中含主要污染物 SS、COD、BOD5、NH3-N、TP等,经厂区化粪池处理后满足《无机化学工业污染物排放标准》(GB31573-2015)及修改单间接排放标准限值要求排入园区管网后进入大龙经济开发区工业污水处理厂进行集中处理。

本项目生活污水水质简单,无有毒有害的特征污染物,经预处理后经园区污水管 网排入大龙经济开发区工业污水处理厂处理后达标排放,故本项目不直接向地表水环 境排放污水,不会对区域地表水产生直接影响。

(2) 生产废水

本项目生产废水主要为设备地面清洁废水、吸收塔废水、失效汽车尾气催化剂生产线一段硫酸浸出液、废铂催化剂处理生产线一段硫酸浸出液、废铂催化剂处理生产线水洗液及水浸液、精炼生产线含氨废水、精炼生产线其他废水等均排入污水处理站除重、调值处理达到《无机化学工业污染物排放标准》(GB31573-2015)及其修改单表1车间排放口限值标准后经现有厂区管廊输送至中伟新材料股份有限公司生产废水处理设施处理。经污水处理站预处理后,项目生产废水污染物浓度可满足上述标准。因此,本项目生产废水排入中伟新材料股份有限公司生产废水处理设施,车间排放口排放浓度满足国家有关的水污染物排放浓度管理要求。

因此, 本项目采取的水污染控制和水环境影响减缓措施是可行的。

4.2.2.2 依托污水处理设施的环境可行性评价

- (1) 依托中伟新材料股份有限公司污水处理设施的环境可行性评价
- ①、中伟新材料股份有限公司污水处理设施简况

贵州新铂材料科技有限公司是中伟新材料股份有限公司的全资子公司,两者均坐落于大龙经开区 2 号干道与 1 号干道交汇处,中间被大龙经开区 1 号主干道(飞龙大道)隔开。中伟新材料股份有限公司建设至今分别建设了 7 个项目均已取得环评批复(黔环审(2018)10号、黔环审(2019)5号、黔环审(2019)28号、黔环审(2020)24号、铜环审(2024)19号),以上项目除铜环审

〔2024〕14号对应的项目未完成验收外,其余均已完成竣工环保验收。各项目均配建 了污水处理设施,并同步考虑了贵州中伟资源循环产业发展有限公司的废水处理。

目前中伟新材料股份有限公司污水处理设施主要为环保一车间、环保二车间、环保三车间、环保三车间、环保四车间、环保五车间、多效蒸发装置、一期预处理池、二期预处理池。贵州中伟资源循环产业发展有限公司依托的为环保三车间、环保四车间、环保五车间、依托的水处理车间处理装置情况见表 4.2-1。

水处理车间	处理装置	设计处理规模 (t/h)	处理废水来源		
	41#MVR	13	中伟循环公司废水		
环保三车间	42#MVR	33	中伟循环公司废水		
	43#MVR	35	中伟循环公司废水		
	反渗透系统	202	新材料公司自身反渗透系统洗水、三元蒸馏水浓水		
环保四车间	反渗透系统 63		新材料公司自身废水 MVR 蒸发结晶。 馏水		
	反渗透系统 165		中伟循环公司废水 MVR 蒸发结晶蒸饮		
	反渗透系统	113	水		
	11#MVR	60	新材料公司自身硫酸钠废水		
环保五车间	12#MVR	60	新材料公司自身硫酸钠废水		
环珠五年间	13#MVR	60	中伟循环公司废水		
	草酸预处理	17	新材料公司自身钠电产线废水		

表 4.2-1 依托中伟新材料股份有限公司污水处理设施装置一览表

根据表 4.2-1 可知,中伟新材料股份有限公司为贵州中伟资源循环产业发展有限公司配套水处理 MVR 装置处理规模合计为 141t/h(3384t/d),反渗透系统处理规模合计为 341t/h(8184t/d)。

②、处理规模的可行性

本项目为购置贵州中伟资源循环公司现有用地及厂房进行建设,本项目建设后贵州中伟资源循环公司将取消本项目购置用地上的部分生产线,进而造成贵州中伟资源循环公司生产废水产生量减少,根据贵州中伟资源循环公司《废旧锂电池综合回收体系建设项目(变更)环境影响报告书》,贵州中伟资源循环公司进入中伟新材料股份有限公司设计废水总量为2374.75m³/d(含未建、在建项目),本项目建设后造成贵州中伟资源循环公司生产废水产生量减少约155.19m³/d,则本项目建设后贵州中伟资源循环公司设计生产废水产生量减少约155.19m³/d,则本项目建设后贵州中伟资源循环公司设计生产废水产生量缩减至2219.56m³/d。

本项目和贵州中伟资源循环公司依托中伟新材料股份有限公司的环保三车间、环保四车间、环保五车间、多效蒸发装置,依托的装置主要为 141t/h(3384t/d)的 MVR 蒸发结晶装置,341t/h(8184t/d)的反渗透系统。本项目建成后与贵州中伟资源循环公司全厂输送到中伟新材料股份有限公司的废水量为 2357.79t/d,占依托 MVR 蒸发结晶装置的 74.45%,占依托反渗透系统设计处理规模的 30.78%。本项目依托中伟新材料股份有限公司为贵州中伟资源循环公司配套水处理装置规模完全满足贵州中伟资源循环公司和本项目的废水处理,因此,本项目依托中伟新材料股份有限公司污水处理设施是可行的。

③、处理工艺的可行性

本项目生产废水均为含高含盐废水,根据工序产生的废水主要分为纯硫酸钠废水、不含氨杂盐废水、含氨杂盐废水,因此,本项目预处理后的废水均为高含盐废水。中伟新材料股份有限公司为贵州中伟资源循环公司配套的处理工艺为"MVR 蒸发结晶+冷凝水反渗透",原理是含盐废水直接蒸发结晶,结晶体经干燥包装后外售或委外处置,冷凝水进入反渗透系统制备纯水后回用,反渗透系统浓水返回蒸发结晶系统。本项目预处理后的废水为含盐废水,与现有厂区废水性质一致,依托中伟新材料股份有限公司为贵州中伟资源循环公司配套的"MVR 蒸发结晶+冷凝水反渗透"工艺装置处理完全可行。

项目与中伟新材料股份有限公司的位置关系详见图 4.2-1。

(2) 依托大龙经开区工业污水厂的环境可行性评价

本项目生活污水接入大龙经济开发区二号路市政管网最后进入贵州大龙经济开发 区工业污水处理厂。目前大龙污水处理厂一号路、二号路市政管网及接入工业污水厂 的收集管道均已建成,可以进入大龙经济开发区工业污水处理厂。

大龙工业污水处理厂服务范围为大龙收费站以南、车坝河以西、舞阳河以北、麻音塘以东区域,污水收集区域面积约 16.45km², 舞阳河以南区域的污水进入大龙污水处理厂进行处理。大龙经济开发区工业污水处理厂总处理规模 15000m³/d, 分 2 个厂区建设(紧邻),其中厂区一设计处理规模 5000m³/d、厂区二设计处理规模 10000m³/d,。目前厂区一已建成 5000m³/d 处理规模,已建污水进水管线 3770m(自提升泵站至污水处理厂),污水尾水排水管线 509m(污水处理厂至舞阳河入河排污

口),于 2023年3月投入试运行,2024年8月完成竣工环保验收;工业污水处理厂收集处理服务范围内企业的生产废水和生活污水,污水处理工艺采用"调节池+初沉池+水解酸化+AAO+二沉池+砂滤+超滤+钠滤(中水回用)+臭氧氧化+活性炭过滤+活性炭吸附+消毒"处理工艺,尾水排放执行《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级A标准。

从瀕阳河北岸分洲泵站采用定向钻孔的方式穿越河床至瀕阳河南岸,布置 2 条管线(1用1备,压力管),管道长度约 538m;然后管道沿濒阳河南岸现状通村路敷设最终排入大龙工业污水处理厂(污水管长度 2864m,管径 DN400),其中污水管线在201省道西南侧采用定向钻穿越潕阳江小山一座,长度约 368 米,穿越管道管径DN400,重力流管道。

根据《贵州大龙经济开发区污水处理中心(一厂区)竣工环境保护验收监测报告》验收监测期间,贵州大龙经济开发区污水处理中心(大龙工业污水厂)运行负荷为 28.16%,即实际处理规模为 1408 m³/d,尚有富余的处理量。

本项目生活污水产生浓度可达到《无机化学工业污染物排放标准》(GB31573-2015)表1水污染排放限值,因此,无需采取进一步的处理工艺进行处理,经化粪池后排入大龙经济开发区二号路市政管网最后进入贵州大龙经济开发区工业污水处理厂处理,水质可满足贵州大龙经济开发区工业污水处理厂接管要求。

目前大龙经济开发区工业污水处理厂已建成投运,项目生活污水进入贵州大龙经济开发区工业污水处理厂是可行的。

结合本项目污水的水量、水质和大龙经济开发区工业污水处理厂的处理工艺、处理能力、管网建设情况可知,该污水处理厂满足接纳本项目各类废水的条件,因此,本项目的污废水进入大龙经济开发区工业污水处理厂处理的方案是可行的。

4.2.2.3 地表水环境影响评价自查表

地表水环境影响评价自查见表 4.2-2。

稀贵金属资源循环利用项目环境影响报告书表 4.2-1 地表水环境影响评价自查表

			大 11 11 11 11 11 11 11 11 11 11 11 11 11	45
影响美型 水污染影响型C3. 水支票影响型 C3. 水支票影响型 C4. 非特人性污染物口。 C4. 次立 C4. 次方 C4. 次方 C4. 次方 C4. 次方 C4. 次方 C4. 次支票影响型 C4. 非特人性污染物口。 C4. 次方 C4. 次方 C4. 次方 C4. 次方 C4. 次支票影响型 C4. 非特人性污染物口。 C4. 次方 C4. 次元 C4. 次方 C4. 次元 C4. 次方 C4. 次方 C4. 次方 C4. 次入		工作内容		自查项目
本が母優を目移		影响类型	水污染影响型乙;水文要素影响型口	
# 新帝後後の	验	水环境保护目标	饮用水水源保护区 D: 饮用水取水口 D: 涉水的自然保护区 D: 重重要水生生物的自然产卵场及案饵场、越冬场和润游通道、天然渔	要湿地口; 重点保护与珍稀水生生物的栖息地口; 汤等渔业水体口; 涉水的风景名胜区D; 其他口
 影响塩化 原統市成 ロ 同接情報 0. 1 同接情報 0. 1 非特人性污染物口 海 0. 1 通り返 0. 1 音音を 1. 1 指し 	平 語	11.45.45.72	水污染影扁型	水文要素影响型
#女性音楽物 0. 有毒有害が染物 2. 非特久性污染物 1. 本位 (本深) 0. 流速 0. 流電 1. 赤で炭 (本) 1. 直接 A C T 2. また A C T 3. また A C T 3	¥ 5	影响逐往	1 1113	口: 径流
译价等级	771	影响因子	持久性污染物 D; 有毒有害污染物 Z; 非持久性污染物D; pH 值 D; 热污染 D; 富营养化 D; 其他 D	口;水位(水深)口;流速口;流量口;其他
		-	大治染那量型	水文要素影响型
反域污染版		评价等级	二级口;	口; 二级口; 三级口
反域污染源 己雄 Gi 在建 Gi 在建 Gi 和 存代的污染源 G	-		调查项目	数据来源
2 日本		区域污染源	Z: 在建Z: 拟建 Z:	既有实测
			调查时期	数据来源
区域水资源开发利用状況 未开发 ロ: 开发量 40%以下 27。 开发量 40%以上 ロ 加売的期	8	受影响水体水环境质量	ő o	生态环境保护主管部门口; 补充监测口; 其他口
本文情勢調査	2 4	区域水资源开发利用状况	乙: 开发量 40%以上	
本文情勢调査 本水期 3. 平水期 3. 平水期 3. 平水期 3. 平水期 3. 平水期 4. 平水期 4. 本が期 4. 本が期 4. 本が期 4. 本が期 5. 平水期 5. 平水 5. 5. 5. 下 5. 5. 下 5. 5. 下 5. 5. 下 5. 5. 下 5. 5. 下 5. 5. 下 5. 5. 下 5. 5. 下 5. 5. 下 5. 5. 下 5. 5. 5. 下 5. 5.	× =		调查时期	数据来源
补充监测 上本期 Zi. 平本期 Di. 枯水期 Di. 有辐酸盐指数、石油类、阴离子表面	2	水文情势调查	冰封期口	水行政主管部门口:补充监测口;其他口
补充监测 春季 ロ: 夏季 ロ: 秋季ロ: 水季 ロ (PH 值, COD, BOD5, NH3-N, SS, BO, 高锰酸盐指数、石油类、阴离子表面			监测时期	
评价范围 河流: 长度 (5.5) km; 湖库、河口及近岸海域: 面积 (补充监测	丰水期 乙: 平水期 囗: 枯水期 凸: 冰封期口春季 凸: 夏季 ロ: 秋季ロ: 冬季 ロ	
评价因子		评价范围	库、河口及近岸海域; 面积(
河流、湖库、河口: [类 ロ:		评价因子	s, NH3-N, SS, DO, 高锰酸盐指数,	阴离子表面活性剂、TP, TN、硫酸盐、氟化物、铁、
平水期 0; 平水期 Q; 枯水期0 本土水期 0; 七水期10; 冰封期10 春季 0; 夏季 0; 秋季 0 ; 冬季 0 水季 0 ; 冬季 0 水环境边能区或水功能区、近岸海域环境功能区水质达标状况 0; 达标 Q; 不达标 0 水环境控制单元或断面水质达标状况 0; 不达标 0 水环境保护目标质量状况 2; 无达标 0 水环境保护目标质量状况 2; 无达标 0	民长河	评价标准	11类ロ; 111类ロ; 1V类ロ; V类类ロ; 第三类ロ; 第四类ロ	
水环境功能区或水功能区、近岸海域环境功能区水质达标状况 n; 达标 Q; 不达标n 水环境控制单元或断面水质达标状况n; 达标n; 不达标 n 水环境保护目标质量状况n; 达标 n; 不达标 n	- 5	评价时期	丰水期 0; 平水期 四; 枯水期0; 冰封期0 春季 0; 夏季 0; 秋季 0 ; 冬季 0	
		评价结论		达标区 区 不达标区

			4年10日本田中の1	A strike	45 Person		
		73. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	4.《注题日间19.外观水05.13. 经帐口: 其水文情势评价 口 舌水能资源)与开发利用总体状况 状况 口	为深时间、主即时间每十分在注射间形分形似化5.23。 4.25 中,不必称4.3 陈迟乃来开户4.4 水资源与开发利用程度及其水文情势评价 4.5 术域(区域)水资源(包括水能资源)与开发利用总体状况、生态流量管理要求与现状满足程度、建设项目占用水域空间的水流状况与河湖演变状况 4.	现状満足程度、	建设项目占用办	域
	預測范围	河流: 长度() km; 湖库	湖库、河口及近岸海域:	面积 () km²			
723	预测因子	()					
1000	預測时期	丰水期 口; 平水期 口; 枯水期口; 冰封期口	春季	口; 夏季口; 秋季口; 冬季口; 设计	口;设计水文条件口		
1. [2]	預測情景	建设期口,生产运行期口,服务期满后口 区(流)域环境质量改善目标要求情景口	服务期满后 正常工况D 目标要求情景D	正常工况口; 非正常工况口; 污染控制和减缓措施方案口	爰措施方案 D		
8	预测方法	数值解 D:解析解 D: 其他 D 导则推荐模式 D: 其他D	П				
	水污染控制和水环境影响减缓措 施有效性评价		X	区(流)域水环境质量改善目标口; 替	替代削减源口		
影唱即在	水环境影响评价	排放口混合区外满足水环境管理要求口水环境的用区或水功能区、近岸海域环境功能区或水功能区、近岸海域环境功 满足水环境保护目标水域水环境质量要求口水环境控制单元或断面水质达标口 满足重点水污染物排放总量控制指标要求, 满足区(流)域水环境质量改善目标要求, 满足区(流)域水环境质量改善目标要求的水文要素影响型建设项目同时应包括水文情 对于新设或调整入河(湖库、近岸海域)排	2管理要求口 近岸海域环境功能区水质达标区 水环境质量要求口 质达标口 量控制指标要求,重点行业建设习 量改善目标要求口 引时应包括水文情势变化评价、主 家、近岸海域)排放口的建设项目	排放口混合区外满足水环境管理要求n 水环境功能区或水功能区、近岸海域环境功能区水质达标区 满足水环境保护目标水域水环境质量要求n 冰环境控制单元或断面水域水环境质量要求n 满足重点水污染物排放总量控制指标要求,重点行业建设项目,主要污染物排放满足等量或减量替代要求n 满足度(流)域水环境质量改善目标要求n 水文要素影响型建设项目同时应包括水文情势变化评价、主要水文特征值影响评价、生态流量符合性评价n 对于新设或调整入河(潮库、近岸海域)排放口的建设项目,应包括排放口设置的环境合理性评价n 对于新设或调整入河(潮库、近岸海域)排放口的建设项目,应包括排放口设置的环境合理性评价n 满足生态保护红线、水环境质量底线、铬溅利用上线和环境准入清单管理要求区	滿足等量或減量 、生态流量符合 环境合理性评价	a 替代要求o r性评价o ro	
	And the second second	污染物名称		排放量/ (Va)		排放浓月	排放浓度/ (mg/L)
	污染濃排放量核算	()					
		污染源名称	排污许可证编号	污染物名称	排放量/ (t/a)	2	排放浓度/ (mg/L)
	替代源排政情况	()	()	()	~ ·		()
	生态流量确定	生态流量:一般水期() 生态水位:一般水期()) m ³ /s; 鱼类繁殖期() m; 鱼类繁殖期() m³/s; 其他 () m³/s) m; 其他 () m			
	环保措施	污水处理设施口; 水文减缓设施	·施口: 生态流量保障设施	口: 区域削减口;	依托其他工程措施 ;	其他	
7				环境质量		论	污染源
2 3		监视方式	手动	口;自动口;无监测口		手动 四:自动	口, 无监测 口
1 年 1	监测计划	监测点位		(3)		~	1)
温温		监测因子		^ ~	(总籍、总表、	总钻、总镍、总铅、总铅、总铅、总铅、总铅、	总钡、总锡、总锦、总砷、 六价铬、总银、总铬)
	污染物排放清单						
	评价结论	可以接受 乙, 不可以接受 口					
4	公、"一"为公准语 可小 "()"为内交情写面、"条注"为其他补存内交。	以内容。				

4.3 地下水环境影响预测与评价

4.3.1 区域水文地质条件

4.3.1.1 地形地貌

评价区地处云贵高原向湘西丘陵倾斜的斜坡地带,境内地形受构造、地层岩性控制,在内、外地质应力共同作用下,主要由碳酸盐岩溶蚀形成岩溶低山丘陵溶蚀地貌区,整体地势西北高东南低,地面起伏平缓,海拔320~900m。评价区西北部陈金坳高地为最高点,海拔909.8米,东南车坝河汇入舞阳河处的互溪村河畔为最低点,海拔320m,相对高差589.8m。

4.3.1.2 地质构造

评价区域大地构造位置属扬子准地台与华南褶皱带的过渡地带,区内经历武陵、雪峰、燕山等多期次构造运动,形成了以北东及北东东向断裂构造为主,以区域性施秉—玉屏北东东向深断裂与北东向铜仁—玉屏深大断裂为主干断裂的基本构造格架。主要褶皱有长冲向斜。主要断层有亚鱼场断层(F1)、田坪断层(F2)、高楼坪断层(F3)、铜仁断层(F4)。褶皱受断层构造控制,其展布特征与构造线方向一致。亚鱼场断层(F1)、田坪断层(F2)、高楼坪断层(F3)、铜仁断层(F4)走向为40—45°,延伸长大于30km,其中亚鱼场断层(F1)两盘岩层多为寒武系地层,形成宽几百至上千米的破碎带和硅化蚀变,次级断裂较发育,局部有石英脉充填,见图4.4-2。

(1) 褶皱

长冲向斜:轴向北东向,长大于 20km,核部地层为奥陶系大湾组地层,两翼为 奥陶系桐梓组、红花园组~寒武系追屯组地层,北西翼岩层倾角 10°~40°,南东翼岩 层倾角 10°~20°。位于项目北西侧 7.88km。

(2) 断层

亚鱼场断层:断层走向北东向,断面倾向南东,倾角70°左右。断层规模巨大, 全长30km以上,位于项目北西侧,为一北西盘上升,南东盘下降的正断层,沿断层 两侧岩石破碎,裂隙宽度约 300m,溶蚀裂隙发育。断层发育在寒武系地层中,岩性以白云岩、泥质白云岩为主。

田坪断层: 位于项目南东向 0.54km, 杨柳冲至后锁一线, 图幅内长约 5.5km, 走向为北东—南西向, 断层面倾向为 135°左右, 倾角 70°左右, 为一高角度正断层。断层破碎带宽 100~200m, 断层发育在寒武系地层中, 岩性以粗晶白云岩为主。

高楼坪断层:位于项目南东向 2.2km,磨沟冲至互溪一线,图幅内长约 2.2km,走向为北东—南西向,断层面倾向为 135°左右,倾角 70°左右,为一高角度正断层。断层破碎带宽 100~200m,断层发育在寒武系地层中,岩性以粗晶白云岩为主。

铜仁断层:位于项目北侧 7.81km,长冲至白沙溪一线,图幅内长约 4.4km,走向为北东—南西向,断层面倾向为 135°左右,倾角 70°左右,为一高角度正断层。断层破碎带宽 100~200m,断层南东侧为寒武系地层,岩性以粗晶白云岩为主,北西侧为奥陶系地层,岩性以灰、深灰中厚层夹薄层微至粗晶生物碎屑灰岩为主。

4.3.1.3 地层岩性

区内寒武系分布最广,岩石主要为浅海相碳酸盐岩沉积,区域出露地层从老到新划分为;寒武系上统、奥陶系下统以及第四系。区域地层岩性简表见表 4.3-1。

界	系	统	名称	地层代号	厚度 m	岩性描述
新生界	第四系	1	1	Q	0~15	成因类型主要有冲洪积、残坡积,岩 性以砂石、砂砾石和粘土为主
古生界			大湾组	Oid	220~27 0	灰绿、黄绿夹紫红色钙质泥页岩及薄至 中厚层瘤状灰岩、泥质灰岩及泥灰岩
	奥陶系	下统	红花园 组	O _i h	20~50	灰、深灰中厚层夹薄层微至粗晶生物 碎屑灰岩,常含燧石结核或条带,下 部偶夹页岩
	亦		桐梓组	O ₁ t	110~26	灰一深灰色中一厚层夹薄层微一细晶白云 岩和细一粗晶灰岩,夹砾屑、鲕豆粒白云 岩,常含燧石团块或结核,顶及下部夹 灰、灰绿色页岩或钙质页岩
	寒武系	- Z46	追屯组	€3Z	400	浅灰、灰白色厚层块状细至粗晶白云 岩,易风化松碎为砂状
			比条组	€₃b	263	灰色薄一中厚层纹层状细晶白云岩及 薄层泥质条带灰岩组成,由下向上白 云岩逐渐增多,至上部以中层细晶白 云岩为主

表 4.3-1 区域地层岩性简表

4.3.1.4 区域地下水水文特征

(1) 岩溶发育特征

本区大量出露上寒武系白云岩地层,岩溶发育特征为盆地、谷地相组合而成的喀斯特地貌类型。溶蚀谷地、盆地宽浅,常相互贯通形成宽阔平坦的溶原,地表岩溶以溶蚀裂隙、溶孔、溶隙及岩溶泉为主,未见洼地、落水洞等岩溶形态发育。

(2) 断层导水性特征

调查评价区周围分布有四条断层(铜仁断层、高楼坪断层、田坪断层、亚鱼场断层),均为北东向展布。其中只有亚鱼场断层和田坪断层从调查评价范围内通过,本次仅针对亚鱼场断层和田坪断层的导水性进行阐述。

田坪断层断层位于项目南东向 0.54km,磨沟冲至后锁一线,图幅内长约 5.5km,走向为北东—南西向,断层面倾向为 135°左右,倾角 70°左右,为一高角度正断层。断层破碎带宽 100~200m,破碎带以白云岩碎块为主,胶结松散。断层两侧岩性均为寒武系追屯组 (€3z) 地层,岩性以粗晶白云岩为主。据调查,断层破碎带岩性破碎,胶结松散,断层两侧的粗晶白云岩常风化破碎呈砂状,使得断层破碎带和两侧岩性结构相似,具有相同的含水结构,断层两侧无大的泉点出露,因此断层在横向和纵向上的导水性与两侧岩性基本一致。在调查评价范围内断层在横向和纵向上导水性较好。

亚鱼场断层位于项目北西侧 3.61km, 杨柳冲-木老田-火马坪一线, 断层规模巨大, 全长 30km 以上, 图幅内长约 15.8km, 断层走向北东向, 断面倾向南东, 倾角 70°左右, 为一北西盘上升, 南东盘下降的正断层, 沿断层两侧岩石破碎, 破碎带宽度约 300m, 破碎带以白云岩碎块为主, 胶结松散。据调查, 断层破碎带岩性破碎, 胶结松散, 断层两侧的粗晶白云岩常风化破碎呈砂状, 使得断层破碎带和两侧岩性结构相似, 具有相同的含富水结构, 断层两侧无大的泉点出露, 因此断层在横向和纵向上的导水性与两侧岩性基本一致。在调查评价范围内断层在横向和纵向上导水性较好。

(3) 区域地下水补径排特征

项目区属于长江流域沅江水系舞阳河的汇水范围,项目区属于区域地下水的径流排泄区,地下水埋深<30m。大气降水为区域地下水的主要补给来源,地下水接受大

气降水沿地表溶蚀裂隙、溶孔、溶隙等入渗补给后,受地形地貌控制,地下水向东南径流,并向东南侧茨沟和车坝河排泄,车坝河在扶溪村附近汇入舞阳河,舞阳河为区域地下水的排泄基准面。

4.3.2 评价区水文地质条件

为查明评价区及项目区地层组合关系、地层厚度、产状、接触关系,地质构造发育状况及对区内水文地质条件的控制程度,含水岩组及其富水性、含水介质、地下水补径排条件等基本水文地质特征,在调查评价区及其影响区域开展1:50000区域水文地质调查,调查面积约67.7km²,在项目区及其下游影响区域开展1:10000水文地质调查。

4.3.2.1 地下水类型及含水岩组

根据地下水赋存介质的不同,工作区地下水可分为碳酸盐岩岩溶水和松散岩层孔隙水两大类型。工作区地下水资源构成以岩溶水为主,孔隙水极少。其中,碳酸盐岩岩溶水,可根据含水层的岩性及组合关系划分为纯碳酸盐岩岩溶水和碳酸盐岩夹碎屑岩岩溶裂隙水。

(1) 纯碳酸盐岩岩溶水:

纯碳酸盐岩岩溶水集中分布在寒武系追屯组(C₃z)、比条组(C₃b)白云岩、灰岩及白云质灰岩地层以及奥陶系桐梓组(O₁t)、红花园组(O₁h)白云岩、灰岩地层中,为研究区主要含水层。该含水岩组为一套较纯的碳酸盐岩,岩性以白云岩、灰岩为主,夹少量的白云质灰岩、泥质条带灰岩。地下水赋存于溶蚀裂隙、孔隙中,水量中等~丰富。据"1:20万芷江幅区域水文普查报告",泉水一般流量为0.5~5.0l/s,枯季地下水径流模数1.5~2.5l/s.km²,地下水化学类型为HCO₃-Ca,矿化度0.12~0.55g/L。项目所在地下伏含水层属于追屯组(C₃z)粗晶白云岩纯碳酸盐岩岩溶含水层。

(2) 碳酸盐岩夹碎屑岩岩溶裂隙水:

碳酸盐岩夹碎屑岩岩溶裂隙水集中分布在奥陶系大湾组(O₁d)灰绿、黄绿夹紫红色钙质泥页岩及薄至中厚层瘤状灰岩、泥质灰岩及泥灰岩地层中。含水岩组由碳酸

岩与碎屑岩组成,构成夹层及互层状的水文地质结构。碳酸盐岩中泥质成分较重,夹层常以砂页岩、泥岩为主,地下水赋存于可溶性岩层的裂隙、孔隙中。易形成岩溶水与基岩裂隙水并存的含水系统,其中碎屑岩起隔水作用,使岩溶水受其制约作顺层运动。这种间层状的水文地质构造分布普遍,对岩溶地下水的运动和排泄起着非常重要的控制作用。该套含水层仅在研究区北部少量分布,泉水一般流量 0.05~5.0l/s,枯季地下水 径流 模 数 1.6~2.4l/s.km²,地下水 化 学 类 型 为 HCO₃-Ca.Mg, 矿 化 度 0.3~0.4g/L。

(3) 松散岩层孔隙水:

评价区南部舞阳河两岸及研究区西部廖溪河河谷零星出露了小面积第四系松散岩层,含水层分布不连续,分布零星,水位埋深 0.3~3m,地下水天然露头少,水量贫乏。

场区地下水类型为碳酸盐岩溶孔-溶隙水,赋存于寒武系上统追屯组(ϵ_{3z})粗晶白云岩地层中。

4.3.2.2 岩溶发育特征

(1) 调查评价区岩溶发育特征

本次主要以地面调查和资料收集相结合的方式判断调查评价区岩溶发育特征。结果显示:评价区内以寒武系追屯组白云岩为主,仅在评价区西北角有少量奥陶系桐梓组、红花园组灰岩出露。调查评价区内项目场地周边地表无落水洞、岩溶竖井、洼地等岩溶现象。地表岩层风化较为强烈,溶蚀裂隙、溶孔发育。

(2) 场区岩溶发育特征

本次主要以地面调查和收集周边钻探资料相结合的方式判断场区周边岩溶发育特征。结果显示:场区下伏寒武系追屯组白云岩地表无落水洞、岩溶竖井、洼地等岩溶现象,地表以溶蚀裂隙、溶孔为主;据收集的场区周边《铜仁市诚一环保科技有限公司地下水监测井》、现有厂区监测井等资料显示,场区周边垂向上暂未见大型溶洞发育,下伏地层以溶蚀裂隙、溶孔的形态呈现。

4.3.2.3 地下水系统及水文地质单元划分

地下水系统的划分是在五级岩溶流域为基础上,遵循"流域级别逐次降低、地下水系统相对独立与完整"的原则,以相对隔水的碎屑岩、阻水断层、分水岭等为边界条件,且以地质边界为地下水系统划分边界为主,对调查评价区地下水系统进行划分。

本区地下水系统划分过程中,典型的边界有:地表分水岭、车坝河、舞阳河、廖 溪河,并以上述典型地下水边界为基础,将调查评价区地下水系统划分为赶场坝-后 锁分散排泄地下水系统。

根据地形地貌特点、地层岩性及构造特征、地质边界及区域地下水补径排条件,通过野外实地调查及室内综合分析,结合地下水导则的要求,确定项目所在的水文地质单元(地下水评价范围)边界为:西侧以廖溪河定水头边界为界;南侧以舞阳河排泄基准面为界;东侧以车坝河定水头边界为界;北侧以大龙峒-河堪脚沿线地表分水岭为界,面积约67.7km²。该评价范围属于一个相对独立的水文地质单元,见图4.3-1。

4.3.2.4 评价区地下水的补给、径流、排泄条件

根据水文地质调查及收集场地周边勘察资料,场区及下游影响区域地下水补径排 条件如下:

补给: 地下水的主要补给源为大气降水, 大气降水的补给方式主要为碳酸盐岩裸露区的降水入渗补给。

径流: 地下水接受大气降水沿着表层溶蚀裂隙、溶孔入渗补给后, 受东侧车坝河 和南侧舞阳河排泄基准面控制, 地下水整体由西向东南径流。

排泄:评价区属于分散排泄系统,地下水的排泄受地形地貌的控制比较明显,区域中部、东部部分地下水受东南侧溪沟和车坝河切割控制,主要表现为向东南方向径流排泄,并在低洼地带以泉的形式排出地表,如水文地质图中的S3、S4、S5等泉点。

评价区域西南部地下水受南侧舞阳河排泄基准面控制,表现为向南径流排泄,并

在低洼地带以泉的形式排出地表,如水文地质图中的 S6、S7 等泉点。其余未以泉的 形式排出的地下水在车坝河和舞阳河沿岸带状排泄到两条河流中。

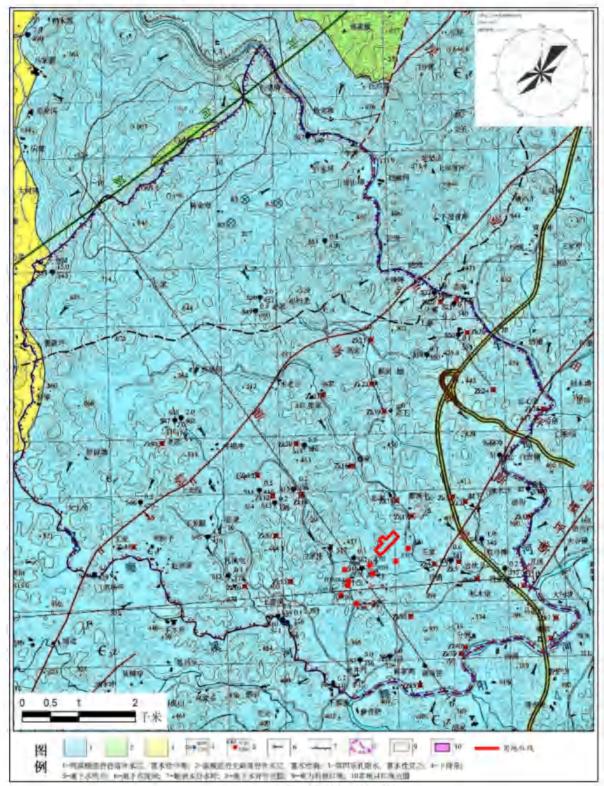


图 4.3-1 地下水评价范围图

4.3.2.5 评价区水文地质参数

根据《环境影响评价技术导则 地下水环境》(HJ 610-2016)9.8.3 水文地质参数 初始值的确定:包气带垂向渗透系数、含水层渗透系数、给水度等预测所需参数初始值的获取应以收集评价范围内已有水文地质资料为主,不满足预测要求时需通过现场试验获取。

(1) 抽水试验

本次评价收集了项目西南侧约 980m 处的《贵州真琪精细化工有限责任公司地下水监测井报告》的资料,上述监测井报告开展了抽水试验,获得了含水层的渗透系数。由于本项目与贵州真琪精细化工有限责任公司项目场地下伏地层均为追屯组白云岩,且同属一个含水层和水文地质单元,其获取的渗透系数可作为本项目的渗透系数引用,引用资料合理,满足(HJ 610-2016)要求。

钻孔编号	[-X- 159	坐	标	地下水	是否开展抽水 试验	
	位置	东经/º	北纬/9	埋深 m		
ZK1	真琪化工场地内	109.00253356	27.33160571	30.0	是	
ZK2	真琪化工场地内	108.99974942	27.33287810	29.0	是	
ZK3	真琪化工场地内	109.00094032	27.33444594	28.0	是	

表 4.3-2 场区周边监测井信息一览表

真琪化工地下水监测井的抽水试验过程如下: 首先是抽水稳定时间不小于 8h, 抽水试验结束后, 立即进行恢复水位观测, 停泵后 0.5h 左右水位恢复至初始水位。地下水类型为潜水, 根据该井稳定流抽水试验成果, 采用如下公式计算渗透系数和影响半径。

$$K = \frac{0.732 \times Q}{(2H - S_w) \cdot S_w} \cdot \lg \frac{R}{r} \dots (1)$$

$$R = 2S_w \sqrt{KH} \qquad (2)$$

式中, K---渗透系数 (m/d);

R---影响半径(m);

O---涌水量 (m³/d):

H——试验段厚度; (1) 式中 H 为含水层底到静止水位高度(m), (2) 式中 H 为含水层底到动水位高度(m);

Sw---水位降深值(m);

r---抽水井半径(m);

根据项目技术要求,对3个钻孔做抽水试验,结合成井类型,钻孔揭露深度较深,下部岩溶不发育,可近似为完整井。本次选用抽水潜水完整井稳定流方法,其中,JC1钻孔抽水水泵放置于孔深45.00m处,抽水25min后达到稳定,稳定持续时间480min,满足技术要求,涌水量1.145l/s,降深5.50m;JC2钻孔抽水水泵放置于孔深43.00m处,抽水25min后达到稳定,稳定持续时间480min,满足技术要求,涌水量1.003l/s,降深5.00m;JC3钻孔抽水水泵放置于孔深41.00m处,抽水20min后达到稳定,稳定持续时间480min,满足技术要求,涌水量0.872l/s,降深6.00m,钻孔抽水试验参数详见表4.3-3。根据上述资料,场地下伏岩溶含水层的渗透系数为0.296-0.345m/d。

抽水 恢复水 水位 稳定 影响 渗透 孔深 降深 涌水 序号 编号 时间 时间 位时间 静止 半径 系数 (m) (m) 量(l/s) (h) (分) (h) (m/d) (m) (m) ZK1 50.00 30.00 8.25 8.0 5.50 1.145 72.52 0.318 30.00 1 2 ZK2 50.00 8.25 40.25 0.345 29.00 8.0 5.00 1.003 28.00 50.00 28.00 8.25 44,72 25.00 ZK3 8.0 6.00 0.915 0.296

表 4.3-3 钻孔抽水试验参数一览表 (引用真琪化工)

(2) 渗水试验

根据渗水试验在评价区域第四系沟谷坡积粉粘土中共选择了3个代表性的试验点进行,采取双环渗水试验法,试验结果见表4.3-4。

序号	编号	编号 地层岩性 试验深度(m) 稳定流速(cm/s)	双环渗水试验平均渗透系			
4.2	細り	地层石江	以孙/木/支(III)	福足加速 (CIII/S)	cm/s	m/d
1	S01	粉质粘土	0.40	0,001	9.25×10 ⁻⁵	0.08
2	S02	粉质粘土	0.60	0.00008	6.94×10 ⁻⁵	0.06
3	S03	粉质粘土	0.53	0.0012	9.81×10 ⁻⁵	0.085

表 4.3-4 渗水试验结果一览表 (引用真琪化工)

ZK1监测井成井结构图

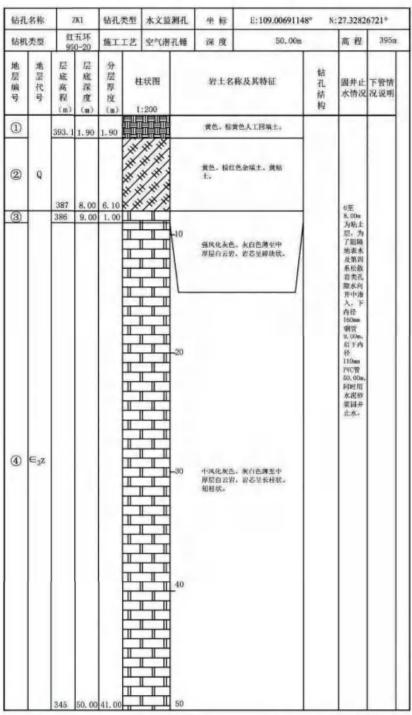


图 4.3-2 引用真琪化工地下水 ZK1 监测井水文柱状图

ZK2监测井成井结构图

钻孔名称	1	ZK2	钻孔类型	水文监测孔	坐标	E:109.0041162	8° N	i: 27.3295	3139°
钻机类型		五环 0-20	施工工艺	空气潜孔锤	深 度	深度 50.00m		高程	400m
地层编号	层底高程 (m)	层底深度 (n)	度 (m) 1	: 状 图 : 200	岩土名称	尔及其特征	钻孔结构		下管情况说明
1	397	3.00	3.00		黄色、棕黄色)	、 工回境經石土。			
② ∈ ₃ z		50.00	47.00			以化灰色、灰白 岩白云岩。岩岩		0.3.为层了地及系岩险井入内60m管60下 mm管00下 mm管00下 mm管00下 mm管00下 mm管00下 mm管00下 mm管00下 mm管00下 mm管00mm营00mm营00mm营00mm	

图 4.3-3 引用真琪化工地下水 ZK2 监测井水文柱状图

钻孔名称 钻孔类型 水文监测孔 ZK3 坐标 E:109.00531205° N:27.33110313° 红五环 高程 397m 钻机类型 施工工艺 空气潜孔锤 深度 50,00m 950-20 层 钻 刀层厚 层 层 底 底 柱状图 岩上名称及其特征 孔结 固井止 下管情 編号 代号 高 深 水情况 况说明 程 度 Q 黄色、棕红色杂填土、黄粘 1 391 6.00 6.00 强风化灰色、灰白色薄至中 厚层白云岩, 岩芯呈碎块状。 2 8.00 0至 6.00m 为粘上 层、为 地表水 及第四 系松散 岩类孔 井中湾 入,下 内径 160mm 好音 8,00m 后下内 径 110mm PIC管 50,00m. 同时用水泥砂浆湖井 止水-③ ∈₃z 中风化灰色、灰白色薄至中 厚层白云岩,岩-岩-岩-岩-长柱状、 短柱状。

ZK3监测井成井结构图

图 4.3-4 引用真琪化工地下水 ZK3 监测井水文柱状图

4.3.2.6 场区包气带天然防污性能评价

本你项目场平后属于挖方区。根据建设单位提供的循环公司的岩土工勘报告,场平后第四系素填土及粘土层厚度约为 0.5m;强风化白云岩厚度为 1.10-1.40m,中风化

白云岩在场地内钻探厚度不少于 5.00m。项目建设区域平均场平标高为 380m,建设区域的 JC01 监测井水位标高为 352m,则包气带厚度为 28m,据引用的西北侧真琪化工地下水抽水和渗水试验结果,寒武系白云岩渗透系数为 3.43×10⁴cm/s~3.99×10⁴cm/s。参照表 4.3-5,判定场区天然包气带防污性能为"弱"。

分级	包气带岩土的渗透性能
强	Mb≥1.0m, K≤1.0×10 ⁻⁶ cm/s, 且分布连续、稳定
中	0.5m≤Mb≤1.0m,K≤1.0×10 ⁻⁶ cm/s,且分布连续、稳定 Mb≥1.0m,1.0×10 ⁻⁶ cm/s <k≤1.0×10<sup>-4cm/s,且分布连续、稳定</k≤1.0×10<sup>
弱	岩(土)层不满足上述"强"和"中"条件

表 4.3-5 天然包气带防污性能分级参照表

4.3.3 项目区水文地质概况

4.3.3.1 地层岩性

参考周边已有地质资料及现场布置的水文监测孔揭露情况等资料综合分析,场地地层岩性自上而下为第四系素填土(Q),下伏岩层为寒武系追屯组(ϵ_{3Z})白云岩,依钻探揭露,场地地基土层自上而下详细叙述如下:

- (1) 第四系素填土(Q):红色、棕红色,成分由回填土和粘土组成。土厚 1.9~6m:
- (2) 寒武系追屯组(€3z) 白云岩;该层岩性主要为中、强风化、灰白色薄至中厚层白云岩,岩芯呈柱状、段柱状。根据场地水文勘察钻孔资料,基岩埋深1.6~6m。裂隙发育,该层为厂区下伏基岩。

4.3.3.2 场区含水层及包气带

根据项目区水文地质特征场地含水层主要为松散岩类孔隙水。岩性主要为回填土和粘土,该层含水量贫乏。下伏基岩为寒武系追屯组(ϵ_{3} z):地下水赋存于溶蚀裂隙、孔隙中,水量中等~丰富。

4.3.3.3 包气带

本项目场地包气带主要由第四系素填土及红黏土、寒武系白云岩组成。根据周边 场地现场双环试坑渗水实验及类似场地经验值可知,项目场地第四系粘土层渗透系数 为 6.94×10⁻⁵cm/s~9.81×10⁻⁵cm/s,寒武系白云岩渗透系数为 3.43×10⁻⁴cm/s~3.99×10⁻⁴cm/s,项目建设区域平均场平标高为+380m,建设区域的 JC01 监测井水位标高为 352m,则包气带厚度为 28m。

4.3.3.4 项目区地下水的补给、径流、排泄条件

场地地下水的主要补给来源为大气降水,大气降水沿着地表溶蚀裂隙、溶沟溶槽等入渗补给地下水,受地形及岩溶裂隙控制。评价区大部分向南东方向径流,为研究区的主径流带方向,最终排向舞阳河和车坝河。循环公司项目场地平场后标高为+368.5m(西侧)~+380m(东侧),本项目场地标高为+380m,东侧边界临近的后锁小溪标高约为+343m,根据表 4.3-6 可知,东侧厂界水位标高较低,西侧水位标高较高,北侧水位较高,南侧水位较低,因此,场区浅层地下水流向北西偏西向南东偏东径流,在后锁小溪及附近的 S5、S3 排泄。

监测井名称	位置	所在层位	孔深 (m)	水位埋 深 (m)	水位标 高 (m)	是否开展抽 水试验
循环公司 JC01 监测井	循环公司厂区东侧 厂界	寒武系追屯组 (€;z)	58	16.8	351.2	否
循环公司 JC02 监测井	循环公司厂区中部 偏上东部厂界	寒武系追屯组 (Єзz)	40	11.2	353.8	否
循环公司 JC03 监测井	循环公司厂区中部 变电站	寒武系追屯组 (€3Z)	30	16.8	352.8	否
循环公司 JC04 监测井	循环公司厂区中部 偏下东侧厂界	寒武系追屯组 (€3Z)	52	19,6	350.1	否
循环公司 JC05 监测井	循环公司西片北侧 厂界	寒武系追屯组 (€₃z)	49	23.0	353.5	否
循环公司 JC06 监测井	西侧厂界	寒武系追屯组 (€₃z)	49	24.8	354.2	否
JC01 监测井	厂区北侧	寒武系追屯组 (€₃z)	64	28	352.0	否
JC02 监测井	厂区东南侧	寒武系追屯组 (€;z)	65	17	356.0	否

表 4.3-6 厂区及附近地下水监测井信息表

4.3.4 施工期地下水环境影响分析

施工废水主要为混凝土搅拌、基础开挖排水、施工机械冲洗及设备清洗排水,以

及施工区生活污水等污废水排放会对水环境产生污染影响。可通过在适当位置修建一 沉淀池,收集机械设备的冲洗水和施工场地污水,将废水回收使用;施工人员生活污水排入市政污水管网。

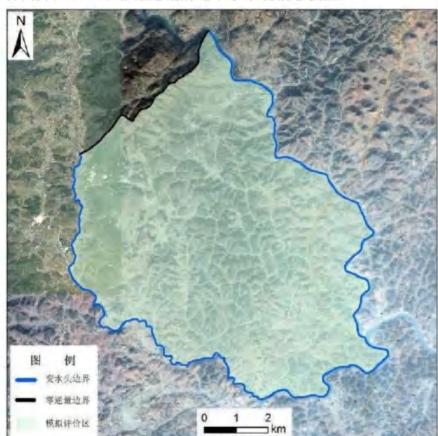
对施工期的主要污水排放要进行控制和处理, 杜绝不处理和无组织排放, 施工期 对地下水环境影响较小。

4.3.5 营运期地下水环境影响预测与评价

4.3.5.1 水污染及其污染途径

项目运营期污染物对地下水的影响主要是由于降雨或水排放等通过垂直渗透进入包气带,导致进入包气带的污染物在物理、化学和生物作用下经吸附、转化、迁移和分解后输入地下水。因此,包气带是连接地面污染物与地下含水层的主要通道和过渡带,既是污染物媒介体,又是污染物的净化场所和防护层。一般来说,土壤粒细而紧密,渗透性差,则污染慢;反之,颗粒大松散,渗透性能良好则污染重。污染物从污染源进入地下水所经过的路径称为地下水污染途径,地下水污染途径是多种多样的。

拟建项目生产废水、地面清洁废水、初期雨水、废气治理废水等废水进入污水处理设施预处理后委托中伟新材料股份有限公司处理:生活污水接入园区管网,并随管网接入大龙经济开发区工业污水处理厂集中处理达标后排入舞阳河。


本项目生产设备大多以罐体、槽体为主,至于混凝土承重基座之上,生产设施及 架空生产设施不会对地下水造成污染的可能性较小。本项目对地下水造成污染物的装置主要为污水处理站各处理池体。主要考虑地下水下渗迁移及下渗对下水的影响。

4.3.5.2 水文地质概念模型

(1) 水文地质概念模型

水文地质概念模型是把含水层或含水系统实际的边界性质、内部结构、渗透性能、水力特征和补给排泄等条件进行合理的概化,以便可以进行数学与物理模拟。科学、准确地建立水文地质概念模型是地下水环境影响预测评价的关键。

根据评价区水文地质条件,西北侧以地表分水岭设定的零通量边界,其他各边界 为给定水头边界,圈定模拟范围如下图,面积约 67.7km²,见图 4.3-5。将模拟区概化

成非均质、各向异性、三维非稳定流的地下水系统概念模型。

图 4.3-5 模型边界条件示意图

(2) 地下水渗流模型的建立

①、数学控制方程式及求解

通过对水文地质概念模型的分析,依据渗流连续性方程和达西定律,建立模拟区 地下水系统水文地质概念模型相对应的三维非稳定流数学模型:

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial H}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial H}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial H}{\partial z} \right) + w = \mu_z \frac{\partial H}{\partial t}$$

$$H(x, y, z, 0) = H_0, \quad (x, y, z) \in \Omega$$

$$K \frac{\partial H}{\partial n} \Big|_{S_2} = q(x, y, z, t), \quad (x, y, z) \in S_2$$

$$H(x, y, z, t) = H_1, \quad (x, y, z) \in S_1$$
式中: Ω ——地下水渗流区域,量纲: L^2 ;
$$H_0$$
——初始地下水位,量纲: L ;
$$H_l$$
——指定水位,量纲: L ;
$$S_l$$
——第一类边界;

S2---第二类边界:

μs——单位储水系数, 量纲: L-1:

Kxx, Kyy, Kzz——分别为x、y、z 主方向的渗透系数,量纲: LT^1 ;

w——源汇项,包括蒸发,降雨入渗补给,井的抽水量,量纲: T1;

q(x, y, z, t) ——表示在边界不同位置上不同时间的流量,量纲: L^3T^1 ;

đH

ân:___表示水力梯度在边界法线上的分量。

4.3.5.3 初始网络及地质模型

地下水是溶质运移的载体,地下水流场是溶质运移模拟的基础,在溶质运移模拟 前需先建立评价区的地下水流场模型。根据对项目所在区域的水文地质条件的分析, 确定模拟评价范围及边界条件。采用地下水流动与污染物运移的模拟软件 Feflow 建 立项目污水处理系统正常工况和非正常工况下运移数值模型,并用该模型对污染物在 地下水中的迁移状况进行预测。

4.3.5.4 边界条件及初始参数

边界条件的概化是建立水文地质数值模型的一项复杂而重要的基础工作,边界条件处理的正确与否,直接关系到是否能够真实地刻画地下水渗流场。概化的关键内容就是边界的性质(类型)和边界条件的控制程度。根据前述水文地质概念模型结合已有各类水文地质资料,确定本次模拟评价区边界条件如下:

- (1) 四周边界:北西边界以地下分水岭,将其定义为零通量边界;南西边界以廖溪河,将其定义为变水头边界;南部边界以舞阳河,将其定义为变水头边界;北东部边界以车坝河,将其定义为变水头边界。
 - (2) 上边界为降水补给、蒸发,下边界等效定义为相对隔水边界。

本次模拟工作所用到的初始水文地质参数主要依据水文地质勘查成果及已有历史 水文地质资料,同时,评价区岩性单一,主要以白云岩为主,断裂带与两侧的渗透性 相差不大,因此,水文参照按同一取值进行考虑,其中水文地质初始参数取值详见表 4.3-6。

参数 碳酸盐岩溶孔溶隙水€₃z

Kxx (m/d) 0.32

Kyy (m/d) 0.32

Kzz (m/d) 0.032

给水度 0.10

年降雨量 (mm) 1157.00

降雨入渗系数 0.13

表 4.3-6 评价区水文地质初始参数取值表

4.3.5.5 识别验证与初始条件

数值法求解地下水非稳定流动问题需要给出初始条件,即每个结点在计算初始时刻的水头,作为后续计算的初始流场。而对于网格剖分后形成的如此庞大数目的结点,实际的水位观测数据显然无法满足。因此,需要采取一定的处理技术来获取模拟对象的地下水初始流场。

通常的处理方法是利用已知水位点通过插值算法来获取各结点水头值,但因场区可以利用的实际观测点少,采取该法后获取的初始水位并不尽如人意,个别观测孔水位在模拟初期即出现陡升陡降的情况。究其原因,一方面固然是插值结果只是对实际水位的近似趋近而非等价,另一方面是插值结果无法表征一定范围内的非均质性。为改变这种状况,本次预测评价中初始流场采取的技术方法是将模拟区参数分区及初始参数取值表输入模型,经过稳定流计算得到模拟区稳定流条件下的天然流场,然后根据实际观测水位对天然流场进行参数拟合,以验证此流场能否全面、客观地表征评价区实际的水文地质条件和特征。

将模拟水位值与7个水位实测值进行拟合分析,可以看到7个拟合点基本均匀分布在标准线附近,反映了模拟结果与实际测量值拟合情况较好,初始流场水位拟合析线图也反映了模拟值与实际值总体变化规律的一致性。

识别后的参数见表 4.3-7, 水位拟合情况见图 4.3-6、图 4.3-7。

参数	碳酸盐岩溶孔溶隙水€₃z		
Kxx (m/d)	0.35		
Kyy (m/d)	0.35		
Kzz (m/d)	0.035		
给水度	0.11		

表 4.3-7 评 价区水文地质拟合参数取值表

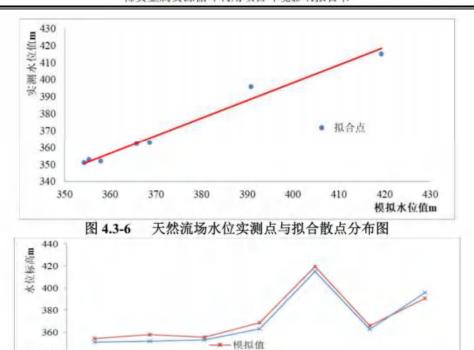


图 4.3-7 天然流程水位拟合图

~ 实测值

观测点数

340

320

300

通过以上技术工作,经过识别验证后的、可作为初始条件的地下水流场见图 4.3-8 所示,基本符合实际水文地质条件,基本反映了地下水流系统的流场特征,可以此为基础开展后续地下水环境影响预测评价工作。

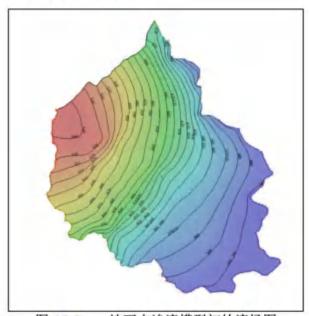


图 4.3-8 地下水渗流模型初始流场图

验证后的水均衡见表 4.3-8, 由表可以看出, 模型中地下水系统处于均衡状态。

	大气降雨补给量(m³/d)								
源	补给区	面积(km²)	降雨量(mm/a)	降雨入渗系数	合计				
<i>in</i>	岩溶裂隙水	67.65	1157.00	0.13	27877				
	27877								
汇			边界排泄量(m³/d)						
11.	27877.7								
水均衡			$0.7 m^3/d$						

表 4.3-8 地下水均衡一览表

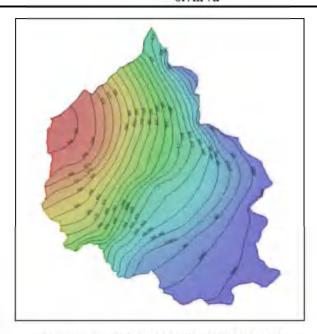


图 4.3-9 地下水渗流模型推测流场图

4.3.5.6 地下水环境影响预测模型

由于污染物在地下水中的迁移转化过程十分复杂,存在包括吸附、沉淀、生物吸收、化学与生物降解等作用。本次预测评价本着风险最大原则,在模拟污染物扩散时并不考虑吸附、化学反应等降解作用,仅考虑典型污染物在对流、弥散作用下的扩散过程及其规律。

(1) 数学模型

溶质运移的三维水动力弥散方程的数学模型如下:

$$\begin{split} \frac{\partial C}{\partial t} &= \frac{\partial}{\partial x} \left(D_{xx} \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_{yy} \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(D_{zz} \frac{\partial C}{\partial z} \right) - \frac{\partial (\mu_x c)}{\partial x} - \frac{\partial (\mu_y c)}{\partial y} - \frac{\partial (\mu_z c)}{\partial z} + f \\ & C(x, y, z, 0) = C_0(x, y, z)(x, y, z) \in \Omega \ , \ t = 0 \end{split}$$

式中,右端前三项为弥散项,后三项为对流项,最后一项为由于化学反应或吸附解析所产生的溶质的增量; Dxx、Dyy、Dzz 分别为 x、y、z 三个主方向的弥散系数;

 μx , μy 、 μz 为 x、y、z 方向的实际水流速度; c 为溶质浓度,量纲: ML^3 ; Ω 为溶质渗流的区域,量纲: L^2 ; C_0 为初始浓度,量纲: ML^3 。

(2) 模型参数

弥散度是研究污染物在土壤及地下水中迁移转化规律的最重要参数之一,弥散系数 D 是反映渗流系统弥散特征的一个综合参数,忽略分子扩散时,它是介质弥散度仅和孔隙流速 V 的函数。在地下水溶质运移方程中,表征含水层介质弥散特征的参数是水动力弥散系数,它可表示为:

$$D_{ij} = \alpha_T V \delta_{ij} + (\alpha_L - \alpha_T) \frac{V_i V_j}{V}$$

式中αL, ατ分别为纵向和横向孔隙尺度弥散度,是仅与介质特性有关的参数。

大量的室内弥散试验结果表明,纵向弥散度一般为毫米量级,称为孔隙尺度的水动力弥散作用,而实际上野外试验所得出的弥散度远远大于在试验室所测出的值,相差可达 4-5 个数量级,野外得到的弥散度随研究问题尺度的增大而增大,并随着溶质运移时间而增大,这种空隙介质中弥散度随着溶质运移距离和研究问题尺度增大而增大的现象称为多孔介质水动力弥散的尺度效应。对于造成水动力弥散尺度效应的原因,目前人们趋于一致的看法是:野外条件下介质的不均匀性造成了室内试验结果与野外试验结果之间的巨大差别。

水动力弥散尺度效应的存在为模拟和预测地下水中溶质在介质中的运移规律带来了困难。本次溶质运移模型中弥散度的确定主要依据是 Geihar 等(1992)对世界范围内所收集的 59 个大区域弥散资料进行的整理分析。按照偏保守原则,最终确定的溶质运移模型参数见表 4.3-9。

参数	碳酸盐岩溶孔溶隙水 ϵ_3 z
纵向弥散度 (m)	30
横向弥散度 (m)	3.0
有效孔隙度	0.1

表 4.3-9 溶质运移模型参数表

(3) 弥散处理

在溶质迁移模型中施加持续性、面状污染源时,为了防止污染源边界内外较高的浓度差带来的数值弥散问题,通常的处理技巧是边界处进行逐层加密处理,郑春苗和Bennett 在《地下水污染物迁移模拟》一书中指出,当网格数接近2时,数值弥散基

本可以忽略。详见图 4.3-9。

(4) 预测时段

根据拟建项目特点,施工期及服役期满后污染极小,主要产污时段为运营期,故选取运营期作为总模拟时间,设定为3650d。计算时间步长为自适应模式,保存记录第100天、1000天、3650天的模拟预测结果,为污染物迁移规律的分析工作提供数据支撑。

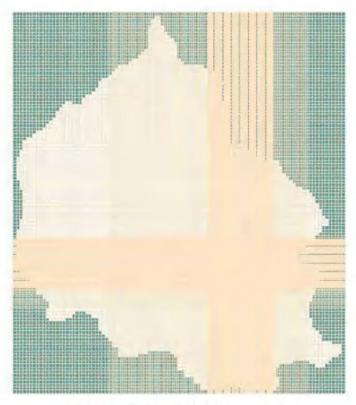


图 4.3-9 模型网格剖分加密示意图

(5) 预测因子

根据《地下水导则》,将项目工程识别出的特征因子,按照重金属、持久性有机污染物和其他类别进行分类,并对每一类别中的各项因子采用标准指数法进行排序,分别取标准指数最大的因子作为预测因子。根据标准指数计算结果,本次评价选取镍、砷、硫酸盐、氨氮作为预测因子。

4.3.5.7 预测情景与源强

(1) 正常状况

拟建项目地下水污染防渗措施按照导则要求设计,正常状况下,地下水可能的污

染来源为装置的跑冒滴漏,在采取严格的防渗、防溢流、防泄漏、防腐蚀等措施的前提下,污水不会渗漏进入地下,对地下水不会造成污染,故依据地下水导则,正常状况情景下不开展预测工作。

- (2) 非正常及事故状况
- ①、非正常情景

模拟情景:污水处理站污水处理系统 pH 调节池 (规格: 2m×1m) 由于防渗措施 老化等问题,防渗效果达不到设计要求,出现非正常状况,污水下渗进入地下水。

- I、污染源概化: 连续恒定排放, 面源:
- II、模拟污染物及源强: 镍 159.75mg/L、砷 30.8mg/L、硫酸盐 255429.9mg/L、氨 9200mg/L;
 - Ⅲ、渗漏点:调节池;
 - IV、渗漏面积: 2m2:
 - V、渗漏时间: 持续性泄漏, 10年;
- VI、渗漏量: 假定池体底部防渗层出现破损, 破损钢筋混凝土结构渗漏强度为 2~4L/(m²·d), 工业废水渗漏量=渗漏面积×渗漏强度=2m²×4L/(m²·d)=0.008m³/d。
 - ③、事故情景

模拟情景:污水处理站污水处理系统 pH 调节池池底破裂造成事故泄漏,污水下渗进入地下水。

- I、污染源概化: 短时排放, 点源:
- II、模拟污染物及源强: 镍 159.75mg/L、砷 30.8mg/L、硫酸盐 255429.9mg/L、氨 9200mg/L;
 - III、泄漏点: 污水池:
 - IV、泄漏面积: 2m²×10%=0.2m²;
 - V、泄漏时间: 短时泄漏, 30d;
 - VI、渗漏量:采用达西定律进行计算

Q=KA (H2-H1) /L

其中: Q- 渗漏强度, m3/d;

K- 渗透系数, 取 0.296m/d;

A-渗漏面积, 取 0.2m2;

H—水头高度,地下水由北西向南东径流,流向 S3 泉点。两地水头高度相差 380-335.1=44.9m;

L—渗流路径长度,到 S3 泉点的径流长度约 1758m; 根据以上数据计算得 Q 为 0.0015m³/d。

4.3.5.8 预测重点

将情景与源强输入模型,即可开展预测工作,预测重点主要为:

- (1) 不同时段下污染物的影响范围、程度,最大迁移距离。
- (2) 下游边界处污染物浓度随时间的变化规律。

根据结果试算工作,在污染物迁移主方向下游处选取浓度观测点,保持记录观测 点的浓度变化曲线。

4.3.5.9 地下水环境影响评价原则和方法

通过上述预测工作,得到不同情景下的预测结果后,进而开展地下水环境影响评价工作。该工作以预测结果为依据,利用 GB/T14818-2017、GB 3838-2002 中的水质标准值对结果进行评价,将叠加后的污染晕按标准限值分为超标和未超标部分,并将超标部分予以显示,见图 4.3-10。如果超标污染晕最终迁移出厂界范围,则进一步对采取环保措施后的预测结果进行评价。

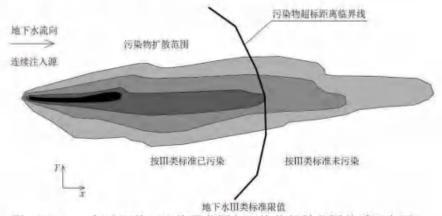


图 4.3-10 标准限值下污染晕范围与污染物扩散范围关系示意图

4.3.5.10 正常状况下对地下水环境影响分析

拟建项目地下水污染防渗措施按照导则要求设计,正常状况下,地下水可能的污染来源为装置的跑冒滴漏,在采取严格的防渗、防溢流、防泄漏、防腐蚀等措施的前提下,污水不会渗漏进入地下量有限,对地下水影响可接受。

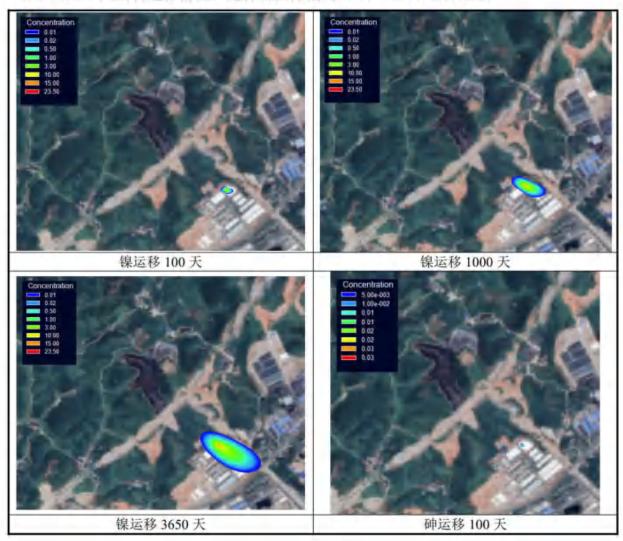
4.3.5.11 非正常状况下对地下水环境影响预测

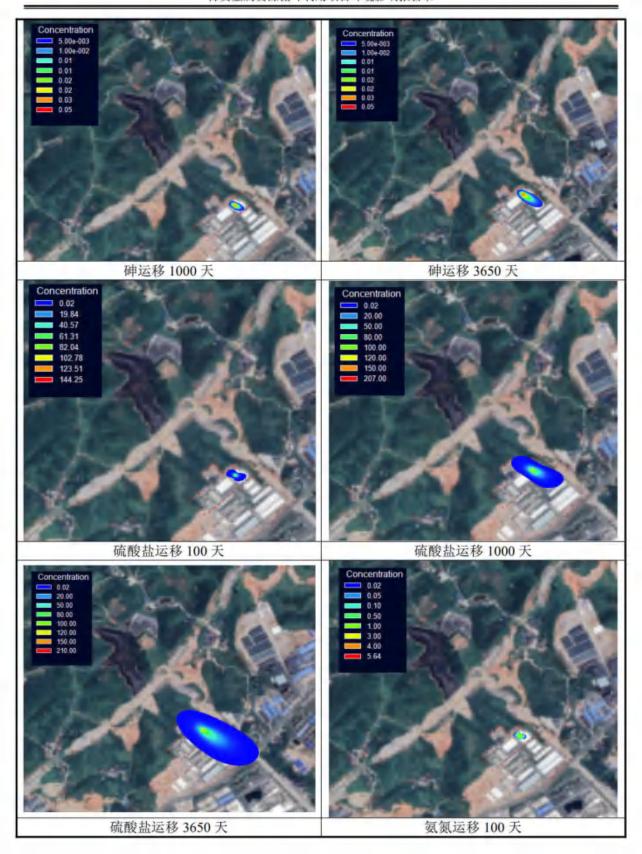
非正常状况下,污水处理系统 pH 调节池污染物下渗进入地下水中,形成超标污染晕,其迁移方向主要受水动力场控制,污染范围持续扩大,污染物最大浓度持续增加。具体如下:

模型预测项目场地下游观测点处不同时间、不同污染物的浓度值,浓度随时间呈现先增大后平稳的趋势,根据污染晕迁移图,污染晕未迁移到S3、S4、ZK7、ZK8、ZK40,因此敏感点始终受到污染物的影响。

根据渗漏区污染晕迁移见图 4.3-11, 其展示了模型运行 100 天、1000 天、3650 天 3 个时段下地下水中污染物的迁移扩散情况。表 4.3-11 针对 3 个典型时间段,统计了不同污染物污染晕的运移距离、污染面积。污染晕最终未扩散至下游泉点。

时间	水平迁移距离 (m)	污染面积 (m²)	超标范围 (m²)	污染变化
		镍		
100 天	45	1120	980	未迁移出场界
1000 天	99	5070	4780	迁移出东南侧场界
3650 天	375	90135	75240	迁移出东南侧场界
		砷		
100天	12	130	0	未迁移出场界
1000 天	35	1919	85	迁移出东南侧场界
3650 天	129	10161	180	迁移出东南侧场界
		硫酸盐		
100天	45	1330	0	未迁移出场界
1000 天	178	15158	0	迁移出东南侧场界
3650 天	364	94350	0	迁移出东南侧场界
		褒氮		
100 天	44	1100	850	未迁移出场界
1000 天	98	5060	4830	迁移出东南侧场界
3650 天	321	85460	82140	迁移出东南侧场界


表 4.3-11 非正常状况下不同锰污染物超标污染晕情景预测结果表


调节池污染物镍在平面上地下水中污染晕整体向东南迁移,3个时间点迁移距离为45m、99m、375m;污染面积约为1120m²、5070m²、90135m²;运移100、1000、3650天出现超标情况,超标范围分别为980、4780、75240m²。

调节池污染物砷在平面上地下水中污染晕整体向东南迁移,3个时间点迁移距离为12m、35m、129m;污染晕面积约为130m²、1919m²、10161m²;运移1000、3650天出现超标情况,超标范围分别为85、180m²。

调节池污染物硫酸盐在平面上地下水中污染晕整体向东南迁移,3个时间点迁移 距离为45m、178m、364m;污染晕面积约为1330m²、15158m²、94350m²;运移 100、1000、3650 天未出现超标情况。

调节池污染物氨氮在平面上地下水中污染晕整体向东南迁移,3个时间点迁移距离为44m、98m、321m;污染晕面积约为1100m²、5060m²、85460m²;运移100、1000、3650天出现超标情况,超标范围分别为850、4830、82140m²。

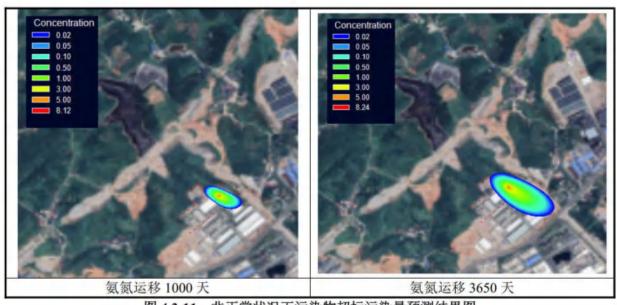
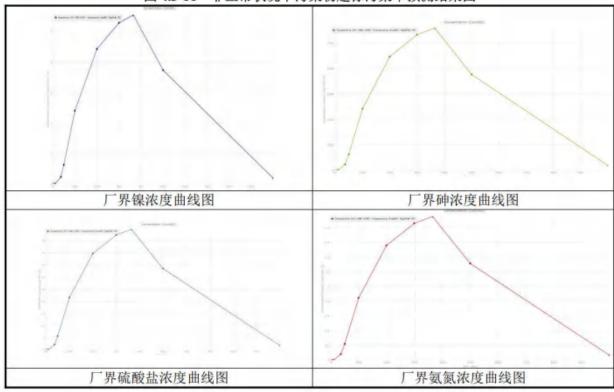



图 4.3-11 非正常状况下污染物超标污染晕预测结果图

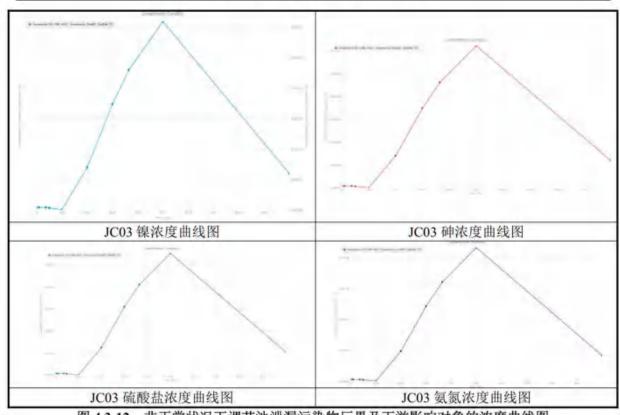


图 4.3-12 非正常状况下调节池泄漏污染物厂界及下游影响对象的浓度曲线图

4.3.5.12 事故状况下对地下水环境影响预测

事故情景下,综合废水污水池污染物下渗进入地下水中,形成超标污染晕,其迁移方向主要受水动力场控制,污染范围先增大后减小,污染物最大浓度逐渐降低。具体如下:

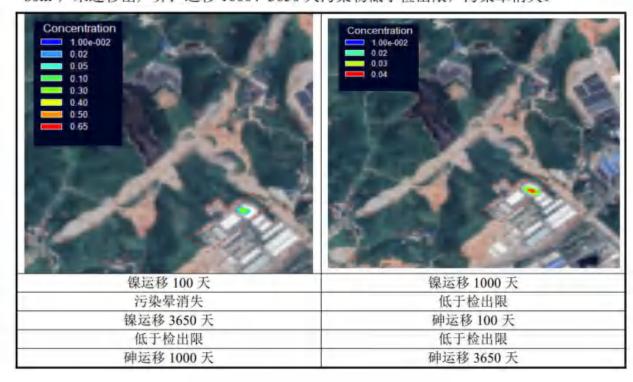
模型预测项目场地下游观测点处不同时间、不同污染物的浓度值,浓度随时间呈现先增大后平稳的趋势,根据污染晕迁移图,污染晕未迁移到S3、S4、ZK7、ZK8、ZK40,因此敏感点始终受到污染物的影响。

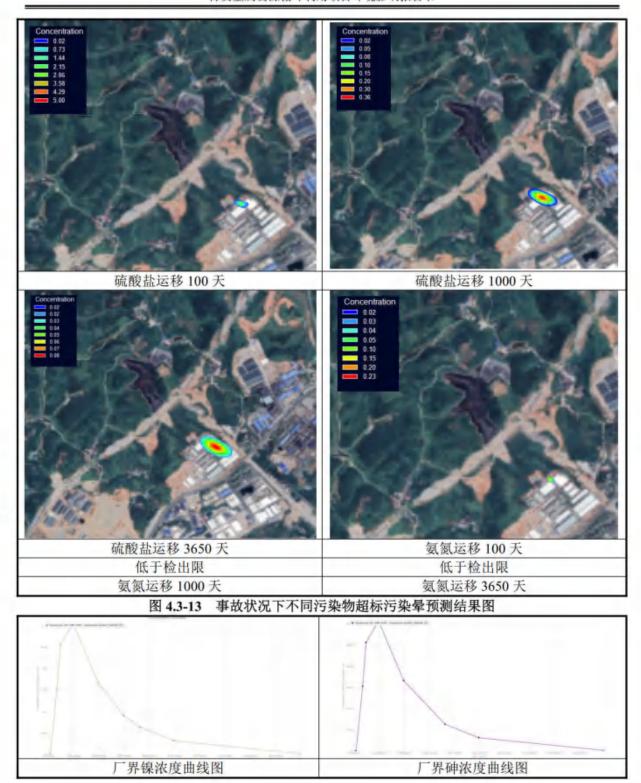
根据渗漏区污染晕迁移见图 4.3-14,其展示了模型运行 100 天、1000 天、3650 天 3 个时段下地下水中污染物的迁移扩散情况。表 4.3-13 针对 3 个典型时间段,统计了不同污染物污染晕的运移距离、污染面积、超标范围。污染晕最终未扩散至下游泉点。

 时间
 水平迁移距离(m)
 污染面积(m²)
 超标范围(m²)
 污染变化

 镍
 100天
 38
 140
 85
 未迁移出场界

 1000天
 72
 2120
 0
 迁移出东南侧场界


表 4.3-13 事故情景下不同污染物超标污染晕预测结果表


3650天	低于低于检出限、污染晕消失						
		砷					
100天							
1000 天		低于低于检出网	艮, 污染晕消失				
3650 天							
		硫酸盐					
100天	38	110	0	未迁移出场界			
1000 天	75	3850	0	迁移出东南侧场界			
3650 天	253	68420	0	迁移出东南侧场界			
		氨氮					
100天	20	110	80	未迁移出场界			
1000天		低于低于检出图	日。运流是海生				
3650 天		167.167.16	民, 行朱军祖大				

调节池污染物镍在平面上地下水中污染晕整体向东南迁移,运移 100 天、1000 天 两个时间点迁移距离为 38m、72m;污染面积约为 140m²、2120m²;运移 100 天出现超标情况,超标范围为 85m²,运移 1000 天时间污染物低于检出限。运移 3650 天污染物低于检出限,污染晕消失

调节池污染物硒浓度较低,100天后污染物浓度降低至检出限以下,污染晕消失。调节池污染物硫酸盐虽然浓度高,污染物泄漏后污染范围先增大后减小,污染物最大浓度逐渐降低,未出现超标情况。

调节池氨氮运移 100 天后,污染物迁移距离 20m,污染范围 110m²,超标范围 80m²,未迁移出厂界;运移 1000、3650 天污染物低于检出限,污染晕消失。

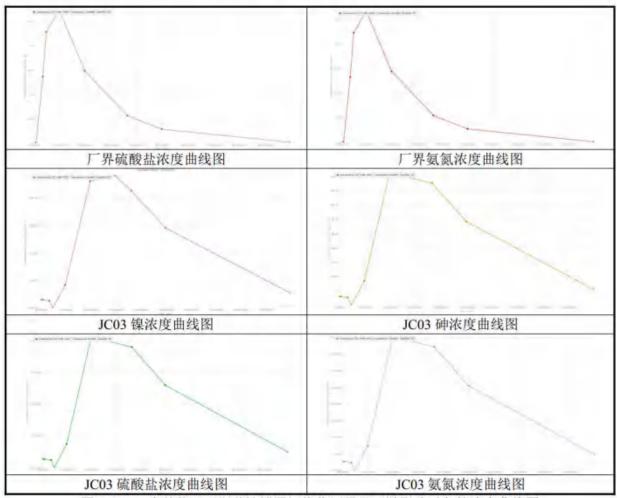


图 4.3-14 事故状况下调节池泄漏污染物厂界及下游影响对象的浓度曲线图

4.3.5.13 预测结果及评价

本次评价选取调节池底部防渗系统由于系统老化等问题,防渗效果达不到设计要求污染物镍、砷、硫酸盐、氨氮作为非正常状况及事故情景下溶质运移模拟预测因子。模拟结果显示非正常状况下及事故情景,污染物下渗进入地下水中,形成超标污染晕,其迁移方向主要受水动力场控制向东南侧。

非正常状况下:超标污染晕的污染面积及迁移距离持续增大,不同污染物最终会迁移到下游的并迁移出东南侧厂界,但均未迁移到下游的分散式饮用水敏感点(S3、S4、ZK7、ZK8、ZK40)。

事故情景下,污染物短暂泄漏,超标污染晕的污染面积及迁移距离呈先增大后减小的趋势,最后全部衰减到《地下水质量标准》(GBT-14848-2017)III类标准值以下。由于污染物浓度较大,不同污染物污染晕均会迁移出东南侧厂界。事故情景污染物均

未迁移到下游的分散式饮用水点(S3、S4、ZK7、ZK8、ZK40)。

建议在污染装置下布设防渗措施,并按相关要求布设监测井和应急抽排水井,防止地下水污染物对场区外地下水环境造成影响。

4.4 声环境影响预测与评价

4.4.1 施工期声环境影响分析

本工程施工期主要噪声源有:推土机、挖掘机、打桩机、振捣机、电锯、运输车辆等。

4.4.1.1 施工期噪声预测模式

按照《环境影响评价技术导则 声环境》(HJ2.4-2021)的规定,将各噪声源视为半自由状态的点声源,确定各噪声源坐标系,并根据预测点与声源之间的距离,按声能量在空气中传播衰减模式计算出某个声源在环境中任何一点的声压等效声级LeadB(A)。

(1) 计算某个点声源在预测点的 A 声级

$$L_{A}(r) = L_{A}(r_{0}) - 20 \lg \left(\frac{r}{r_{0}}\right) - \Delta L$$

式中: $L_4(r)$ 一点声源在预测点产生的A声级, dB(A);

 $L_A(r_0)$ 一参考位置 r_0 处的声压级,dB(A);

r一预测点距声源的距离, m:

 r_0 一参考位置距声源的距离, m:

 ΔL_A 一各种因素引起的衰减量(包括声屏障、遮挡物、空气吸收、地面效应等引起的衰减量,dB(A)。

(2) 如果已知声功率级 LwA, 且声源可看作是位于地面上的,则:

$$L_{s}(r_{0}) = L_{ss} - 20\lg r_{0} - 8$$

4.4.1.2 施工期噪声影响预测结果

根据类比调查,施工各阶段的主要噪声源如下:

- (1) 基础施工阶段:主要噪声源是各种冲击钻机、移动式空压机等,其噪声源的声功率级约80~100dB(A),多是固定声源。其中移动式空压机声源最高,起伏范围一般5~10dB(A),但工作时间占整个建筑施工周期比例较小,无方向性,声功率级为95~102dB(A);冲击钻机声功率级为80~88dB(A)。
- (2) 结构施工阶段:结构施工是建筑施工中周期最长的阶段,一般为一年以上,使用的设备较多,为重点控制噪声阶段。主要噪声源有各种运输设备(汽车、吊车),结构设备有混凝土搅拌机、振捣棒和运输车辆等,还有辅助设备电锯、砂轮机等,主要噪声源有振捣棒和混凝土搅拌机,其声功率级分别为92~100dB(A)和70~79dB(A),这两种声源工作时间较长,影响面较广;辅助设备电锯、砂轮机声功率范围在98~112dB(A),声级较高,但工作时间相对较短。
- (3) 交通噪声:施工时的主要运输机械为中型载重汽车,在运行时的噪声源强为 88~95dB(A),在昼间交通干道两侧 7.5m 范围内,噪声最大值约为 77dB(A),约在 50m 范围内,对来往行人和沿线居民点有一定的影响,对离干道 50m 以外的地方,没有明显的影响。

根据前述预测模式,对施工期不同阶段各噪声设备对周围环境的影响进行计算, 各声源不同距离处经自然衰减后的噪声值见表 4.4-1。

施工	施工 子顺陽 咖啡	声功率级	声	源距离衰	咸, 声级	直 LwA dB	(A)	対の がる 本土 女工
阶段	主要噪声源	L _{WA} [dB(A)]	10m	30m	60m	120m	240m	声源特征
基础	冲击钻机	83.5	63.5	54.0	47.9	41.9	35.9	声源无指向性
施工	空压机	98.5	78.5	69.0	62.9	56.9	50.9	有一定影响
	搅拌机	74.5	54.5	45.0	38.9	32,9	26.9	
结构	振捣棒	96.0	76.0	66.5	60.4	54.4	48.4	工作时间长,
施工	汽吊车辆	88.0	68.0	58.5	52.4	46.4	40.4	影响较广泛,
	电锯	106	86.0	58.5	52.4	46,4	40.4	必须控制
装修	砂轮机	100	80.0	70.5	60.4	58.4	52.4	在考虑室内隔 声量的情况
阶段	升降机	90.5	70.5	61.0	54.9	48.9	42.9	

表 4.4-1 施工期各阶段距声源不同距离的等效声级

施工	- 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	声功率级	声	源距离衰	咸,声级	直 Lwa dB	(A)	去海路北东
阶段	主要噪声源	Lwa[dB(A)]	10m	30m	60m	120m	240m	声源特征
	切割机	100	80.0	70.5	64.4	58.4	52.4	下, 其影响有 所减轻

4.4.1.3 施工期声环境影响评价

(1) 基础施工阶段

在昼间,距主要噪声设备 10m 处的平均等效声级均可满足《建筑施工场界环境噪声排放标准》(GB12523-2011)昼间噪声限值 70 dB(A)的要求。

(2) 结构施工阶段

在昼间,振捣棒及电锯产生的噪声对距离 10m 处场界噪声的平均等效声级将分别超标 6dB(A)、16dB(A),其它设备噪声可满足标准要求;电锯对 30m 处场界噪声的平均等效声级将超标 6.5dB(A),其他设备可满足标准要求;距 60m 处场界噪声均可满足标准要求(电锯略超标 0.4dB)。夜间,10m、30m 处场界噪声仅搅拌机噪声可满足要求,其他设备噪声均超标,超标范围分别为 13~31dB(A)、3.5~21.5dB(A);60m 处场界振捣棒、电锯噪声分别超标 5.4dB(A)、15.4dB(A);120m 处除电锯噪声超标 9.4dB(A)外,其他设备噪声可满足要求;240m 处场界噪声仅电锯噪声超标 3.4dB(A)。

(3) 安装阶段

在昼间,10m、30m 处场界噪声均超标,超标范围分别为0.5~12dB(A)、0.5~2.5dB(A);夜间,10m、30m、60m、120m 处场界噪声超标范围分别为15.5~25dB(A)、6~15.5dB(A)、9.4dB(A)、3.4dB(A);240m 处场界夜间噪声均可满足要求。考虑到上述设备主要在室内使用,其对场界噪声的影响将有所减轻,以室内隔声量为10dB(A)计,昼间30m 处、夜间60m 处场界噪声均可符合标准要求。

根据上述分析,施工期对场界噪声影响最大的是结构施工阶段,昼间超标影响距 离在 30m 左右,夜间超标影响距离为 120m,本项目施工边界 150m 范围内均无声环 境敏感点,施工噪声对周边敏感点的影响较小。

4.4.2 营运期声环境影响预测评价

4.4.2.1 主要噪声源强

营运期产生噪声源主要来源于压滤机、风机、水泵等产生的噪声,噪声值在65~90dB(A)。噪声源特征见表 4.4-4。

4.4.2.2 声波传播途径分析

(1) 声环境敏感点传播特征

根据现场踏勘情况及高程情况,列表给出主要声源和敏感目标的坐标或相互间的 距离、高差,分析主要声源和敏感目标之间声波的传播路径,给出影响声波传播的地 面状况、障碍物、树林等。详见表 4.4-2。

声环境保护目标情况说明(介绍 声环境保护目标 距厂界最 执行标准/功 序号 方位 声环境保护目标建筑结构、朝 名称 近距离/m 能区类别 向、楼层、周围环境情况) 4户, 砖混结构、面向、1~4层 陆家湾 2 类 160 E

表 4.4-2 声环境敏感点特征一览表

(2) 环境基本特征

噪声环境影响预测基础数据见表 4.4-3。

序号 名称 单位 备注 数据 年平均风速 m/s 1.3 1 没有明显主导风向 近20年气象统计数据 2 主导风向 1 3 年平均气温 °C 17.1 年平均相对湿度 4 0/0 78.2 5 大气压强 hPa 970.0

表 4.4-3 声环境影响预测基础数据表

声源和预测点间的地形、高差、障碍物、树林、灌木等的分布情况以及地面覆盖情况(如草地、水面、水泥地面、土质地面等)根据现场踏勘、项目总平图等,并结合卫星图片地理信息数据确定,数据精度为1.5m。

4.4.2.3 声环境影响评价标准

厂界噪声采用《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类区标准,即昼间65dB(A)、夜间55dB(A)。声环境敏感目标采用《声环境质量标准》(GB3096-2008)2 类区标准,即昼间60dB(A)、夜间50dB(A)。

稀贵金属资源循环利用项目环境影响报告书表 4.4-4 主要噪声源特征一览表

the alle to the	+ 100 100 100	A SETTING	9	华标	14年中华	other toll, when other it is	About de de		发声特性		The same of the same of
建筑视名称	可談名極	国 课	X (m)	Y (m)	地間尚程 (m)	南地向及(m)	兜对局及(m)	时间	时段	声源类型参数	游洒/dB(A)
	箱式热解炉	也	116.36	197.74	369.3	1	370.3	昼间,夜间	全时段	声功率级	80
	回转式焚烧炉	垣	141.16	207.6	372.14	-	373.14	昼间,夜间	全时段	声功率级	80
	矿热电炉	点	156.63	235.42	378.27	-	379.27	昼间,夜间	全时段	声功率级	55
	蒸晒回转窑	恒	92.75	173.67	367.57		368.57	昼间,夜间	全时段	声功率级	80
	球磨机	型	150.49	221.12	374.29	1	375.29	昼间,夜间	全时段	声功率级	65
	对辊破碎机	垣	146.66	223.89	374.51	I	375.51	昼间,夜间	全时段	声功率级	80
	混料机	甲	146.17	228.02	375.02	1	376.02	昼间,夜间	全时段	声功率级	65
	水雾化装置1	垣	125.75	188.87	369.14	-	370.14	昼间,夜间	全时段	声功率级	65
	水雾化装置2	40[114,39	177.74	367.22	1	368,22	昼间,夜间	全时段	声功率级	65
	压浸釜1	坦	93.69	176.47	367.75	-	368.75	昼间,夜间	全时段	声功率级	09
	压浸釜2	恒	92.88	177.18	367.78	1	368.78	是间,夜间	全时段	声功率级	09
	压滤机 1	101	95.84	180,49	367.67	1	368.67	昼间,夜间	全时段	声功率级	09
	压滤机 2	416	90'96	180.89	367.67	-	368.67	昼间,夜间	全时段	声功率级	09
	压滤机3	垣	96.47	181.59	367.67	I	368.67	昼间,夜间	全时段	声功率级	09
	压滤机 4	垣	97.14	182.27	367.67	1	368.67	昼间,夜间	全时段	声功率级	09
を存在	压滤机 5	40%	66'26	182.97	367.67	-	368.67	昼间,夜间	全时段	声功率级	09
田米十回	压滤机6	甲	98.72	183,7	367.67	4	368.67	昼间,夜间	全时段	声功率级	09
	压滤机 7	塩	15.66	184.84	367.67	1	368.67	昼间,夜间	全时段	声功率级	09
	风机 1	垣	123.43	186.66	368.75	1	369.75	尽问,夜间	全时段	声功率级	70
	风机2	型	112.42	176.11	368.75	1	369.75	昼间,夜间	全时段	声功率级	70
	风机3	ಀೣೣ	143.75	209.7	368.75	1	369.75	昼间,夜间	全时段	声功率级	70
	泵类	400	140.85	222.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
	泵类	垣	136.81	219.18	374.09	-	375.09	昼间,夜间	全时段	声功率级	50
	泵类	屯	135.37	216.72	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
	泵类	址	133,17	215.62	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
	泵类	点	139,62	221.65	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
	泵类	垣	149.35	230.83	374.09	I	375.09	昼间,夜间	全时段	声功率级	50
	泵类	408	151.4	233.16	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
	泵类	草	153,39	234,4	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
	泵类	坦	156.06	232.82	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
	泵类	100	154.49	231.45	374.09	-	375.09	昼间,夜间	全时段	声功率级	50
	35.35	à	120.021	20 1100	223 00		375 00	E (c) str (c)	ABLER	145 Th 15T 512	03

稀贵金属资源循环利用项目环境影响报告书

n à	245 Arth Blin Ay Tile	中海女孙	中海田	ব	坐标	14年年11	新山谷田	At 34 th the A.		发声特性		SE SE LIEVA
12	建巩彻右你	下部名字	户 碳万个	X (m)	Y (m)	地間向性 (m)	南地向及(m)	纽刈南及 (m)	时间	时段	声源类型参数	源进/db(A)
33		泵类	相談	151.4	229.53	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
34		泵类	41	144,34	221.86	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
35		泵类	垣	142,29	220.01	374.09	I	375.09	昼间,夜间	全时段	声功率级	50
36		泵类	ゼ	140.23	218.84	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
37		泉类	408	137.83	217.67	374.09	-	375.09	昼间,夜间	全时段	声功率级	50
38		泵类	草	137,29	214.18	374.09	1	375,09	昼间,夜间	全时段	声功率级	50
39		泵类	垣	130.84	212.74	374.09	-	375.09	昼间,夜间	全时段	声功率级	50
40		泵类	恒	132.35	212.53	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
41		泵类	400	142.85	222.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
42		泵类	408	144.85	222.68	374.09	-	375.09	昼间,夜间	全时段	声功率级	50
43		系类	400	146.85	222.68	374.09	ı	375.09	昼间,夜间	全时段	声功率级	50
4		泵类	坻	148.85	222.68	374.09	-	375.09	昼间,夜间	全时段	声功率级	20
45		泵类	屯	140.85	224.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
94		泵类	垣	142.85	224.68	374.09	-	375.09	昼间,夜间	全时段	声功率级	50
47		泵类	草	144.85	224.68	374.09	-	375.09	昼间,夜间	全时段	声功率级	50
48		泵类	ゼ	146.85	224.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
46		泵类	屯	148.85	224.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
50		泵类	世	142.85	222.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
51		泵类	草	144.85	222.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
52		泵类	中	146.85	222.68	374.09	-	375.09	昼间,夜间	全时段	声功率级	20
53		泵类	極	148.85	222.68	374.09	-	375.09	昼间,夜间	全时段	声功率级	50
54		泵类	105	140.85	224.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
55		泵类	草	142.85	224.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
99		紀炎	型	144.85	224.68	374.09	I	375.09	昼间,夜间	全时段	声功率级	50
57		泵类	点	146.85	224.68	374.09	1	375.09	是间,夜间	全时段	声功率级	50
58		泵类	10%	148.85	224.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
59		泵类	垣	142,85	222.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
09		聚类	重	144.85	222.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
19		泵类	点	146.85	222.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
62		泉类	±0€	148.85	222.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
63		泵类	垣	140.85	224.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
64		泵类	垣	142.85	224.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
65		秦秦	40	144.85	224 68	374.09		375.09	昼间 移间	今时即	市功率级	20

稀贵金属资源循环利用项目环境影响报告书

n P	THE ACT AND AT THE	世語な発	中公里的中	2	坐标	福州中田 (二)	~/ 抽尽行场	A66.34 - 18- 18- 18- 18- 18- 18- 18- 18- 18- 1		发声特性		SERVINE AND A P.
	建筑视名称	戶場名称	户课形状	X (m)	Y (m)	四回向任 (m)	南地向及 (m)	细刈南及(m)	时间	时段	声源类型参数	源浊/dB(A)
		泵类	相	146.85	224.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
		高频炉	400	100.28	119,44	367.83	1	368.83	昼间,夜间	全时段	声功率级	75
		假烧炉	型	85.1	109.66	368.35	I	369,35	昼间,夜间	全时段	声功率级	7.5
		假烧炉	型	82.88	108.07	368.35	1	369.35	昼间,夜间	全时段	声功率级	75
		极格护	408	84.75	106.28	368.35	-	369.35	昼间,夜间	全时段	声功率级	7.5
		假烧炉	草	86.47	108	368.35	1	369,35	昼间,夜间	全时段	声功率级	75
		干燥箱	中	83.74	120.23	367.93	-	368,93	昼间,夜间	全时段	声功率级	65
		干燥箱	草	84.89	121.59	367.93	1	368.93	昼间,夜间	全时段	声功率级	65
		干燥箱	堀	85.97	122.96	367.93	1	368.93	昼间,夜间	全时段	声功率级	65
		其空机组	418	86.99	108.43	369.09	-	370,09	昼间,夜间	全时段	声功率级	75
		真空机组	垣	67.77	109.3	369.09	ı	370.09	昼间,夜间	全时段	声功率级	7.5
		真空机组	型	68.56	110.66	369.09	-	370.09	昼间,夜间	全时段	声功率级	75
		真空机组	草	69.57	111.45	369.09	1	370.09	昼间,夜间	全时段	声功率级	75
		真空机组	垣	70.72	113.04	369.09	1	370.09	昼间,夜间	全时段	声功率级	75
		真空机组	草	71.87	113.75	369.09	1	370.09	昼间,夜间	全时段	声功率级	75
		离心机	点	44.51	148.64	373.98	1	374.98	昼间,夜间	全时段	声功率级	09
	始細花面	风机	草	54.48	135.03	371.07	1	372.07	昼间,夜间	全时段	声功率级	70
	相相任于国	风机	垣	56.12	136.37	371.07	1	372.07	昼间,夜间	全时段	声功率级	70
		风机	点	57.94	138.01	371.07	1	372.07	昼间,夜间	全时段	声功率级	70
		泵类	中	109.11	124.58	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
		泵类	点	148.85	224.68	374.09	1	375.09	昼间,夜间	全时段	声功率级	50
		泵类	101	108.18	125.36	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
		泵类	草	106.9	127.17	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
		杂类	山	106.05	127.71	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
		泵类	点	95.29	129.69	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
		泵类	草	93.43	128.1	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
		泵类	411	90.77	130.43	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
		泵类	草	92.63	132.36	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
		泵类	型	91.03	134.09	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
		泵类	400	89.43	131.89	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
		泵类	重	86.57	134.69	367.47	1	368,47	昼间,夜间	全时段	声功率级	50
		衰炎	垣	87.97	136.75	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
-		有米	40	86.9	138.15	367.47		368.47	昼间 移间	全时即	市外率级	90

稀贵金属资源循环利用项目环境影响报告书

甘油の場	中知识中	20	坐标	地面 中華	(一) 班内市场	4600年中中		发声特性	.101	SERVICE LABOUR
厂家石矿	上球形女	X (m)	Y (m)	和田同在(m)	南地同及 (m)	纽刈同及(四)	时间	时段	声源类型参数	源进/db(A)
泵类	相	85.11	136.29	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	400	82.71	139.08	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	垣	84.44	140.55	367.47	I	368.47	昼间,夜间	全时段	声功率级	20
泵类	型	82.64	142.74	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泉类	400	80.65	140.61	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	垣	83.64	132.16	367.47	1	368,47	昼间,夜间	全时段	声功率级	50
泵类	型	80.58	130.03	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	単	78.78	131.49	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	恒	81.64	133.56	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	416	80.05	135.69	367.47	-	368.47	昼间,夜间	全时段	声功率级	20
泵类	垣	78.51	137.28	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
泵类	坻	77.38	133.02	367.47	-	368.47	昼间,夜间	全时段	声功率级	20
泵类	栕	75.52	134.49	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
泵类	41	75.92	139.95	367.47	+	368.47	昼间,夜间	全时段	声功率级	50
泵类	垣	71.92	143.88	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
泵类	草	74.05	141.35	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	点	70.53	144.94	367.47	1	368.47	径间,夜间	全时段	声功率级	50
泵类	恒	63.6	148.94	367,47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	草	62.14	150.4	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	型	59.27	148	367.47	-	368.47	昼间,夜间	全时段	声功率级	90
泵类	草	60.27	145.61	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
衰类	101	68.73	132.02	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	草	69.59	131.36	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
杂类	草	71.39	129.49	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
泵类	点	72.32	128.3	367.47	1	368.47	配间,夜间	全时段	声功率级	50
泵类	点	73.45	127,23	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	框	77.32	122.64	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
泵类	草	79.31	120.44	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	垣	81.91	117.64	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	10E	83.24	116.64	367.47		368.47	昼间,夜间	全时段	声功率级	50
泵类	垣	85.77	113.78	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
泵类	垣	83.18	111.65	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
多米	40	76.78	118 38	367.47		368.47	唇间,夜间	今中四	声功率级	90

稀贵金属资源循环利用项目环境影响报告书

245 Art from Ay The	井部ク特	中省場中	2	坐标	福州中村 (111)	(一) 植华西岛	A65 34 18-18-18-1		发声特性	in	NE SEL LABOR
建筑初右你	下家在冬	上球形女	X (m)	Y (m)	地間向性 (m)	南地同及(m)	细刈南及 (m)	时间	时段	声源类型参数	源进(ub(A)
	泵类	相	74.92	120.17	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	41	70.33	123.44	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	90.69	125.23	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
	泵类	坻	67.4	126.23	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	教类	408	65.8	127.96	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	址	64.87	129.29	367.47	1	368,47	昼间,夜间	全时段	声功率级	50
	泉类	相	57.59	148.96	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	垣	56.12	151.24	367.47		368.47	昼间,夜间	全时段	声功率级	50
	泵类	400	53.37	153.92	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	408	51.3	155.59	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	400	54.51	158.54	367.47	ī	368,47	昼间,夜间	全时段	声功率级	50
	泵类	坻	56.46	156.93	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	屯	58.73	154.12	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	車	60.27	152.51	367.47	+	368.47	昼间,夜间	全时段	声功率级	50
	泉类	軍	66.12	160.46	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	点	62.55	163.93	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	岸	64.23	162.04	367.47	1	368.47	径间,夜间	全时段	声功率级	50
	泵类	100	60.87	164.88	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	105.75	138.46	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	108.05	127.71	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	106.05	129.71	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	68.24	158.98	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	60.45	160.77	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	4.类	山	19.89	156.64	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	70.02	155.14	367.47	1	368.47	配间,夜间	全时段	声功率级	50
	泵类	10¢	57.26	163.11	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	垣	59.13	162.18	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	聚类	重	64.11	158.98	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	点	80.99	158.33	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泉类	±0€	62.32	159.92	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	垣	72.02	155.14	367.47	1	368,47	昼间,夜间	全时段	声功率级	50
	泵类	垣	70.02	157.14	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	加米	40	65 97	152 44	367.47		368.47	居间 移间	全时即	南小东路	90

稀贵金属资源循环利用项目环境影响报告书

the Act Alm As The	世語な外	中省場市	2	坐标	地形中田 (一)	一一一世界五年	A65.34 中中中		发声特性		SE SE / ADV AV
是巩彻名 你	下部名称	户砾形外	X (m)	Y (m)	四回向性(m)	南地回及(m)	细刈南及 (m)	时间	时段	声源类型参数	源海/db(A)
	泵类	型	62.74	153.86	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	64.95	153.7	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	62.39	153.31	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	63.76	154.96	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泉类	4116	64.79	155.99	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	垣	66.29	154.49	367.47	1	368,47	昼间,夜间	全时段	声功率级	50
	泉类	型	82.08	126.42	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	83.74	125.49	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	402	84.73	130.56	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	108	86.62	128.34	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	相	80.58	132.03	367.47	ī	368,47	昼间,夜间	全时段	声功率级	50
	泵类	型	82.58	132.03	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	81.2	127.91	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	中	85.19	129.33	367.47	+	368.47	昼间,夜间	全时段	声功率级	50
	泵类	中	87.73	127.59	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	桓	8.29	127.96	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	8.69	127.96	367.47	1	368.47	径间,夜间	全时段	声功率级	50
	泵类	中	67.63	123.29	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	岸	70.92	126.24	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	65.8	129.96	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	南	8.79	129.96	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	40%	65.78	124.8	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	64.55	126.38	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	杂类	中	63.24	127.68	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	57.48	133.99	367.47	1	368.47	配间,夜间	全时段	声功率级	50
	泵类	10% 10%	59.48	133.99	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	73.94	132.74	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	聚类	重	74.8	131.79	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	点	75.62	130.83	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泉类	±0€	76.39	129.67	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	垣	77.82	128.57	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	垣	78.83	127.47	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	体料	40	80.03	126.08	367.47		368.47	昼间,夜间	今时即	声功率级	90

稀贵金属资源循环利用项目环境影响报告书

24 Arth Min At 10		中海田公中	**	坐标	海州中田 (111)	(一) 植华西岛	A65.34 中中中		发声特性	in	SE SE LABORA
是巩彻名 称	E.	户 碳尼公	X (m)	Y (m)	型面向性(m)	南地回及(m)	细刈南及 (m)	时间	时段	声源类型参数	源海(ab(A)
	泵类	北	80.99	125.26	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	41	73.46	130.87	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	恒	74.61	129.96	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	75.52	128.57	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	400	76.86	127.71	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	垣	77.82	126.51	367.47	1	368,47	昼间,夜间	全时段	声功率级	50
	泵类	垣	79.31	125.55	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	80.03	124.5	367.47		368.47	昼间,夜间	全时段	声功率级	50
	泵类	놴	74.37	126.13	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	405	75.81	124.83	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	40	76.43	123.49	367.47	ī	368,47	昼间,夜间	全时段	声功率级	50
	泵类	型	72.45	125.02	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	ゼ	73.46	124.06	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	垣	73.99	123.58	367.47	+	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	74.51	122.82	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	75.14	122.19	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	TE.	76.24	121.38	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	<u>†</u> 0€	71.21	122.38	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	垣	71.83	121.38	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	73.36	120.51	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
	泵类	型	69.44	121.36	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	屯	70.93	119.68	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	屯	72.15	118.56	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	4.类	屯	72.99	117.9	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
	泵类	点	66.17	122.11	367.47	1	368.47	配间,夜间	全时段	声功率级	50
	泵类	点	99.79	119.87	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	₩	9.89	118.47	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	草	91.69	116.97	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	点	63.74	119.59	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泉类	±0€	62.79	117.06	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	泵类	ΑĒ	67.48	115.48	367.47	1	368,47	昼间,夜间	全时段	声功率级	50
	泵类	恒	90.69	114.26	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
	原業	40	58.04	168 09	367.47		368.47	唇间 移间	今时即	古乃率级	909

稀贵金属资源循环利用项目环境影响报告书

	to Arth film Ay The	· 新新力學	中省場市	취	松标	14年年1	_	Man Street Street		发声特性	. 161	ME DE LANGE
H-5	建筑初名 称	戶源名称	户碳形水	X (m)	Y (m)	型面向性(m)	西田同及(田)	知刈南及 (m)	时间	时段	声源类型参数	源浊/dB(A)
231		泵类	100	56.45	166.97	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
232		泵类	中	55.05	165.38	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
233		泵类	恒	53.74	163.79	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
234		泵类	型	52.15	161.83	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
235		泉类	408	50.84	160.71	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
236		泵类	車	49.72	159.68	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
237		泵类	型	48.22	158.65	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
238		東美	垣	44.77	156.03	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
239		泵类	100	44.39	155.66	367.47		368.47	昼间,夜间	全时段	声功率级	50
240		泵类	408	41,4	153.42	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
241		泵类	型	38.51	151.08	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
242		泵类	型	36.08	149.12	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
243		杂类	屯	33.93	147.06	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
244		泵类	中	32.53	145.57	367.47	+	368.47	昼间,夜间	全时段	声功率级	50
245		泵类	中	35.14	144.26	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
246		泵类	垣	38.97	146.22	367.47	Ţ	368.47	昼间,夜间	全时段	声功率级	50
247		泵类	型	41,4	148.56	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
248		泵类	垣	44.3	150.99	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
249		泵类	草	47.85	153.42	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
250		泵类	414	49.44	154.91	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
251		泵类	卓	139.85	216.34	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
252		泵类	屯	141.99	217.13	367.47		368.47	昼间,夜间	全时段	声功率级	50
253		泵类	卓	144.69	218.37	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
254		机类	垣	146.83	220.06	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
255		泵类	点	139.4	211.61	367.47	1	368.47	是间,夜间	全时段	声功率级	50
256		泵类	屯	143.23	212.29	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
257		泵类	山	146.38	213.08	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
258		泵类	草	149.3	215.44	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
259		泵类	桠	161.44	235.74	367.47	T	368.47	昼间,夜间	全时段	声功率级	50
260		泵类	400	165.47	233.15	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
261		泵类	垣	168.06	231.22	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
262		泵类	型	159.82	232.99	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
263		多米	40	162.57	229.76	367.47	-	368.47	昼间.夜间	全时段	声功率级	20

稀贵金属资源循环利用项目环境影响报告书

	hn 47 500	世語ない	中公田田公中	泰	坐标	地面市田 (二)	一一一世界市局	MK3+5-群(1		发声特性	.117	SESE LABORA
广 写	建功初名 称	下端名称	户课形状	X (m)	Y (m)	地面向在(m)	南地向及(m)	细刈南及 (m)	时间	时段	声源类型参数	源浊/dB(A)
264		泵类	400	165.47	227.02	367.47	1	368.47	昼间.夜间	全时段	声功率级	50
265		泵类	椞	156.59	227.83	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
266		泵类	草	160.14	224.92	367.47	I	368.47	昼间,夜间	全时段	声功率级	50
267		泵类	型	162.57	222.01	367.47	1	368.47	昼间.夜间	全时段	声功率级	50
268		泵类	408	154.98	223.95	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
269		泵类	草	158,37	221.37	367.47	1	368,47	昼间,夜间	全时段	声功率级	50
270		泉类	中	127.2	206.18	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
27.1		泵类	単	131.92	202.65	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
272		泵类	框	135.45	199.5	367.47	-	368.47	昼间,夜间	全时段	声功率级	50
273		泵类	408	122,09	200.29	367.47	-	368.47	昼间,夜间	全时段	声功率级	20
274		泵类	恒	62.36	134.63	367.47	ī	368,47	昼间,夜间	全时段	声功率级	50
275		泵类	型	65.28	136.65	367.47	-	368.47	昼间,夜间	全时段	声功率级	20
276		泵类	哲	86'29	138	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
277		泵类	垣	88.08	137.79	367.47	+	368.47	昼间,夜间	全时段	声功率级	50
278		泵类	草	82.1	136.06	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
279		泵类	草	83.62	134.64	367.47	1	368.47	昼间,夜间	全时段	声功率级	50
280		压滤机	草	70.8	104.82	369.18	1	370.18	径间,夜间	全时段	声功率级	50
281		压滤机	垣	72.11	106.75	369.18	1	370.18	昼间,夜间	全时段	声功率级	50
282		压滤机	草	74.04	107.98	369.18	1	370.18	昼间,夜间	全时段	声功率级	50
283		压滤机	型	73.11	103.66	369.18	-	370.18	昼间,夜间	全时段	声功率级	50
284		压滤机	点	74.81	104.82	369.18	1	370.18	昼间,夜间	全时段	声功率级	50
285		压滤机	10th	76.67	106.36	369.18	1	370.18	昼间,夜间	全时段	声功率级	50
286		煅烧炉	草	19.05	104.31	378.34	1	379.34	昼间,夜间	全时段	声功率级	75
287		煅烧炉	点	20.13	105.67	378.34	I	379.34	昼间,夜间	全时段	声功率级	75
288		假烧炉	点	19.97	103.4	378.34	1	379,34	是间,夜间	全时段	声功率级	75
289		煅烧炉	亞	21.38	104.73	378.34	1	379.34	昼间,夜间	全时段	声功率级	75
290 铑铱制	铑铱精炼车	真空机组	班	42.7	105.48	375.88	1	376.88	昼间,夜间	全时段	声功率级	75
291 何	囲	真空机组	草	43.5	104.7	375.88	1	376.88	昼间,夜间	全时段	声功率级	75
292		真空机组	草	44.21	103.87	375.88	1	376.88	昼间,夜间	全时段	声功率级	75
293	/1	真空机组	1 ₫ξ	44.92	103.29	375.88	1	376.88	昼间,夜间	全时段	声功率级	75
294		其空机组	垣	45.43	102.64	375.88	1	376.88	昼间,夜间	全时段	声功率级	75
295		真空机组	垣	46.08	102.06	375.88	1	376.88	昼间,夜间	全时段	声功率级	75
296	Ī	國心机	400	32.75	89.16	375.09	-	376.09	是间,夜间	全时段	声功率级	09

稀贵金属资源循环利用项目环境影响报告书

10 日本			**	坐标	地拉中田 (…)	(一) 抽尽而是	一种与10%		发声特性		SE SE LABOR
建筑初名 桥	5条 戸場名称	外	X (m)	Y (m)	型面向在(m)	南地向及(m)	知刈南及 (m)	时间	时段	声源类型参数	源浊/dB(A)
	离心机	11 点	33.21	92.32	375.09	1	376.09	昼间,夜间	全时段	声功率级	09
298	泵类		55.62	83.2	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
299	泵类	中	53.57	85.48	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
300	泵类	垣	51.91	86.98	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泉类		55.26	88.11	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	416	61.25	85.39	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泉类		57.29	81.54	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
304	泵类	垣	42.95	70.32	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
305	系 类		41.6	69.33	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
306	泵类	408	40.14	67.87	373.08	-	374,08	昼间,夜间	全时段	声功率级	20
307	泵类		40.45	70.52	373.08	ı	374.08	昼间,夜间	全时段	声功率级	50
308	泵类	-TE	39.19	11.11	373.08	-	374.08	昼间,夜间	全时段	声功率级	20
309	泵类	哲	38.08	26.69	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
310	泵类		36.5	71.51	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	相	35.07	73.01	373.08	-	374.08	昼间,夜间	全时段	声功率级	50
	泵类	垣	36.73	74.32	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类		34.36	76.93	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	400	46.11	78.91	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	岸	45.36	79.74	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	中	44.53	80.45	373.08	-	374.08	昼间,夜间	全时段	声功率级	50
	泵		44.61	82.31	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	型	45.56	83.14	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	草	44.33	84.41	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	私类	中	43.58	83.26	373.08	I	374.08	昼间,夜间	全时段	声功率级	50
	泵类	草	41.17	83.86	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	草	40.37	84.77	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	框	39.7	85.52	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	草	39.82	87.38	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	点	40.65	88.33	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	雪	48.04	91.46	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类		46.42	93	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类		54.13	92.54	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
329	泵类	400	51.28	94.7	373.08	-	374.08	昼间,夜间	全时段	声功率级	90

稀贵金属资源循环利用项目环境影响报告书

1100	27 Abn 17 500	世語な発	中地路北	2	坐标	地形中田 (一)	一一一世中五年	A44.04.04.04.		发声特性	in	SERVINE AND AND
-	建功初名 称	戶線名称	户课尼朳	X (m)	Y (m)	和国向在(m)	西田同及(m)	郊内向及(m)	时间	时段	声源类型参数	源浊/dB(A)
330		泵类	相	49.82	96.39	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
331		泵类	40(47.5	98.4	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
332		泵类	草	43.42	95.85	373.08	I	374.08	昼间,夜间	全时段	声功率级	50
333		泵类	坻	39.64	95.16	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
334		农类	408	41.64	97.47	373.08	Т	374.08	昼间,夜间	全时段	声功率级	50
335		泵类	垣	45.24	101.28	373.08	I	374.08	昼间,夜间	全时段	声功率级	50
336		泵类	型	42.85	103.25	373.08	-	374.08	昼间,夜间	全时段	声功率级	50
337		泵类	虹	38.7	100.19	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
338		泵类	408	37.1	8.76	373.08	-	374.08	昼间,夜间	全时段	声功率级	50
339		泵类	408	35.95	66	373.08	-	374.08	昼间,夜间	全时段	声功率级	50
340		泵类	400	34.09	100.19	373.08	-	374.08	昼间,夜间	全时段	声功率级	50
341		泵类	概	32.53	100.08	373.08	-	374.08	昼间,夜间	全时段	声功率级	20
342		泵类	भाई	34.92	101.38	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
343		泵类	垣	37.3	102	373.08	_	374.08	昼间,夜间	全时段	声功率级	50
344		泵类	草	36.52	103.61	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
345		泵类	点	27.81	12.96	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
346		泵类	点	24.6	86.76	373.08	1	374.08	径间,夜间	全时段	声功率级	50
347		泵类	406	25.01	82.71	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
348		泵类	草	26.83	84.22	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
349		泵类	型	29.32	81.99	373.08	-	374.08	昼间,夜间	全时段	声功率级	20
350		泵类	恒	26.36	81.42	373.08	-	374.08	昼间,夜间	全时段	声功率级	50
		泵类	40%	27.61	80.07	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
352		泵类	草	31.55	79.39	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
353		私类	草	40.5	106.03	373.08	I	374.08	昼间,夜间	全时段	声功率级	50
354		泵类	京	35.74	109.45	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
355		泵类	40%	30.23	111.2	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
356		泵类	世	29.47	112.29	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
357		泵类	草	28.05	112	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
358		泵类	草	25.84	109.99	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
359		泉类	±0€	24.42	108.16	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
360		泵类	垣	27.68	114.66	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
361		泵类	ᄺ	33.32	99.31	373.08	I	374.08	昼间,夜间	全时段	声功率级	50
362		灰茶	40	34.47	98.24	373.08		374.08	唇间 夜间	全时段	声功率级	20

稀贵金属资源循环利用项目环境影响报告书

		H-SETT/AB	44	坐标	地形 中田	をはか時に	Act of the state Acres		发声特性	ici	NE SE LABOR
片写 建筑物名称	を開発を	严 躁 尼	X (m)	Y (m)	地間向体(m)	南地向及 (m)	知刈南及 (m)	时间	时段	声源类型参数	源浊/dB(A)
	泵类	相	35.69	97.23	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	椞	36.76	80'96	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泵类	垣	38.2	95.15	373.08	I	374.08	昼间,夜间	全时段	声功率级	50
	泵类	型	31.1	1.66	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	泉类	408	31.89	98.24	373.08	-	374.08	昼间,夜间	全时段	声功率级	50
	泵类	垣	33.25	97.16	373.08	1	374.08	昼间,夜间	全时段	声功率级	50
	杂类	型	34.33	6.3	373.08	-	374.08	昼间,夜间	全时段	声功率级	50
	压滤机	草	39.56	99.14	376.08	1	377.08	昼间,夜间	全时段	声功率级	09
	压滤机	堩	40.63	666	376.08		377.08	昼间,夜间	全时段	声功率级	09
	压滤机	415	41.55	100.72	376.08	-	377,08	昼间,夜间	全时段	声功率级	09
	压滤机	垣	40.17	98.07	376.08	1	377.08	昼间,夜间	全时段	声功率级	09
	压滤机	型	41.24	66'86	376.08	-	377.08	昼间,夜间	全时段	声功率级	09
	压滤机	草	42.21	99.85	376.08	1	377.08	昼间,夜间	全时段	声功率级	09
	压滤机	垣	43.17	100.56	376.08	4	377.08	昼间,夜间	全时段	声功率级	09
	泵类	垣	7.13	132.24	381.14	-	382.14	昼间,夜间	全时段	声功率级	09
	泵类	草	5.83	133.66	381.14	1	382.14	昼间,夜间	全时段	声功率级	09
甲类厂房车	泵类	草	4.66	134.83	381.14	1	382.14	昼间,夜间	全时段	声功率级	60
画	泵类	<u>†</u> 0€	3.24	136,19	381,14	1	382.14	昼间,夜间	全时段	声功率级	09
	风机	草	11.26	137.79	380.7	1	381.7	昼间,夜间	全时段	声功率级	70
	风机	草	12.25	137.11	380.7	-	381.7	昼间,夜间	全时段	声功率级	70
	风机	点	102.56	222.99	371.16	1	372.16	昼间,夜间	全时段	声功率级	09
	风机	垣	104.55	225.12	371.16	1	372.16	昼间,夜间	全时段	声功率级	09
	余热锅炉	垣	123.45	219.42	372.22	1	373.22	昼间,夜间	全时段	声功率级	50
	水泵	草	82.35	186.61	369.18	I	370.18	昼间,夜间	全时段	声功率级	40
	水泵	点	83.34	187.81	369.18	1	370.18	昼间,夜间	全时段	声功率级	40
废气处理系	5 水泵	点	84.6	189	369.18	1	370.18	昼间,夜间	全时段	声功率级	40
统	水泵	世	85.8	190.4	369.18	1	370.18	昼间,夜间	全时段	声功率级	40
	水泵	草	87.26	191.72	369.18	1	370.18	昼间,夜间	全时段	声功率级	40
	水泵	重	83.87	185.55	369.18	1	370.18	昼间,夜间	全时段	声功率级	40
	水泵	Ţij.	85.53	19.981	369.18	1	370.18	昼间,夜间	全时段	声功率级	40
	水泵	垣	87.32	188.67	369.18	1	370.18	昼间,夜间	全时段	声功率级	40
	水泵	垣	88.85	190.53	369.18	1	370.18	昼间,夜间	全时段	声功率级	40
395 污水处理系	6 水泵	400	174.37	286.13	390.61	_	391,61	是间,夜间	全时段	声功率级	55

稀贵金属资源循环利用项目环境影响报告书

п	245 CAST PART AND 425	主部ク外	中地路工	N	坐标	福州中田	(一) 抽心行场	4643年中中		发声特性		SESE LANGE
17.2	建功初名称	下部名字	户碌尼伙	X (m)	Y (m)	地面向在(m)	南地南及 (m)	细刈南及 (m)	时间	时段	声源类型参数	縣斌/ab(A)
396	統	水泵	相	175.89	284.78	390.61	1	391.61	昼间,夜间	全时段	声功率级	55
397		水泵	416	177.23	283.79	390.61	1	391.61	昼间,夜间	全时段	声功率级	55
398		水泵	垣	178.01	282.23	390.61	I	391.61	昼间,夜间	全时段	声功率级	55
399		水泵	型	178.83	281.06	390.61	1	391.61	昼间,夜间	全时段	声功率级	55
400		水泵	408	179.83	280.45	390.61	-	391.61	昼间,夜间	全时段	声功率级	55
401		水泵	垣	180,78	279.37	390.61	1	391.61	昼间,夜间	全时段	声功率级	55
402		水泵	中	182.04	277.9	390.61	-	391.61	昼间,夜间	全时段	声功率级	55
403		水泵	型	183.21	276.69	390.61	-	391.61	昼间,夜间	全时段	声功率级	55
404		风机	框	186.27	290.15	392.07	-	393.07	昼间,夜间	全时段	声功率级	70
405		水泵	408	-8.05	48.14	385.48	-	386.48	昼间,夜间	全时段	声功率级	55
904		水泵	恒	-12.5	52.71	385.48	ī	386.48	昼间,夜间	全时段	声功率级	55
407		水泵	型	-18.79	58.05	385.48	-	386.48	昼间,夜间	全时段	声功率级	55
408		水泵	惊	-26.24	63.97	385.48	7	386.48	昼间,夜间	全时段	声功率级	55
409		水泵	甲	-1.24	55.95	385.48	+	386.48	昼间,夜间	全时段	声功率级	55
410		水泵	草	96'9-	60.53	385.48	1	386.48	昼间,夜间	全时段	声功率级	55
411		水泵	草	-13.83	66.26	385.48	1	386.48	昼间,夜间	全时段	声功率级	55
412		水泵	屯	-23.37	73.32	385,48	1	386,48	昼间,夜间	全时段	声功率级	55
413		水泵	垣	72.53	144.94	367.47	1	368.47	昼间,夜间	全时段	声功率级	55
414		水泵	草	29.69	144.23	367.47	1	368.47	昼间,夜间	全时段	声功率级	55
415		水泵	型	71.45	145.67	367.47	-	368.47	昼间,夜间	全时段	声功率级	55
416		水泵	暫	72.23	146.23	367.47	-	368.47	昼间,夜间	全时段	声功率级	55
417		水泵	400	73.45	145.38	367.47		368.47	昼间,夜间	全时段	声功率级	55
418		水泵	草	73.27	146.6	367.47	1	368.47	昼间,夜间	全时段	声功率级	55
419		水泵	岸	74.31	145.71	367.47	I	368.47	昼间,夜间	全时段	声功率级	55
420		水泵	点	73.12	143.89	367.47	1	368.47	是间,夜间	全时段	声功率级	55
421		水泵	草	74.16	144.6	367.47	1	368.47	昼间,夜间	全时段	声功率级	55
422		水泵	班	\$1.36	128.06	367.47	1	368.47	昼间,夜间	全时段	声功率级	55
423		水泵	草	53.36	128.06	367.47	1	368.47	昼间,夜间	全时段	声功率级	55
424		水泵	草	51.36	130.06	367.47	1	368.47	昼间,夜间	全时段	声功率级	55
425		水泵	±0€	53.36	130.06	367.47	1	368.47	昼间,夜间	全时段	声功率级	55
426		水泵	垣	53.48	127.99	367.47	1	368,47	昼间,夜间	全时段	声功率级	55
427		水泵	415	55.48	127.99	367.47	1	368.47	昼间,夜间	全时段	声功率级	55
428		水色	40	609	140.12	367.47		368.47	居间 移间	今时即	南小家路	55

稀贵金属资源循环利用项目环境影响报告书

(Y)dF/ 在學		55	55	55	55	55	55	55	55	55	55	55
	声源类型参数	声功率级										
发声特性	时段	全时段										
	时间	昼间,夜间										
	纽刈同及(皿)	368.47	368.47	368.47	368.47	368.47	368.47	368.47	368.47	368.47	368.47	368.47
(11) 抽点附包	西田司及(田)	1	1	1	1	1	1	1	1	1	1	1
州面古田 /	地面同性 (m)	367.47	367.47	367.47	367.47	367.47	367.47	367.47	367.47	367.47	367.47	367.47
标	Y (m)	139.13	129.99	129.99	129.99	129.99	131.99	131.99	131.99	131.99	133.99	133.99
坐标	X (m)	59.03	53.48	55.48	57.48	59.48	53.48	55.48	57.48	59.48	53.48	55.48
中班班早	户绿形化	垣	中	坝	垣	草	草	型	垣	草	岸	10
幸酒夕势	工家在客	水泵										
中体物心势	难况初右你							光江ナをは	個小小系统			
미	44	429	430	431	432	433	434	435	436	437	438	439

4.4.2.4 噪声预测模式

(1) 声源概述

声环境影响预测,一般采用声源的倍频带声功率级,A 声功率级或靠近声源某一位置的倍频带声压级,A 声级来预测计算距声源不同距离的声级。

工业声源有室外和室内两种声源,应该分别计算。

在环境影响评价中,可根据预测点和声源之间的距离 r,根据声源发出声波的波阵面,将声源划分为点声源、线声源、面声源后进行预测。在环境影响评价中遇到的实际声源一般可用以下方法将其划分为点声源进行预测。

实际的室外声源组,可以用处于该组中部的等效点声源来描述。一般要求组内的声源具有大致相同的强度和离地面的高度;到接收点有相同的传播条件;从单一等效点声源到接收点的距离 r 超过声源的最大几何尺寸 H_{max}二倍(r>2H_{max})。假若距离 r 较小(r≤2H_{max}),或组内的各点声源传播条件不同时(例如加屏蔽),其总声源必须分为若干分量点声源。

一个线源或一个面源也可分为若干线的分区或若干面积分区,而每一个线或面的 分区可用处于中心位置的点声源表示。

(2) 预测模式

依据《环境影响评价技术导则 声环境》(HJ2.4-2021),本次评价采用《环境影响评价技术导则 声环境》(HJ2.4-2021)推荐的附录 A(规范性附录)户外声传播的衰减和附录 B(规范性附录)中"B.1 工业噪声预测计算模型。

(3) 坐标系的建立

本项目以项目用地红线西南角拐点处为坐标原点(0,0,0), 东西为 X 轴, 南北为 Y 轴建立坐标系, 预测点高度为 1.2m。

4.4.2.5 预测结果及评价

(1) 厂界噪声预测结果及评价

根据拟建项目设备噪声源强分布,利用 HJ2.4-2021 推荐的噪声预测模式,预测出本次工程的主要设备噪声源在采取相应的降噪措施后对厂界环境噪声的贡献值,得出

其预测结果见表 4.4-5 及图 4.4-1。

本项目为新建项目,厂界噪声以工程噪声贡献值作为评价量。根据表 4.4-3 噪声预测结果可看出,在采取降噪措施后,厂界四周昼间和夜间均能够达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准。

(2) 声敏感点噪声预测结果及评价

声环境敏感点噪声预测结果见表 4.4-6。本项目建成后厂界周边声环境保护目标均可以满足《声环境质量标准》(GB3096-2008),噪声对周边居民影响较小。

稀贵金属资源循环利用项目环境影响报告书

此中											
	名称	總金	X(m)	Y(m)	地面高程(m)	离地高度(m)	贡献值(dB)	功能区类型	标准值	是否达标	与标准差值
	日大喜合用とし	11%	10.43	2000	200	00.1	32.63	*	65	叫	-32.37
		Z	19.73	70.067	200.12	1.20	32.63	*	55	串	-22.37
	国大道州州立し	CIA	17.44	41.03	205 13	00	35.18	*	65	岩	-29.82
7	1 区四闸则从外	NZ	-47.44	41.62	393.13	1.20	35.18	× ×	55	叫	-19.82
	田大田の大田の	212	01 501	104 00	20 020	000	37.81	*	65	田	-27.19
	1 区外開閉圾外	SS	197,10	184.89	5/0.55	1.20	37.81	*	55	石	-17.19
	一〇个七個光田	7	77 000	10000	30 350	000	13.69	*	65	中	-51.31
	/ 区东北侧双乔	4	789.40	300.31	5/5.95	1.20	13.69	3 米	55	田	-41.31
	田共二世田二一个过去	21.4		20 555	20.504	000	24.91	*	65	叫	-40.09
0	個小公司/ 介绍北边外	S	11.61-	20.676	403.27	1.20	24.91	*	55	平	-30.09
	第四人山口田川市江田	NY	00 173	543	23,450	00.	3.73	*	99	平	-61.27
0	加小公司) 乔四周丛乔	ON	-541.50	-347.33	2/4.03	1.20	3.73	K.	55	石	-51.27
"	発耳八回に固た高温	_	475.00	10.50	354.08	00.	23.56	*	65	岩	-41.44
	届かなり かか田辺が	N	473.30	-19.00	334.90	1.20	23.56	K	55	垣	-31.44

					表 4.4-6	项目运营期	用敏感点噪声	声预测结果一	-览表				
中中	名称	X(m)	Y(m)	地面高程 (m)	离地高度 (m)	时段	贡献值 (dB)	背景值 (dB)	叠加值 (dB)	功能区类型	标准值	是否法标	与标准差值
-	陆家湾	348.75	364.13	366.91	1.20	長间夜间	12.15	53.00	53.00	2 类 次	60	音	-7-

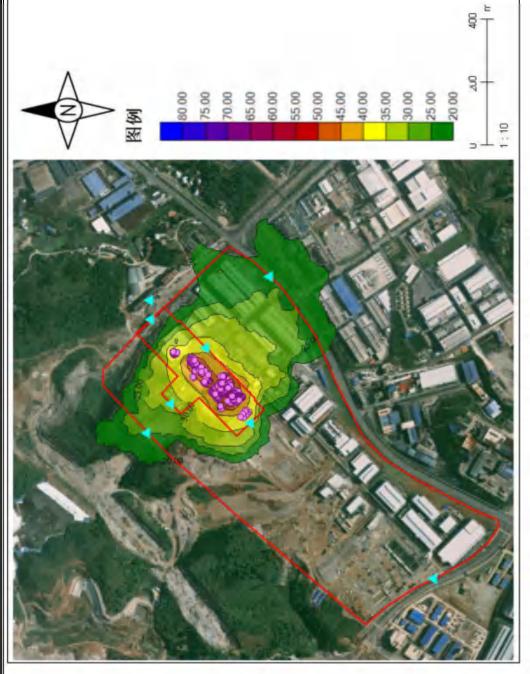


图 4.4-1 噪声贡献值等值线图

4.4.2.6 声环境影响评价自查表

I	作内容				自查	项目			
评价等级	评价等级		一级口			二级🗸	=	.级□	
与范围	评价范围	200 m☑		大于:	200 m	חם		1	于 200 ma
评价因子	评价因子	等效连续	A声级☑	最大	大A 声	哲级□	计权等效法	车续见	感觉噪声级□
评价标准	评价标准	国家	标准☑	地	方标	准口			国外标准口
	环境功能区	0 类区□	1 类区口	2 类区	Ø	3 类区区	4a 类	Z _D	4b 类区□
	评价年度	初期□		近期☑		中其	月口		远期□
现状评价	现状调查方法	现均	る实测法☑		现场	实测加模型	计算法口	ı	火集资料 口
	现状评价	达标百	分比			1	00%		
噪声源 调查	噪声源调查方 法	现场实	测口	Ē	已有资	料図		研究	2成果□
	预测模型	导则推荐模型☑				ļ	E他 □		
声环境影	预测范围	200	m☑	大子	200	mu	小	于 200) mp
响预测与	预测因子	等效连续 A	声级☑	最大人	4 声级	及口	计权等效法	车续想	8觉噪声级口
评价	厂界噪声贡献 值					不达	示口		
	声环境保护目 标处噪声值				不达标口				
TT 100 (IE-20)	排放监测	厂界监测	□ 固定位	2置监测0		自动监测口	手动监测	Ø	无监测□
环境监测 计划	声环境保护目 标处噪声监测	监测因子:	(等效连续	A声级)	监测点	位数 (1)		无监测口
评价结论	环境影响			可行☑		不可行	'n		

表 4.4-4 声环境影响评价自查表

4.5 固体废物影响分析

4.5.1 施工期固体废物影响分析

本项目施工期较短,施工量较小,施工范围仅局限于厂房内,产生的少量固废经 及时清运处置后对周边环境影响较小。

生活垃圾含有大量的有机物,如果储放不当或者运输不及时易产生臭气,寄生蚊蝇,影响空气质量和环境卫生。土石方和建筑垃圾若无需堆放,雨水冲刷会造成水土流失影响附近地表水;土石方和建筑垃圾若不采取防尘措施和及时清运,风气扬尘将影响周边环境空气。

(1) 土石方: 本项目建筑基础开挖产生的土石方运至当地政府指定的弃土场堆

存。

- (2) 建筑垃圾:本项目产生的建筑固废量为 254.5t,将建筑垃圾分类,尽量回收其中尚可利用的部分建筑材料,对没有利用价值以及不能回填的废弃物应妥善堆放、及时进行合法处置。本项目防渗施工施工改造,需对地面浅层车间混凝土地面开展逐层铲除后开展危险废物鉴别,对属于危险废物的,委托有资质的单位处置,不属于危险废物的按照建筑垃圾运至当地政府指定的建筑垃圾填埋场堆存。
- (3)生活垃圾:施工期间生活垃圾设置生活垃圾收集设施,整个施工期施工人员生活垃圾产生量为5.4t,定期交由园区环卫部门清运处置,不会对周围环境造成明显影响。

4.5.2 营运期固体废物影响分析

4.5.2.1 固体废物种类及产生量

本工程固体废物产生及处理处置情况见表 4.5-1。

处置措施 固废属 产生量/ 固废名称 固废代码 处置量 最终去向 性 工艺 (t/a) (t/a) 一般工 900-099-水淬渣 11725,77 11725,77 外售铁回收企业 业固废 自行贮存 待鉴定 委托处置 废耐火材料 160 160 根据鉴别性质处置 废物 自行贮存 一般工 900-099-废石墨电极 14 14 外售资源回收企业 业固废 S59 委托利用 一般工 900-099-自行贮存 外壳 167 167 外售资源回收企业 业固废 **S17** 委托利用 待鉴定 自行贮存 水淬渣 3851.4 3851.4 根据鉴别性质处置 废物 委托处置 危险废 自行贮存 废耐火材料 722-003-18 0.15 0.15 交由危废资质单位处置 物 委托处置 261-013-一般工 自行贮存/ 浸出渣 0.06 0.06 送至矿热电炉 业固废 S16 自行处置 待鉴定 自行贮存 水淬渣 5885.02 5885.02 根据鉴别性质处置 1 废物 委托处置 一般工 261-013-自行贮存 浸出渣 0.54 0.54 送至矿热电炉 S16 业固废 自行处置 待鉴定 自行贮存 水淬渣 1 2021.74 2021.74 根据鉴别性质处置 废物 委托利用 一般工 261-013-自行贮存 浸出渣 0.26 0.26 送至矿热电炉 S16 业固废 自行处置 危险废 铜镍渣 261-087-46 16.5 送至矿热电炉 16.5 物 自行贮存 般工 900-099-自行处置 不溶渣 2.0 2.0 进铑铱预处理工序 业固废 \$59

表 4.5-1 固体废物产生量统计表

稀贵金属资源循环利用项目环境影响报告书

GR1612-07	固废属	H. 1. 11. 12	产生量/	处置		Will S. I.
固废名称	性	固废代码	(t/a)	工艺	处置量 (t/a)	最终去向
浸出渣	待鉴定 废物	T	5,37	自行贮存 委托利用	5.37	根据鉴别性质处置
不溶渣	一般工 业固废	900-099- S59	0.5	自行贮存	0.5	送至矿热电炉
置换渣	一般工 业固废	900-099- S59	1	委托处置	1	送至矿热电炉
置换渣	一般工 业固废	900-099- S59	1	自行贮存	T	进铑铱预处理工序
不溶渣	一般工业固废	900-099- S59	1,0	自行处置	0.1	进铑铱预处理工序
不溶渣	一般工 业固废	900-099- S59	17.81	自行贮存	17.81	进铑铱预处理工序
置换渣	一般工业固废	900-099- S59	0.32	自行处置	0.32	送至矿热电炉
过滤渣	一般工 业固废	900-099- S59	3	自行贮存	3	送矿热电炉
铜镍渣	危险废物	261-087-46	1.0	自行处置	1.0	送矿热电炉
过滤渣	一般工 业固废	900-099- S59	0.1		0.1	送至矿热电炉
置换渣	一般工业固废	900-099- S59	0.3	自行贮存/ 自行处置	0.3	送至矿热电炉
过滤渣	一般工业固废	900-099- S59	1.5		1.5	送至矿热电炉
压滤渣	危险废 物	772-006-49	763	自行贮存 自行处置	763	送矿热电炉
废滤布	危险废物	900-041-49	0.50	自行贮存自行处置	0,50	送焚烧炉处置
废滤料	危险废 物	900-041-49	2.5	自行贮存 自行处置	2.5	送焚烧炉处置
收尘灰	危险废物	900-041-49	247.332	自行贮存 自行处置	247.332	金、银工序布袋收尘灰返回铸 锭,其余收尘灰送矿热电炉
废布袋	危险废 物	900-041-49	0,14	自行贮存 自行处置	0.14	送焚烧炉处置
废活性炭	危险废物	900-039-49	1.5	自行贮存 自行处置	1.5	送焚烧炉处置
废矿物油	危险废 物	900-214-08	1.8		1.8	交由危废资质单位处置
废机油桶	危险废物	900-249-08	0.3	自行贮存 委托处置	0.3	交由危废资质单位处置
化验室废物	危险废物	900-047-49	0.8		0.8	交由危废资质单位处置
赤铁矿废破损 吨袋	一般固度	900-099- S59	2.3	自行贮存 委托利用	2.3	外售资源回收公司
辅料废吨袋	一般固度	900-099- S59	16.71	自行贮存自行利用	16.71	回用于水淬渣包装
废催化剂废吨 袋	危险废物	900-041-49	6.67	自行贮存	6.67	送焚烧炉处置
沾染毒性的化 学品包装物	危险废物	900-041-49	2617 个/a	自行处置	2617 个/a	送焚烧炉处置,金属桶交由危防 资质单位处置
其他包装物	一般固废	900-099- S59	5505 个/a	自行贮存/ 自行利用	5505 个/a	外售资源回收公司

4.5.2.2 生活垃圾环境影响分析

本项目产生的生活垃圾,如不合理处置,随意丢弃,则会造成生活垃圾经微生物发酵后,将产生恶臭气体,恶臭气体对环境空气造成污染,造成人类感官不适等。生活垃圾渗滤液含高浓度的 COD、NH₃-N等,这类渗滤液进入地表水和地下水环境,都将对原有水环境造成污染,影响水生态平衡,严重时将对地下水造成危害。

本项目不新增生活垃圾产生,现有生活垃圾采用分类垃圾箱统一收集后,交由园 区环卫部门集中清运,不向外环境排放。

4.5.2.3 一般工业固体废物环境影响分析

- 一般固体废物排放至环境中一般不会对环境造成直接污染,但是如不规范处置措施,随意外排至环境中,将导致次生环境污染问题。一般固废影响主要有以下几方面。
- (1) 占用土地。本项目产生的固体废物如未进行集中处置,随意排放至环境中, 分散的处理方式将占用大量的土地,导致土地资源浪费,对人类和动植物的生产空间 造成影响。
- (2)造成生态破坏。随意外排的工业固体废物堆放于土地表面,散乱的堆存将扩大占地面积,影响地表植物生长,将导致大量的荒地。地表植物减少将增大水土流失风险,造成生态环境破坏。
- (3)污染土地。随意外排的固体废物进入土壤后,将导致土壤结构的改变,特别 是生活垃圾如不集中处置,排放至自然环境中腐败后产生渗滤液将对土壤环境造成污染,对土壤中微量元素含量造成影响,降低土壤活性。
- (4) 水环境污染。随意外排的固体废物随着雨水冲刷,将产生大量的渗滤液,如滤渣渗滤液含高镍、锰等重金属,这类渗滤液进入地表水和地下水环境,都将对原有水环境造成污染。同时,固体废物如直接排放至水环境中,将对水环境造成严重破坏。
- (5)资源浪费。本项目产生的固体废物中失效汽车尾气催化剂外壳、废吨袋、赤铁矿冶炼水淬渣、废石墨电极等,可经回收加工后作为再生资源利用,如直接外排,不仅造成环境污染,且产生极大的资源浪费。

本项目一般固废均得到了合理的处置,不向外环境排放,不对周边环境产生影

响。

4.5.2.4 危险废物环境影响分析

项目产生的危险废物主要为回转焚烧炉废耐火材料 HW18(722-003-18)、含镍废物 HW46(722-003-18)、废活性炭 HW49(900-039-49)、压滤渣 HW49(772-006-49)、实验室废物 HW49(900-047-49)、废矿物油 HW08(900-214-08)等,这部分危险废物如未经妥善收集,进入外环境,将对环境造成直接危害,破坏环境质量。

废矿物油(HW08)中主要含烃类物质,含镍废物 HW46(722-003-18)、压滤渣 HW49(772-006-49等主要含重金属,项目产生的废矿物油、含重金属渣如未经处理直接排入自然环境,对河流、土壤、生物造成污染。这种污染一般是范围较广、面积较大、后果较为严重,达到自然环境的完全恢复需要相当长的时间。对地表水的影响也是不能轻视的,地表水一旦遭到废矿物油、重金属的污染,水生生物会遭受破坏,人畜根本无法饮用;同时也有可能污染土壤和地下水,污染的土壤不仅会造成植物的死亡,而且土壤层吸附的油品还会随着下渗补充到地下水,含水层的自净降解将是一个长期的过程,达到地下水的完全恢复需几十年甚至上百年的时间。

本项目产生的危险废物暂存在新建危废暂存间,定期交由有危废处置资质的单位 处置,不向外环境排放,因此,本项目产生的危险废物不会对外环境产生影响。

4.6 土壤环境影响预测与评价

4.6.1 土壤环境影响识别

根据项目工程组成,可分为建设期、营运期两个阶段对土壤环境的影响。

施工期环境影响识别主要针对施工机械在使用过程中,施工人员在施工生活过程中,固体废物在临时堆存过程中对土壤环境产生影响。

营运期环境影响识别主要针对项目大气污染物的排放,以及污水预处理设施、危险废物暂存设施、应急事故池等使用过程中对土壤环境的影响。

本项目对土壤环境的影响类型和途径见表 4.6-1,对土壤环境的影响源及影响因子识别见表 4.6-2。

表 4.6-1 土壤环境影响类型与途径表

_		The state of the s	
ſ	时段	污染影响型	

稀贵金属资源循环利用项目环境影响报告书

	大气沉降	地面漫流	垂直入渗
建设期	1	1	√
营运期	V	1	√.

表 4.6-2 土壤环境影响源影响因子识别表

污染源	污染途径	污染因子	情景
矿热电炉、焚烧炉	沉降	铅、砷、镍、镉、二噁英	正常排放
污水池	垂直入渗	镍、砷	事故排放

4.6.2 预测评价范围

与现状调查范围一致,即项目占地范围内及以厂界线外延 1km 范围内。

4.6.3 预测情景设置

- (1) 污水处理站调节池发生破损渗漏,可能产生垂直入渗对土壤产生污染。
- (2) 大气污染物正常排放情况下对下风向土壤环境的影响,预测废气中污染物通过大气沉降进入周边土壤中的累积影响程度。

4.6.4 预测与评价因子

- (1) 渗漏点源垂直进入土壤环境的影响预测因子选择锰、镍。
- (2) 大气沉降预测和评价因子选取本项目的特征污染物锰及其化合物、镍、二 噁英。

4.6.5 预测与评价方法

本项目为污染影响型,预测方法采用《环境影响评价技术导则-土壤环境(试行)》(HJ964-2018)附录E推荐模型进行预测。具体计算公式如下:

(1) 通过大气沉降进入土壤环境,导致土壤中某种物质增加量的计算公式如下:

$$\Delta S=n(I_S-L_S-R_S)/(\rho_b\times A\times D)$$

 $S=S_b+\Delta S$

式中: AS——单位质量表层土壤中某种物质的增量, g/kg

Is——预测评价范围内单位年份表层土壤中某种物质的输入量, g

Ls——预测评价范围内单位年份表层土壤中某种物质经淋溶排出的量, g

Rs——预测评价范围内单位年份表层土壤中某种物质经径流排出的量, g

P_b——表层土容重, kg/m³ (本次评价取值 1310kg/m³)

A---预测评价范围, m²

D----表层土壤深度,一般取 0.2m

N---持续年份, a

S——单位质量土壤中某种物质的预测值 g/kg

Sb——单位质量土壤中某种物质的现状值, g/kg

(2) 根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018),采用导则附录 E 中"E.2.2 预测方法",通过渗漏进入土壤环境,渗漏物质进入土壤的深度计算方程采用一维非饱和溶质垂向运移控制方程:

$$\frac{\partial(\partial z)}{\partial t} = \frac{\partial}{\partial z} \left(\partial D \frac{\partial c}{\partial z} \right) - \frac{\partial}{\partial z} (gc)$$

式中: C——污染物介质中的浓度, mg/l;

D---弥散系数, m2/d (取 11.6);

Q----渗流速率, m/d (取 0.09);

z---沿z轴的距离, m;

t---时间变量, d (设置为 0.1-2);

θ_____土壤含水率,%:

初始条件: c(z, t)=0 t=0, L≤z<0

边界条件: c(z, t)=c0 t>0, z=0

4.6.6 预测源强及模型参数

(1) 大气沉降预测源强及模型参数

根据大气环境影响预测 AERMOD 模型预测出最大网格点处的年总沉积,即铅、砷、镍、镉、二噁英最大年输入量分别为 0.0526g/m²·a、0.0126g/m²·a、0.0005g/m²·a、0.00003g/m²·a、9.872ng/m²·a。

- (2) 垂直入渗预测源强及模型参数
 - ①、预测源强

根据 4.3 节计算, 调节池污水垂直入渗源强见表 4.6-3。

表 4.6-3 调节池垂直入渗源强统计表

污头	2因子	调节池
公里 社座	砷 (mg/L)	26.26
渗漏浓度	镍 (g/L)	159.75

②、模拟模型选择

为了解污水处理设施渗漏对厂区土壤影响,通过周边水文钻孔资料可知,项目所在区域主要为黄色黏土层,厚度约为6m,土层层次结构不明显,因此将项目区土壤概化为1层厚6m黏土层进行模拟,预测污染物运移浓度随深度变化情况。

HYDRUS 作为可用于模拟水、热和溶质运动在一维、二维和三维非饱和带介质的 软件,它可以进行 Richards 非饱和带水流方程及对流—弥散方程的数值计算。本次评价利用 HYDRUS-1D 软件建立一维模型模拟污染物在土壤中的垂向运移情况。

②、模型参数设定

HYDRUS-1D 中水分迁移模型需要确定的土壤水力参数根据现场调查土壤种类, 选择软件自带不同种类土壤的设定参数。

③、观测点位设定

观测时间设定:设定-20cm、-50cm、-100cm、-200cm、-300cm、-600cm 等 7 个观测点,观测污染物的变化。

设置时间观测点:包括5天,10天,20天,50天,100天。

④、初始条件

本次模拟预测假定初始非饱和带中污染物的含量为零,即假定非饱和带尚未被污染。忽略泄漏污染物在运移过程中的化学反应作用。

污染物持续性泄漏可看作连续注入点源,上边界为持续释放污染物的定浓度边界;下边界为零浓度梯度边界。

4.6.7 预测结果

(1) 通过大气沉降对土壤环境预测结果

本评价预测采用最不利情况进行预测,即不考虑土壤中某种物质通过淋溶排出的量和通过径流排出的量,预测评价范围考虑每种重金属不同的最大落地浓度范围。

表 4.6-4 各大气沉降对土壤环境影响预测结果表

預測	重金属年输入量	预测评价	表土容重	表层深度	持续年	增加值	现状值	叠加值
因子	(g/m ² ·a)	范围(m²)	(kg/m³)	(m)	份(a)	(mg/kg)	(mg/kg)	(mg/kg)
			环境份	保护目标处				
	0.0126	1000000	1310	0.2	10	4.80916E-10	29	29,000
砷	0.0126	1000000	1310	0.2	30	1.44275E-09	29	29.000
	0.0126	1000000	1310	0.2	50	2.40458E-09	29	29,000
	0.0005	1000000	1310	0.2	10	1.9084E-11	43	43,000
镍	0.0005	1000000	1310	0.2	30	5.72519E-11	43	43,000
	0.0005	1000000	1310	0.2	50	9.54198E-11	43	43.000
	0.000003	1000000	1310	0.2	10	1.14504E-13	0.16	0.160
镉	0.000003	1000000	1310	0.2	30	3,43511E-13	0.16	0.160
	0.000003	1000000	1310	0.2	50	5.72519E-13	0.16	0.160
	0.0526	1000000	1310	0.2	10	2.00763E-09	50.1	50.100
铅	0.0526	1000000	1310	0.2	30	6.0229E-09	50.1	50.100
	0,0526	1000000	1310	0.2	50	1.00382E-08	50.1	50,100
nas	0.872ng/m ² ·a	1000000	1310	0.2	10	3.32824E-14	4.90E-08	4.90E-08
二噁	0.872ng/m²-a	1000000	1310	0.2	30	9.98473E-14	4.90E-08	4.90E-08
英	0.872ng/m ² ·a	1000000	1310	0.2	50	1.66412E-13	4.90E-08	4.90E-08
			占	地范围				
	0.0126	1000000	1310	0.2	10	4,80916E-10	59	59.000
砷	0.0126	1000000	1310	0.2	30	1.44275E-09	59	59.000
	0.0126	1000000	1310	0.2	50	2,40458E-09	59	59,000
	0.0005	1000000	1310	0.2	10	1.9084E-11	112	112.000
镍	0.0005	1000000	1310	0.2	30	5.72519E-11	112	112.000
	0.0005	1000000	1310	0.2	50	9.54198E-11	112	112.000
	0.000003	1000000	1310	0.2	10	1.14504E-13	2.29	2.290
镉	0.000003	1000000	1310	0.2	30	3.43511E-13	2.29	2.290
	0.000003	1000000	1310	0.2	50	5.72519E-13	2.29	2.290
	0.0526	1000000	1310	0.2	10	2.00763E-09	122	122.000
铅	0.0526	1000000	1310	0.2	30	6.0229E-09	122	122.000
	0.0526	1000000	1310	0.2	50	1.00382E-08	122	122.000
нате	0.872ng/m ² ·a	1000000	1310	0.2	10	3.32824E-14	6.90E-06	6.9E-06
- 嗯	0.872ng/m ² ·a	1000000	1310	0.2	30	9.98473E-14	6.90E-06	6,9E-06
英	0.872ng/m ² ·a	1000000	1310	0.2	50	1.66412E-13	6.90E-06	6.9E-06

由表 4.6-4 可知, 经大气扩散和沉降后 50 年后, 本工程通过废气排放途径排放出的铅、砷、镍、镉、二噁英, 在第 10、30、50 年其占地范围内土壤中的叠加浓度仍满足《土壤环境质量标准 建设用地土壤污染污染风险管控标准(试行)》(GB36600-2018)中表 2 (第二类用地土壤污染风险筛选值)标准, 在土壤敏感目标处镍、锰土

壤中的叠加浓度仍满足《土壤环境质量 农用地土壤污染风险管控标准》(GB15618-2018)表 1 筛选值的要求。

(2) 通过渗漏对土壤环境的影响预测结果

污染物通过渗漏,垂直进入土壤环境的影响预测情景主要考虑短时间渗漏情况污染物的影响深度。预测结果见图 4.6-1~4.6-2。

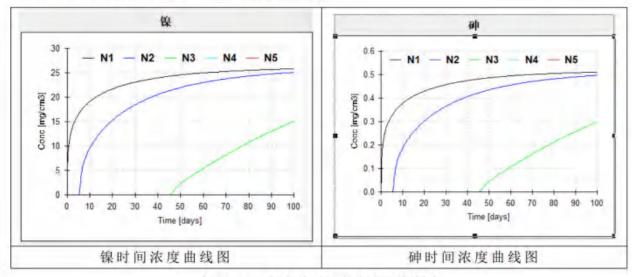


图 4.6-1 污染物时间变化浓度曲线图

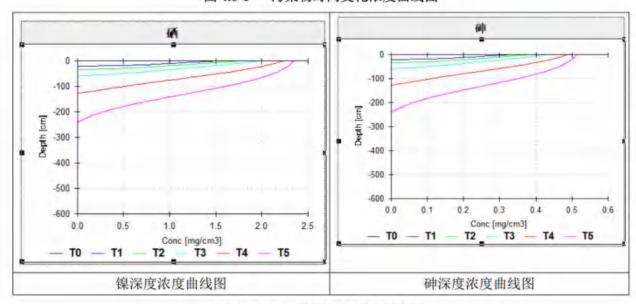


图 4.6-2 污染物深度浓度曲线图

污水发生泄漏以点源形式垂直入渗进入土壤环境时,100d内污水池下伏土壤层影响深度为3m。说明在事故情况下,污水池污废水以点源形式垂直进入土壤环境,将会对下层土壤环境造成一定的影响。

因此,建设单位应加强对污水池的运行维护,主要设备应有备用配件,同时做好

池底防渗工程, 杜绝污废水的事故排放和泄漏情况发生。

4.6.8 土壤环境影响评价自查表

表 4.6-4 土壤环境影响评价自查表

	工作内容		5	完成情况		备注
	影响类型	污染影响型团:	生态影响型口: 两	种兼有口		
	土地利用类型	建设用地区; 农	用地 ☑: 未利用	地口		
	占地规模	(66.08) hm ²				
	敏感目标信息	敏感目标 (耕地	、居民点)、方(立(四周)、距离()		
影响	影响途径			渗☑: 地下水位□: 其他	1 ()	
识别		镍、锰、二噁英	A STATE OF THE PARTY OF THE PAR			
1711	特征因子	镍、锰、二噁英				
	所属土壤环境影响					
	评价项目类别	I类☑; II类□; II	I类口;IV类口			
	敏感程度	敏感☑: 较敏感	☑: 不敏感□			
	评价工作等级	一级区: 二级口:	三级口			
	资料收集	а) п: b) п: с)				
	理化特性		离子交换量在 5.2	~7.9 之间,由此可见,i 吧能力弱	問查区域的土壤保	同附录 C
			占地范围内	占地范围外	深度	
现状		表层样点数	2	5	0.2m	
调查 内容	现状监测点位	柱状样点数	4	0	0~0.5m, 0.5~1.2m, 1.5~3m	点位布置图
现状	4.1 A STATE OF THE					
评价	1部1人に生	CD 15(10)		页, 共52项	[s]	
DI.	评价标准 现状评价结论	GB 1301822; GI		10: 表 D.20: 其他(B 15618、GB 36600	ν	
_				2 13019 * OB 30000		
			40			
	预测因子	附录cD. 附录c		锰、二噁英		
影响		附录E☑: 附录F 影响范围(100 影响程度(不会	口: 其他(锰、二噁英		
影响	预测因子 预测方法	影响范围(100	n; 其他(0000) 对周边农用地土均 d; b) n; c) n	锰、二噁英		
	预测因子 预测方法 预测分析内容	影响范围(100 影响程度(不会 达标结论:a) 不达标结论:a)	u; 其他(0000) 对周边农用地土均 d; b) u; c) u u; b) u	锰、二噁英	<u>P</u> ()	
	预测因子 预测方法 预测分析内容 预测结论	影响范围(100 影响程度(不会 达标结论: a) 2 不达标结论: a) 土壤环境质量现	u; 其他(0000) 对周边农用地土均 d; b) u; c) u u; b) u	锰、二噁英) 囊产生明显影响)	上() 监测频次	
	预测因子 预测方法 预测分析内容 预测结论	影响范围(100 影响程度(不会 达标结论:a) 不达标结论:a) 土壤环境质量现 监测	ロ: 其他(0000) 对周边农用地土切 d; b)ロ; c)ロロ; b)ロ 状保障ロ: 源头控	锰、二噁英) 囊产生明显影响) (制②:过程防控□:其他 监测指标 pH、镉、汞、砷、 铅、铬(六价)、总 铬、铜、镍、锌、 钴、锰、锂、石油		
预测 防治 措	预测因子 预测方法 预测分析内容 预测结论 防控措施	影响范围(100 影响程度(不会 达标结论:a) 不达标结论:a) 土壤环境质量现 监测	□: 其他(0000) 对周边农用地土坑 d; b) □; c) □ □; b) □ 状保障□; 源头拴	锰、二噁英) 囊产生明显影响) (制②: 过程防控□: 其他 监测指标 pH、镉、汞、砷、 铅、铬(六价)、总 铬、铜、镍、锌、	监测频次	

注 1: "□"为勾选项,可√; "()"为内容填写项; "备注"为其他补充内容。 注 2: 需要分别开展土壤环境影响评级工作的,分别填写自查表。

4.7 生态环境影响评价

本项目为改建项目,在现有厂区内进行改扩建,不新增占地。施工期对生态环境 基本无影响。

本项目投入运营并在园区污水厂正常投运后,无废水直接外排,固废均得到合理 地处置,对生态的影响的主要大气污染物为酸性气体。

从工程排放废气污染物来看,对生态构成潜在危害的污染物尚属 SO₂、HCl 和硫酸 雾。SO₂在《保护农作物的大气污染物最高允许浓度》(GB3917-88)标准中已给出限值,其伤害阈值浓度分别见表 4.7-1。

污染物 名称	作物敏感程 度	生长季平 均浓度	日平均浓度	任何一次	农作物种类
	敏感作物	0.05	0.15	0.5	冬小麦、春小麦、大麦、荞麦、大豆、甜菜、芝麻;菠菜、青菜、白菜、莴苣、黄瓜、南瓜、西葫芦、马铃薯;苹果、梨、葡萄、苜蓿、三叶草、鸭茅、黑麦草
SO_2	中等敏感作物	0.08	0.25	0.7	水稻、玉米、燕麦、高粱、棉花、烟草; 番茄、茄子、胡萝卜; 桃、杏、李、柑 桔、樱桃
	抗性作物	0.12	0.3	0.8	蚕豆、油菜、向日葵; 甘蓝、芋头; 草莓

表 4.7-1 SO₂ 对农作物伤害浓度限值 单位: mg/m³

硫酸雾是一种有毒酸性物质,在达到一定浓度时,会破坏植物细胞膜,改变膜的 通透性使植物受害,从而导致植物组织脱水、枯萎、死亡,最后导致叶表面受害,形 成许多褪色斑点。空气中硫酸雾在浓度较高时,遇到降雨后会与雨水结合,以酸雨的 形式降落于地表,使水、土壤等产生酸化,降低其使用能力,最终影响周边植物的生长。本项目硫酸在常温情况下反应,反应过程中基本无硫酸雾产生,不会导致周边环境形成酸雨,不会导致土壤酸化。

工程建设投产后,各污染物的小时及日均浓度、年均浓度均低于《环境空气质量标准》(GB3095-2012)二级标准和《环境影响评价技术导则-大气环境》附录 D中的推荐值。从预测浓度分析,无论是在最不利气象条件下,还是在一般气象条件下,SO2预测浓度值低于《保护农作物的大气污染物最高允许浓度》(GB3917-88)标准限值。由此可见,在正常工况下,项目排放的酸性污染物对生态环境不会造成明显影响。

表 4.7-2 生态影响评价自查表

I	作内容	自查项目
	生态保护目标	重要物种□; 国家公园□; 自然保护区□; 自然公园□; 世界自然遗产□; 生态保护红线□; 重要生境□; 其他具有重要生态功能、对保护生物多样性具有重要意义的区域□; 其他☑
	影响方式	工程占用口; 施工活动干扰区; 改变环境条件口; 其他口
生态影响识别	评价因子	物种□(种群数量、种群结构、行为) 生境□(生境面积、质量) 生物群落□(物种组成、群落结构) 生态系统□(植被覆盖度、生产力、生物量、生态系统功能) 生物多样性□(物种丰富度、均匀度、优势度等) 生态敏感区□() 自然景观□() 自然遗迹□()
评	价等级	一级□ 二级□ 三级☑ 生态影响简单分析☑
评	价范围	陆域面积; () km ² ; 水域面积; () km ²
	调查方法	资料收集☑;遥感调查☑;调查样方、样线□;调查点位、断面□;专家和公众咨询法□;其他□
生态现状	调查时间	春季回;夏季口;秋季口;冬季口 丰水期口;枯水期口;平水期口
调查与 评价	所在区域的 生态问题	水土流失口;沙漠化口;石漠化口;盐渍化口;生物入侵口;污染危害口;其他☑
	评价内容	植被/植物群落☑;土地利用☑;生态系统□;生物多样性□;重要物种□;生态敏感区□;其他□
生态影响	评价方法	定性□: 定性和定量□
预测与 评 价	评价内容	植被/植物群落口; 土地利用口; 生态系统口; 生物多样性口; 重要物种口; 生态敏感区口; 生物入侵风险口; 其他口
生态保护	对策措施	避让☑:减缓☑:生态修复□:生态补偿□:科研□:其他□
	生态监测计划	全生命周期□; 长期跟踪□; 常规□; 无☑
对策措施	环境管理	环境监理口: 环境影响后评价口: 其他回
评价结论	生态影响	可行回: 不可行口
4. "n"	为勾选项,可v	;"()"为内容填写项。

5 环境风险评价

5.1 评价原则与评价内容

5.1.1 评价原则

按照《建设项目环境风险评价技术导则》(HJ169-2018)的要求,环境风险评价 应以突发性事故导致的危险物质环境急性损害防控为目标,对建设项目的环境风险进 行分析、预测和评估,提出环境风险预防、控制、减缓措施,明确环境风险监控及应 急要求,为建设项目环境风险防控提供科学依据。

5.1.2 评价内容

依据《建设项目环境风险评价技术导则》(HJ 169-2018)风险评价内容如下:

- (1) 环境风险评价基本内容包括风险调查、环境风险潜势初判、风险识别、风险 事故情形分析、风险预测与评价、环境风险管理等。
- (2) 基于风险调查,分析建设项目物质及工艺系统危险性和环境敏感性,进行风险潜势的判断,确定风险评价等级。
- (3) 风险识别及风险事故情形分析应明确危险物质在生产系统中的主要分布,筛选具有代表性的风险事故情形,合理设定事故源项。
- (4)各环境要素按确定的评价工作等级分别开展预测评价,分析说明环境风险危害范围与程度,提出环境风险防范的基本要求。
 - (5) 提出环境风险管理对策及防范措施,明确突发环境事件应急预案编制要求。
 - (6) 综合环境风险评价过程, 给出评价结论与建议。

5.2 评价工作程序

评价工作程序见图 5.2-1。

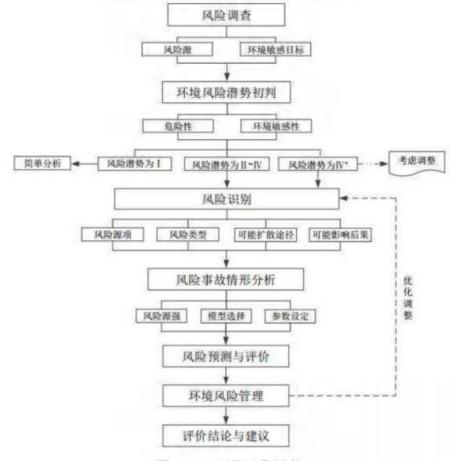


图 5.2-1 评价工作程序

5.3 风险调查

5.3.1 危险物质数量和分布情况

5.3.1.1 物质危险性判定标准

依据《建设项目环境风险评价技术导则》(HJ169-2018)附录 B、《危险化学品重大危险源辨识》(GB18218-2018)及《职业性接触毒物危害程度分级》(GBZ230-2010)判定生产、贮存、运输、污染物处理过程中产生的危险性物质。

5.3.1.2 风险物质识别

根据项目工程分析对照《建设项目环境风险评价技术导则》(HJ 169-2018)附录 B、《企业突发环境事件风险分级方法》(HJ941-2018)附录 A 对涉及的原辅材料、中间产物、末端产物等物质开展识别,识别结果见表 5.3-1。

根据识别,本项目涉及的主要危险化学品同时列入《建设项目环境风险评价技术

导则》(HJ169-2018)中附录 B 的有:含贵金属的废催化剂原料(HW50)、液氯、98%浓硫酸、36%盐酸、65%硝酸、氯酸钠、氨水、天然气、水合肼、甲醛等,以及生产运营产生的废气、废矿物油等。

序号	名称	储存位置	储存方式	规格	最大储量/在线量(t)
1	98%硫酸	罐区	储罐	850m³/个	1480
2	36%盐酸	罐区	储罐	850m³/个	300
3	甲醛	甲类仓库	桶装	200L/桶	0.2
4	氨水	甲类仓库	桶装	200kg/桶	1.8
5	硝酸	甲类仓库	桶装	1t/桶	2
6	氯酸钠	甲类仓库	袋装	50kg/袋	2.4
7	氯气	甲类仓库	瓶装	11/瓶	4
8	氢氟酸	甲类仓库	桶装	20L/桶	0.005
9	海绵铜	1	1	1	0.07
10	水合肼	甲类仓库	桶装	200kg/桶	0.8
11	高冰镍		袋装	吨袋	20
12	赤铁矿	生产综合配套车间	袋装	吨袋	600
13	废催化剂		袋装	吨袋	160
14	废矿物油	危废暂存间	桶装	1	5.5
15	氯化氢	管道即时排放	管道	-/	11.948kg/h
16	硫酸雾	管道即时排放	管道	1	4.753kg/h
17	HF	管道即时排放	管道	1	2,132kg/h
18	锰及其化合物	管道即时排放	管道	1	0.025kg/h
19	镍及其化合物	管道即时排放	管道	1	0.007kg/h
20	钴及其化合物	管道即时排放	管道	1	0,001kg/h
21	NOx	管道即时排放	管道	1	1.826kg/h
22	SO ₂	管道即时排放	管道	-1	7.572kg/h
23	二氧化氯	管道即时排放	管道	1	0.080kg/h
24	砷	管道即时排放	管道	1	0.212kg/h
25	铜 (Cu)	管道即时排放	管道	1	0.054kg/h
26	锑 (Sb)	管道即时排放	管道	1	0.071kg/h
27	锡 (Sn)	管道即时排放	管道	1	0.069kg/h
28	镉 (Cd)	管道即时排放	管道	1	0.00004kg/h
29	铬 (Cr)	管道即时排放	管道	1	0.006kg/h
30	硫化氢	管道即时排放	管道	1	0.412kg/h
31	氯气	管道即时排放	管道	1	1.680kg/h
32	氦气	管道即时排放	管道	1	0.3kg/h
33	二噁英	管道即时排放	管道	/	1.5×10 ⁻¹¹

表 5.3-1 本项目涉及的环境风险物质统计表

5.3.1.3 环境风险物质的理化性质

本项目涉及的环境风险物质的理化性质及毒性分别叙述见第二章表 2.1-4。

5.3.1.4 风险物质分布

根据《建设项目环境风险评价技术导则》(HJ169-2018)第7.2.2条规定,按照工艺流程和平面布置功能区划,结合物质危险性识别,给出危险单元划分结果及单元内危险物质的最大存量,按生产工艺流程分析危险单元内潜在的风险源,按附录B识别

出危险物质,明确危险物质的分布。本工程危险单元分布见表 5.3-1 和图 5.3-1。

5.3.2 环境风险敏感目标

本项目评价范围内的主要环境风险敏感目标见表 5.3-1 及图 1.7-2。

表 5.3-2 环境风险保护目标表

类别			环境	敏感特征		
	序号	敏感目标名称	相对方位	最近距离/m	属性	人口数
	1	恶滩	NE	4308	居民点	91
	2	陡滩	NNE	4377	居民点	46
	3	大央坪	N	4219	居民点	53
	4	马公塘	NNE	3954	居民点	46
	5	串相圭	N	5183	居民点	4
	6	下寨	NNE	3463	居民点	130
	7	上寨	NNE	3290	居民点	42
	8	前龙村	N	2425	居民点	53
	9	燕家	N	3152	居民点	46
	10	清塘	NE	3990	居民点	49
	11	桐木坳	NE	3884	居民点	98
	12	跳岩	E	1277	居民点	116
	13	田新岩	NE	3340	居民点	26
	14	白粉墙	NE	3823	居民点	35
	15	田冲村	NE	3869	居民点	182
	16	杨大园	NE	4319	居民点	112
1	17	杨柳冲	NE.	2108	居民点	70
	18	白岩塘	ENE	2457	居民点	63
	19	榴树井	ENE	2000	居民点	11
	20	磨沟	ENE	2033	居民点	280
-	21	胜利村	ENE	1287	居民点	147
环境空	22	磨沟冲	E	3113	居民点	91
气	23	高弓滩	SE	2041	居民点	56
,	24	大古桑	E	2640	居民点	67
-	25	龙王溪	NNW	4266	居民点	11
-	26	岩下	N	1845	居民点	74
-	27	猫猫冲	NNW	2507	居民点	49
-	28	土湾	NNW	2825	居民点	42
-	29	木老田	NW	3111	居民点	67
-	30	湾地	NNW	3022	居民点	4
-	31	铁厂	NW	3780	居民点	81
-	32	张家	NNW	2662	居民点	38
-	33	竹山溪	NNW	1855	居民点	74
	34	白猫冲	NW	1689	居民点	56
	35	井垮	NW NW	2283		49
1					居民点	
-	36	龙眼村	WNW	2629	居民点	126
-	37	赶纸山	WNW	1699	居民点	84
-	38	堰塘塆	WNW	1953	居民点	21
-	39	水竹林	NW	3587	居民点	11
-	40	蔡溪村	NNW	949	居民点	42
-	41	蔡溪屯	NE WARY	411	居民点	46
-	42	深塆	WNW	3285	居民点	91
-	43	舒家塆	WNW	3633	居民点	158
-	44	洞脑上	NE	1130	居民点	74
	45	彭家	NNE	460	居民点	91

稀贵金属资源循环利用项目环境影响报告书

类别	100	1		敏感特征		
-	46	后锁	SE	366	居民点	42
1	47	岩坎上	SE	1020	居民点	49
1	48	杉木林	ESE	1283	居民点	42
	49	跳礅	SE	1546	居民点	67
	50	辽家湾	Е	1289	居民点	84
	51	零散居民点	SSE	756	居民点	80
	52	白家庄	WNW	700	居民点	81
	53	三脚岩	WNW	1696	居民点	63
	54	凡溪屯	W	2323	居民点	53
	55	三寨村	W	1755	居民点	98
	56	上廖溪	WSW	2201	居民点	81
	57	下廖溪	SSW	2138	居民点	112
	58	羊庄	S	1984	居民点	158
	59	蒋家塆	S	1759	居民点	53
	60	湖南田	SSE	1919	居民点	81
	61	观音滩	S	2414	居民点	42
	62	肖家	S	1917	居民点	46
	63	胡家	S	2267	居民点	158
	64	下龙眼	WNW	2490	居民点	60
	65	赵家溪	W	3019	居民点	116
	-66	甘龙村	W	3224	居民点	175
	67	王家	W	3902	居民点	32
	68	道场坪	W	3778	居民点	147
1	69	木弄村	W	3283	居民点	186
	70	岩岔	W	3140	居民点	46
1	71	郑家塆	W	4103	居民点	11
	72	下木弄	W	2940	居民点	119
-	73	对溪屯	WSW	3394	居民点	28
t	74	对门寨	WSW	3025	居民点	42
	75	分洲	SE	2154	居民点	53
1	76	中寨	SW	2965	居民点	74
1	77	腊岩	SW	3073	居民点	53
	78	马家头	WSW	2907	居民点	147
1	79	荒田	WNW	2755	居民点	32
	80	牛塘冲	NW	3121	居民点	25
1	81	前光村	NW	4208	居民点	146
1	82	松树林	WSW	3976	居民点	109
+	83	后龙	WSW	3861	居民点	126
+	84	腾龙社区	WSW	3856	居民点	1250
-	85	架枧村	S	2462	居民点	620
-	86	崇滩	S	3292	居民点	112
-	87	干龙	S	3986	居民点	60
	88	大龙社区第三居委会	S	4593	居民点	5500
		人 ル 在 区				
-	89	100-100-100-100-100-100-100-100-100-100	SSE	3288	居民点	3256
-	90	田家	SE	2906	居民点	103
-	91	徳龙小学	SSE	3512	学校	850
-	92	清水塘村	SE	3794	居民点	2215
-	93	德龙社区 (2) att	SSE	3148	居民点	1580
-	94	斜滩	SE	2566	居民点	103
	95	岩湾	SE	2526	居民点	51
	96	铜鼓	SE	2900	居民点	55
	97	湾头	SE	3520	居民点	48
	98	钱家寨	SE	4521	居民点	132
	99	大湾	SE	3220	居民点	36
	100	下垅	E	3854	居民点	46

稀贵金属资源循环利用项目环境影响报告书

类别	环境敏感特征								
	101	陆家塆	ENE	160	居民点	123			
		厂址周边	5km 范围内人	口数小计		22460			
	受纳水体								
	序号	受纳水体名称	排放点	排放点水域环境功能		流经范围/km			
	1	后锁小溪			2.8km (流速 0.056m/s)				
	2	车坝河			0.38km (流速 0.08m/s)				
	3	舞阳河	《地表水》	环境质量标准》	6.048km (流速 0.07m/s)				
地表水	舞阳河特有 级水产种质	舞阳河特有鱼类国家 级水产种质资源保护 区(核心区)	(GB3838-2002) III类		0.8km (流速 0.07m/s)				
		内陆水体排放点下游 10k	m(近岸海域	一个潮周期最大水平	距离两倍)范围	内敏感目标			
	序号	敏感目标名称	环境敏感特 征	水质目标	与可能事故排放点距离/m				
	1	舞阳河特有鱼类国家 级水产种质资源保护 区	特有鱼类保 护	Ш类	2.28km				
	序号	敏感目标名称	环境敏感特 征	水质目标	包气带防污 性能	与下游厂界距离/m			
	1	S2 泉	较敏感		DI	2310			
	2	S3 泉	较敏感		D1	1947			
	3	S4 泉	较敏感		D1	1504			
	4	S5 泉	不敏感		D1	1048			
	5	S6 泉	较敏感		D1	1890			
	6	S7 泉	不敏感		D1	1972			
	7	S8 泉	不敏感		D1	2503			
	8	S9 泉	较敏感	《地下水环境质 量标准》 (GB/T14848- 2017) III类标准	D1	2131			
	9	S10 泉	较敏感		D1	2156			
地下水	10	S11 泉	不敏感		D1	2091			
	11	ZK1 机井	较敏感		D1	2323			
	12	ZK4 机井	不敏感		D1	807			
	13	ZK5 机井	不敏感		D1	1153			
	14	ZK6 机井	不敏感		D1	1587			
	15	ZK7 机井	较敏感		D1	3101			
	16	ZK8 机井	较敏感		D1	3184			
	17	ZK9 机井	不敏感		D1	2409			
	18	ZK38 机井	较敏感		D1	1236			
	19	ZK39 机井	未利用		D1	2276			
	20	ZK40 机井	较敏感		D1	2271			
	21	ZK41 机井	较敏感		D1	2347			

5.4 风险评价等级及评价范围

5.4.1 危险物质及工艺系统危险性 (P) 的确定

5.4.1.1 危险物质数量与临界量的比值 (Q)

根据《建设项目环境风险评价技术导则》(HJ 169-2018)附录 B 重点关注的危险物质及临界量及《企业突发环境事件风险分级方法》(HJ941-2018)附录 A,本项目运行过程中涉及的环境风险物质及临界量详见表 5.4-1。计算所涉及的每种危险物质在

厂界内的最大存在总量与其在附录 B 中对应临界量的比值 Q。在不同厂区的同一种物质,按其在厂界内的最大存在总量计算。

表 5.4-1 本项目涉及危险物质的临界量表

序号	JX	风险物质名称	CAS 号	在线最大存存量 (t)	临界量 (t)	比值 Q				
1		98%硫酸	7664-93-9	1480	10	148				
2		36%盐酸	7647-01-0	300	7.5	40				
3		甲醛	50-00-0	0.2	0.5	0.4				
4		氨水	1336-21-6	1.8	10	0.18				
5		硝酸	7697-37-2	2	7.5	0.27				
6		氯酸钠	7775-09-9	2.4	100	0.024				
7	氯气		7782-50-5	4	1	4				
8	77.5		7664-39-3	0.005	1	0.005				
-	氢氟酸		/004-39-3							
9	海绵铜		1	0.07	0.25	0.28				
10		水合肼	302-01-2	0.8	7.5	0.11				
		锰及其化合物	1	0.0014	0.25	0.0056				
			镍及其化合物	/	12.548	0.25	50.192			
11	高冰	钴及其化合物	7740.20.2	0.102	0.25	0.408				
11	镍	高冰 神 7740-38-2 0.0165 铜及其化合物 / 1.3	0.25	0.066						
			/			5.2				
		铬及其化合物	1	0.0003	0.25	0.0012				
		锰及其化合物	1	0.0138	0.25	0.0552				
	赤铁矿	镍及其化合物	1	64.49	0.25	257.96				
			钴及其化合物	1	1.32	0.25	5.28			
12						砷	7740-38-2		0.25	4.808
				铜及其化合物	1	40.58	0.25	162.32		
		锑及其化合物	1	0.08	0.25	0.32				
		铬及其化合物	/	0.08	0.25	0,32				
		废催化剂	1	160	50	3.2				
	废矿物油 氯化氢 硫酸雾 HF 锰及其化合物		1	5.5	2500	0.0022				
			7647-01-0	11.948kg/h	2.5	0.0048				
			7664-93-9	4.753kg/h	10	0.0005				
			7664-39-3	2.132kg/h	1	0.0021				
			1	0.025kg/h	0.25	0.0001				
		泉及其化合物	1	0.007kg/h	0.25	0.0000				
		古及其化合物	1	0.001kg/h	0.25	0.0000				
		NO ₂	10102-44-0	1.826kg/h	1	0.0018				
		SO ₂	7446-09-5	7.572kg/h	2.5	0.0030				
		3 5 7 7 7	7-10-03-3							
		二氧化氯	7740.20.2	0.080kg/h	0.5	0.0002				
		神	7740-38-2	0.212kg/h	0.25	0.0008				
	_	及其化合物	/	0.054kg/h	0.25	0.0002				
	包	常及其化合物	1	0.071kg/h	0.25	0.0003				

稀贵金属资源循环利用项目环境影响报告书

序号	风险物质名称	CAS 号	在线最大存存量 (t)	临界量 (t)	比值Q
	铬及其化合物	-1	0.006kg/h	0.25	0.0000
	硫化氢	7783-06-4	0.412kg/h	2.5	0.0002
	氯气	7782-50-5	1.680kg/h	1	0.0017
	氨气	7664-41-7	0.3kg/h	5	0.0001
	二噁英	1	1.5×10 ⁻¹¹		0.0000
	合计				683.4163

当存在多种危险物质时,则按下式计算物质总量与其临界量比值(Q):

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_1} + \cdots + \frac{q_n}{Q_n}$$

式中: q_1 、 q_2 、... q_n — 每种危险物质的最大存在总量, t;

 Q_1 、 Q_2 、... Q_n —每种危险物质的临界量, t;

当 Q<1 时,该项目环境风险潜势为I。

当Q>1时,将Q值划分为: 1≤Q<10; 10≤Q<100; 100≤Q。本项目各危险物质数量与临界量比值(Q)见表5.4-1。本项目危险物质数量与临界量比值Q=683.4163>100。

5.4.1.2 行业及生产工艺 (M)

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 C表 C.1 表格赋值,行业工艺特点见表 5.4-2。

表 5.4-2 行业工艺特点判定表

评估依据	分值	
涉及光气及光气化工艺、电解工艺(氯碱)、氯化工艺、硝化工艺、合成氮工艺、裂解(裂化)工艺、氟化工艺、加氢工艺、重氮化工艺、氧化工艺、过氧化工艺、胺基化工艺、磺化工艺、聚合工艺、烷基化工艺、新型煤化工工艺、电石生产工艺、偶氮化工艺无机酸制酸工艺、焦化工艺		
涉及危险物质管道运输项目、港口/码头等	10	
石油、天然气、页岩气开采(含净化),气库(不含加气站的气库),油库 (不含加气站的油库)、油气管线 b (不含城镇燃气管线)	10	
涉及危险物质使用、贮存的项目	5	
	涉及光气及光气化工艺、电解工艺(氯碱)、氯化工艺、硝化工艺、合成氮工艺、裂解(裂化)工艺、氟化工艺、加氢工艺、重氮化工艺、氧化工艺、过氧化工艺、胺基化工艺、磺化工艺、聚合工艺、烷基化工艺、新型煤化工工艺、电石生产工艺、偶氮化工艺 无机酸制酸工艺、焦化工艺 其他高温或高压,且涉及危险物质的工艺过程。、危险物质贮存罐区涉及危险物质管道运输项目、港口/码头等 石油、天然气、页岩气开采(含净化),气库(不含加气站的气库),油库(不含加气站的油库)、油气管线。(不含城镇燃气管线)	

将 M 划分为 (1) M>20; (2) 10<M≤20; (3) 5<M≤10; (4) M=5,分别以 M1、M2、M3 和 M4表示,本项目属于危险废物处置及有色金属治炼复合型行业,生产工艺不涉及表 5.4-2 中的生产工艺。本项目涉及氟化工艺 3 套,计 30 分;项目涉及液氯钢瓶 4 个,压力为 1.5MPa,小于 10MPa,盐酸、硫酸常压储罐各 1 个,以上不属

于高压储罐,但涉及危险物质罐区,共2套,计10分。因此,计5分;综上,M=40,以M1表示。

5.4.1.3 危险物质及工艺系统危险性 (P) 分级

根据危险物质数量与临界量比值(Q)和行业及生产工艺(M),按照《建设项目环境风险评价技术导则》(HJ169-2018)附录 C表 C.2 对比,本项目危险物质数量与临界量比值 Q>100,行业及生产工艺为 M1,根据表 5.4-3 可知,危险物质及工艺系统危险性等级为 P1。

危险物质数量	行业及生产工艺 (M)				
与临界量比值(Q)	M1	M2	M3	M4	
Q≥100	P1	P1	P2	P3	
10≤Q<100	P1	P2	Р3	P4	
1≤Q<10	P2	P3	P4	P4	

表 5.4-3 危险物质及工艺系统危险性等级判断 (P)

5.4.2 环境敏感程度分级

5.4.2.1 大气环境敏感程度

本项目周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构总人口数量约为 22460 人,周边 500m 范围内人口数量约 302 人,根据表 5.4-4 判定,本项目大气环境敏感性为环境较敏感区,表示为 E2。

分级	大气环境敏感性
El	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数大于 5 万人,或 其他需要特殊保护区域;或周边 500m 范围内人口总数大于 1000 人;油气、化学品输送管线管段 周边 200 m 范围内,每千米管段人口数大于 200 人
E2	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数大于1万人,小于5万人;或周边 500m 范围内人口总数大于500人,小于1000人;油气、化学品输送管线管段周边 200m 范围内,每千米管段人口数大于100人,小于200人
E3	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数小于 1 万人;或周边 500m 范围内人口总数小于 500 人;油气、化学品输送管线管段周边 200m 范围内,每千米管段人口数小于 100 人

表 5.4-4 大气环境敏感性分级表

5.4.2.2 地表水环境敏感程度

本项目周边涉及的地表水体为后锁小溪、车坝河和舞阳河,后锁小溪、车坝河和舞阳河属于III类水体,事故情况下危险物质泄漏到后锁小溪,因此,按照表 5.4-6 判定为较敏感,表示为 F2。本项目危险物质泄漏后可能排入后锁小溪后汇入车坝河和舞阳

河,其中舞阳河段有舞阳河特有鱼类国家级水产种质资源保护区(核心区),危险物质泄漏到地表水体的排放点下游 10km 范围内分布有表 5.4-7 类型 1 中的的敏感保护目标,根据表 5.4-5,地表水环境敏感程度表示为 S1。

表 5.4-5 地表水环境敏感程度分级

环境敏感目标		地表水功能敏感性	
	F1	F2	F3
S1	E1	E1	E2
S2	El	E2	E3
S3	E1	E2	E3

表 5.4-6 地表水功能敏感性分区

分级	地表水环境敏感特征
敏感 Fl	排放点进入地表水水域环境功能为II类及以上,或海水水质分类第一类;或已发生事故时,危险物质泄漏到水体的排放点算起,排放进入受纳河流最大流速时,24h流经范围内涉跨国界的
较敏感 F2	排放点进入地表水水域环境功能为Ⅲ类,或海水水质分类第二类; 或已发生事故时,危险物质泄漏到水体的排放点算起,排放进入受纳河流最大流速时,24h流缩 范围内涉跨省界的
低敏感 F3	上述地区之外的其他地区

表 5.4-7 环境敏感目标分级

分级	地表水环境敏感特征
SI	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流向)10km 范围内、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内,有如下一类或多类环境风险受体:集中式地表水饮用水水源保护区(包括一级保护区、二级保护区及准保护区);农村及分散式饮用水水源保护区;自然保护区;重要湿地;珍稀颜危野生动植物天然集中分布区;重要水生生物的自然产卵场及索饵场、越冬场和洄游通道;世界文化和自然遗产地;红树林、珊瑚礁等滨海湿地生态系统;珍稀、濒危海洋生物的天然集中分布区;海洋特别保护区;海上自然保护区;盐场保护区;海水浴场;海洋自然历史遗迹;风景名胜区;或其他特殊重要保护区域
S2	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流向)10km 范围内、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内,有如下一类或多类环境风险受体的;水产养殖区;天然渔场;森林公园;地质公园;海滨风景游览区;具有重要经济价值的海洋生物生存区域
S3	排放点下游(顺水流向)10km范围,近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内无上述类型1和类型2包括的敏感保护目标

依据表 5.4-5 判定, 地表水环境敏感程度表示为 E1。

5.4.2.3 地下水环境

本项目区域范围内无地下水集中式饮用水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水源)准保护区及其补给径流区,以及其他如热水、矿泉水、温泉等特殊地下水资源保护区及其补给径流区。周边分布有分散式饮用水水源,因此,依据《建设项目环境风险评价技术导则》(HJ169-2018)附录 D表 5.3-9 判定,地下水功能敏感性为较敏感,表示为 G2。

表 5.4-8 地下水环境敏感程度分级

环境敏感目标		地表水功能敏感性	
	G1	G2	G3

稀贵金属资源循环利用项目环境影响报告书

D1	E1	E1	E2
D2	E1	E2	E3
D3	E1	E2	E3

表 5.4-9 地下水功能敏感性分区

分级	地下水环境敏感特征
敏感 GI	集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水水源)准保护区;除集中式饮用水水源以外的国家或地方政府设定的与地下水环境相关的其他保护区,如热水、矿泉水、温泉等特殊地下水资源保护区
较敏感 G2	集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水水源)准保护区以外的补给径流区;未划定准保护区的集中式饮用水水源,其保护区以外的补给径流区;分散式饮用水水源地;特殊地下水资源(如热水、矿泉水、温泉等)保护区以外的分布区等其他未列入上述敏感分级的环境敏感区。
不敏感 G3	上述地区之外的其他地区
"环境敏感区"是	是指《建设项目环境影响评价分类管理名录》中所界定的涉及地下水的环境敏感区

本项目岩土层单层厚度大于1m, 寒武系白云岩渗透系数为3.43×10⁴cm/s~3.99×10⁴cm/s, 依据《建设项目环境风险评价技术导则》(HJ169-2018)附录 D表 D.7判定, 本项目包气带防污性能为 D1级。

表 5.4-10 包气带防污性能分级

分级	包气带岩土的渗透性能	
D3	Mb≥1.0m, K≤1.0×10 ⁻⁶ cm/s, 且分布连续、稳定	
D2	0.5m≤Mb<1.0m,K≤1.0×10 ^o cm/s,且分布连续、稳定 Mb≥1.0m,1.0×10 ^o cm/s <k≤1.0×10<sup>dcm/s,且分布连续、稳定</k≤1.0×10<sup>	
D1	岩(土)层不满足上述"D2"和"D3"条件	

综上,依据《建设项目环境风险评价技术导则》(HJ169-2018)附录 D表 D.5 判定,地下水环境敏感程度环境较敏感区,表示为 E1。

5.4.3 环境风险潜势初判

根据建设项目涉及的物质和工艺系统的危险性及其所在地的环境敏感程度,结合 事故情形下环境影响途径,对建设项目潜在危害程度进行概化分析,按照表 5.4-11 表 确定本项目环境风险潜势。

表 5.4-11 建设项目环境风险潜势划分依据表

万块铁成组件 (F)	风险物质及工艺系统危险性 (P)				
环境敏感程度(E)	极高危害 (P1)	高度危害(P2)	中度危害 (P3)	轻度危害 (P4)	
环境高度敏感区 (E1)	IV ⁺	IV	ш	III	
环境中度敏感区 (E2)	IV	Ш	III	П	
环境低度敏感区(E3)	Ш	III	-11	1	

注: IV+为极高环境风险。

根据表 5.4-11 判定,本项目大气环境风险潜势为IV级,地表水环境风险潜势为IV+级,地下水环境风险潜势为IV+级。根据《建设项目环境风险评价技术导则》(HJ169-

2018) 6.4 建设项目环境风险潜势综合等级取各要素等级的相对高值。则本项目大气环境环境风险潜势为IV级, 地表水环境风险潜势为IV+级, 地下水环境风险潜势为IV+级。

5.4.4 环境风险评价等级判定

根据《建设项目环境风险评价技术导则》(HJ169-2018)评价工作等级划分,风险潜势为IV及以上,进行一级评价;风险潜势为III,进行二级评价;风险潜势为III,进行三级评价;风险潜势为II,进行三级评价;风险潜势为II,可开展简单分析。

	14 5.	- IT SAMPLED NEW N. D.	171 307 376	
环境风险潜势	IV, IV+	III	II	1
评价工作等级		=	三	简单分析 a
a.是相对于详细评价 施等方面给出定性的		在描述危险物质、环境	影响途径、环境危	害后果、风险防范措

表 5.4-12 项目环境风险评价分级判定

因此,根据表 5.4-2,本项目大气环境风险评价等级为一级,地表水环境风险评价等级为一级,地下水环境风险评价等级为一级。综合各要素等级的相对高值,本项目环境风险评价等级确定为一级。

5.4.5 评价范围

根据《建设项目环境风险评价技术导则》(HJ169-2018)的规定,本项目大气环境风险评价范围为项目厂界外扩 5km; 地表水环境风险评价范围为后锁小溪事故排放口上游 500m 至车坝河汇口约 1.8km 河段,后锁小溪与车坝河汇口至车坝河与舞阳河汇口约 0.7km 河段,车坝河与舞阳河汇口至舞阳河下游 2.5km,共计约 5km 河段; 地下水环境风险评价范围同地下水环境影响评价范围。

5.5 环境风险识别

根据《关于进一步加强环境影响评价管理防范环境风险的通知》(环发[2012]77 号)的要求,应从环境风险源、扩散途径、保护目标三方面识别环境风险。环境风险 识别应包括生产设施和危险物质的识别,有毒有害物质扩散途径的识别(如大气环 境、水环境、土壤等)以及可能受影响的环境保护目标的识别。

5.5.1 物质危险性识别

根据《企业突发环境事件风险分级方法》(HJ941-2018)附录 A 及《建设项目环境风险评价技术导则》(HJ169-2018)重点关注的危险物质及临界量,根据本项目使用的原辅材料、污染物,本项目涉及的危险物质主要为废矿物油、硫酸、盐酸、甲醛、氨水、氯气、氯酸钠、SO₂、砷、锰及其化合物(以锰计)、镍及其化合物(以锰计)、钴及其化合物(以锰计)、二氧化氮等物质。项目涉及到的危险物质属于易燃易爆气体/液体、有毒气体,如果在储存、输送过程发生跑、冒、滴、漏会对周边的环境造成一定的影响。

5.5.2 生产系统危险性识别

根据《建设项目环境风险评价技术导则》(HJ169-2018),生产系统危险性识别包括主要生产装置、储运设施、公用工程和辅助生产设施,以及环境保护设施等环节出现故障时可能发生的事故风险进行识别。本项目储运设施主要依托现有工程。

(1) 生产装置危险性识别

以风险物质识别为基础,按照筛选出的物质风险因子,对其涉及到的生产设施进行进一步的识别,以确定生产设施中的风险因子。因此,生产系统为主要环境风险源之一。

本项目生产设施风险识别主要针对生产系统中生产物料中盐酸、硫酸、重金属等含量很高,在生产设备、物料输送管道发生破损,会导致物料泄漏,造成环境污染事件。因此,生产系统为主要环境风险源之一。生产设施出现故障,如罐体老化破裂,料液输送管道破损等原因,导致料液泄漏,当泄漏的物料向四周流淌、扩散后,将会对厂区场地及周边环境造成严重影响。

(2) 储存设施风险识别

判断储运系统是否具有风险性,首要的条件就是确定储运系统中贮存物质是否具有危险性,本次风险评价根据本项目涉及的风险物质对涉及的储存设施做进一步识别,以确定储存系统中的风险因子。

储存风险识别主要针对于硫酸储罐、盐酸储罐、氯气站和危废暂存间。根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 B,储运工程涉及的危险物质主

要有硫酸、盐酸、氯气等。对应涉及的储存设施主要有硫酸储罐、盐酸储罐、液氯钢瓶、废矿物油、废催化剂储存设施、试剂库试剂、产品储存间等。硫酸和盐酸储罐破损泄漏导致化学品泄漏,当泄漏的物料向四周流淌、扩展后,将会对厂区场地及周边环境造成严重影响;若泄漏物料处置不及时,还会引发新的二次环境污染问题。

(3) 环保设施风险识别

废水处理设施可能发生的风险事件为:若厂内污水池泄漏,或误操作导致废水直接排入河流或市政污水管网;废气处理装置发生故障,导致废气的事故性排放等。

废矿物油经危废暂存间暂存后委托有资质单位定期处理,危废暂存间防渗防腐按照《危险废物贮存污染控制标准》(GB18597-2023)的规定和要求进行设计、建设、管理和运行等。危废暂存设施可能发生的风险事件为在储存、输送过程发生跑、冒、滴、漏,危废含有油料蒸发出来的可燃气体在一定的浓度范围内,能够与空气形成爆炸性混合物,遇明火、静电及高温或与氧化剂接触等易引起燃烧或爆炸,造成火灾爆炸事故。

事故状况下,考虑废气处理设施因故障失效,使污染物未得到处理,造成污染物 短期内排放量上升,影响周边环境和居民点污染物浓度急剧上升,对影响范围内大气 环境和居民造成一定的影响。

事故状况下,生产废水发生极端泄漏,未经处理的生产废水直接排入河流,造成污染物短期内排放量上升,造成河流水质污染;排入污水处理厂,会对污水处理厂产生冲击影响。

5.5.3 危险物质向环境转移的途径识别

危险物质对环境的危害是多方面的,主要是通过下述途径对水体、大气和土壤造 成污染。

- (1) 对水体的污染: 危险物质随天然降水径流流入地表水体,污染地表水; 化学品储罐、污水池、危废暂存间发生泄漏,危险物质随渗滤液渗入土壤,使地下水污染; 废气中的危险物质随风飘迁,落入地表水,使其污染; 将危险物质直接排入地表水体,会造成更大的污染。
 - (2) 对大气的污染: 危险物质本身蒸发、升华及有机废物被微生物分解而释放出有

害气体污染大气;在废物运输、储存、利用、处理处置过程中,产生有害气体和粉尘;气态危险物质直接排放到大气中。易燃危险物质发生火灾时,产生 CO 等废气污染物直接排放大气中。

(3) 对土壤的污染:液体、半固体危险物质在存放过程中或抛弃后洒漏地面,渗入土壤。

5.5.4 风险识别结果

根据项目所涉及有毒有害、易燃易爆物质危险性识别和生产过程潜在危险性识别结果,环境风险识别如表 5.5-1。

序号	工段	危险单元	风险源	存在危险物质	环境风险类型	环境影响途径	
	生产环	产环生产工艺单元	浸出槽、反应罐等	Ni, Co, Cu, Mn, As, Sb, Ag, Cr	泄漏	地下水、土壤、地表水	
1	节		萃取槽	油类	泄漏	地下水、土壤、地表水	
		氯气站	液氯气化器	氣气	泄漏	大气环境	
2	A STATE	罐区	硫酸储罐	硫酸	泄漏	大气环境、地下水	
3	储运环节	阿巴拉	盐酸储罐	盐酸	泄漏	大气环境、地下水	
4	н	氯气站	液氯钢瓶	氯气	泄漏	大气环境	
		废水处理系统	污水池	Ni. Co. Cu. Mn. As.	泄漏	地表水、地下水、土壤	
			架空输送管道	Sb, Ag, Cr	泄漏	地表水、地下水、土壤	
5			危险废物暂存 间	危险废物储存设施	油类物质	泄漏火灾、爆 炸、泄漏	地表水、地下水、土壤
			硫酸雾、HCl、H2S、氯气	泄漏	大气环境		
		烟气治理单元	矿热电尾气净化装置	Ni、Co、Cu、Mn、As、 Sb、Cr、二噁英	泄漏	大气环境	

表 5.5-1 环境风险识别表

5.6 风险事故情形分析

5.6.1 风险事故情形设定

5.6.1.1 潜在事故

风险评价以概率论为理论基础,将受体特征(如水体、大气环境特征或生物群种特征)和影响物特征(数量、持续时间、转归途径及形式等)视为在一定范围内随机变动的变量,即随机变量,从而进行环境风险评价。因此,工业系统及其各个行业系统历史的事故统计及其概率是预测本工程装置和工厂的重要依据。按国际工业界惯例,事故通常分重大事故和一般事故。重大事故是指那些导致反应装置及其他经济损失超过2.5万美元,或者造成严重人员伤亡的事故。据调查统计,国外先进化工企业重

大事故发生概率为 0.003125~0.01 次/年,即在装置寿命(25年)内不会发生重大事故:国内较先进化工企业为 0.01~0.0312 次/年,即在装置寿命(25年)内发生一次,参照表 5.6-1。

分类	情况说明	定义	事故概率 (次/a)
0	极端少	从不发生	< 0.003125
1	少	装置寿命内从不发生	0.003125~0.01
2	不大可能	装置寿命内发生一次	0.01~0.03125
3	也许可能	装置寿命内发生一次以上	0.03125~0.1
4	偶然	装置寿命内发生几次	0.1~0.3333
5	可能	预计一年发生一次	0.3333~0.1
6	频繁	预计一年发生一次以上	1

表 5.6-1 重大事故概率分类表

5.6.1.2 主要风险事故

根据我国使用危险品的相近行业有关资料对引发风险事故概率的介绍,我国主要 风险事故的概率见表 5.6-2。

事故名称	发生概率 (次/a)	定义	对策反应
输送管、输送泵、阀门、槽车等损坏泄漏事故	10-1	可能发生	必须采取措施
贮槽、贮罐、反应釜等破裂泄漏事故	10-2	偶尔发生	需要采取措施
雷击或火灾引起严重泄漏事故	10-3	偶尔发生	采取对策
贮罐等出现重大火灾、爆炸事故	10-3~10-4	极少发生	关心和防范
重大自然灾害引起事故	10-5~10-6	很难发生	注意关心
钢瓶大裂纹引起大量泄漏次/年/瓶	6.9×10-7 次/3	年/瓶	关心和防范

表 5.6-2 主要风险事故发生的概率与事故发生的频率表

由表 5.6-2 可知,输送管、输送泵、阀门、槽车等损坏泄漏事故的概率相对较大,发生概率为 10⁻¹ 次/年,即每 10 年大约发生一次。而贮罐等出现重大火灾、爆炸事故概率 10⁻³~10⁻⁴,属于极少发生的事故。钢瓶大裂纹引起大量泄漏的事故概率为 6.9×10⁻⁷ 次/年/瓶。

根据以上分析,生产设备泄漏、储罐泄漏发生概率最高,选择储罐泄漏等作为最大可信事故。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10⁻⁵/a。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10⁻⁶。

一般事故是指那些没有造成重大经济损失和人员伤亡的事故,但此类事故如处置 不当,将对环境产生不利影响。

5.6.1.3 风险事故情形设定

(1) 储罐引发的风险事故

硫酸储罐、盐酸储罐、液氯钢瓶破损,或设备故障、管道破损等原因,会导致物料泄漏。当泄漏的物料向四周流淌、扩展后,将会对厂区场地及周边环境造成严重影响;本次评价考虑在硫酸和盐酸储罐、液氯钢瓶发生泄漏后会对大气环境造成影响;若泄漏物料处置不及时,还会引发新的二次环境污染问题。

为防止物料泄漏引发二次环境污染,根据实际建设情况,储罐区设置有液池和围堰,罐区围堰容积满足单个罐体全部泄漏的收集量,同时,依托地势最低处均贵州中伟资源循环公司设置的事故池,建设单位自身配备相应的应急物资储备。因此,储罐泄漏不会导致水污染事件的发生。储罐泄漏导致的环境风险主要为硫酸、盐酸、氯气挥发进入大气对周边环境空气的影响。

(2) 水污染环境风险事故

废水事故排放主要考虑生产废水输送管道破损或污水池泄漏发生溢流进入后锁小溪,废水中高浓度的硫酸盐、Ni、Co、Cu、Mn、As、Sb、Ag、Cr等污染物会对地表水环境造成严重污染。

根据《建设项目环境风险评价技术导则》(HJ169-2018),水体污染事故源强应结合污染物释放量、消防用水量及雨水量等因素综合确定。本项目设置事故废水三级防控系统,即储罐区围堰、雨水截断阀和初期雨水池——事故应急池,可将厂内事故废水、消防废水、初期雨水、化学品泄漏废液控制在厂界范围内。厂区生产废水输送管道采用管廊输入至污水处理设施,采用明管输送,泄漏易于发现,因此,发生泄漏时可及时得到控制,泄漏量极少,基本无法溢流至后锁小溪。

(3) 地下水污染环境风险事故

根据本项目特性,最有可能发生地下水环境风险污染事故主要装置为污水池防渗层发生破损时料液或污水下渗污染的地下水。地下水环境风险污染事件主要考虑污水池防渗措施破损时对地下水的影响,料液中含有高浓度的 Ni、Mn、As等,防渗层破损将导致污染物持续下渗进入包气带进而对地下水造成污染。

(4) 火灾爆炸事件

运营期可能发生火灾或爆炸事件的区域主要包括生产车间、危险废物暂存间。废 机油在遇到明火、高温物质、电气火花及静电放电产生的火花时,均有可能发生火灾 爆炸事件。硫酸在遇到易燃物(如苯)和有机物(如糖、纤维素等)接触会发生剧烈反应, 甚至引起燃烧,有可能发生火灾事件。

本项目可能发生火灾事件的区域主要为危险废物暂存库、试剂库、富集车间等。 区域存放有矿物油类,在遇到明火、高温物质、电气火花及静电放电产生的火花时, 均有可能发生火灾事件。火灾在规模较小时,可以通过泡沫灭火器进行灭火,在遇到 大规模火灾时,可能会产生消防废水。

(5) 废气事故性排放

废气处理设施发生故障会导致废气事故排放。废气事故排放包括硫酸雾、HCI、H₂S、氯气、Ni、Co、Cu、Mn、As、Sb、Cr、二噁英事故排放,事故排放的硫酸雾、HCI、H₂S、氯气、铅等超过国家现行排放标准,对环境影响很大。

5.6.2 最大可信事故

本项目的环境风险本身具有不确定性,主要发生的事故类型为:储存物质的泄漏。

一般来说,物料泄漏事故属于一般性的事故,火灾或爆炸事故属于重大事故。但随着企业运行管理水平以及装置性能的提高,以及采取有效的防火防爆措施,火灾爆炸事故发生的概率是很低的。泄漏频率参照《建设项目环境风险评价技术导则》(HJ169-2018)附录 E 进行取值。

部件类型	泄漏模式	泄漏频率
and the same of the first term of the	泄漏孔径为 10mm 孔径	1.00×10 ⁻⁴ /a
反应器/工艺储罐/气体 储罐/塔器	10min 内储罐泄漏完	5.00×10 ⁻⁶ /a
INTERNATION	储罐全破裂	5.00×10 ⁻⁶ /a
	泄漏孔径为 10mm 孔径	1.00×10 ⁻⁴ /a
常压单包容储罐	10min 内储罐泄漏完	5.00×10 ⁻⁶ /a
	储罐全破裂	5.00×10 ⁻⁶ /a
	泄漏孔径为 10mm 孔径	1.00×10 ⁻⁴ /a
常压双包容储罐	10min 内储罐泄漏完	1.25×10 ⁻⁸ /a
	储罐全破裂	1.25×10 ⁻⁸ /a
常压全包容储罐	储罐全破裂	1.00×10 ⁻⁸ /a
内径≤75mm 的管道	泄漏孔径为 10%	5.00×10 ⁻⁶ / (m.a)
内在S/3mm 的官组	孔径全管径泄漏	1.00×10 ⁻⁶ / (m.a)
75mm<内径<150mm	泄漏孔径为10%	2.00×10 ⁻⁶ / (m.a)

表 5.6-3 泄漏频率表

稀贵金属资源循环利用项目环境影响报告书

的管道	孔径全管径泄漏	3.00×10 ⁻⁷ / (m.a)
rh (本) 180 (内部公益	泄漏孔径为 10%孔径 (最大 50mm)	2.40×10 ⁻⁶ / (m.a)
内径>150mm 的管道	全管径泄漏	1.00×10 ⁻⁷ / (m.a)
石体和压烧机	泵体和压缩机最大连接管泄漏孔径为10%孔径(最大50mm)	5.00×10 ⁻⁴ /a
泵体和压缩机	泵体和压缩机最大连接管全管径泄漏	1.00×10 ⁻⁴ /a
site for ex	装卸臂连接管泄漏孔径为10%孔径(最大50mm)	3.00×10 ⁻⁷ /h
装卸臂	装卸臂全管径泄漏	3.00×10 ⁻⁸ /h
装卸软管	装卸软管连接管泄漏孔径为 10%孔径 (最大 50mm)	4.00×10 ⁻⁵ /h
	装卸软管全管径泄漏	4.00×10-6/h

经事故发生频率的分布来看,由于储罐的泄漏、连接管道泄漏等引起的事故所占比例最大,为1.00×10⁻⁴/a,其次为装卸软管泄漏引起事故占比,为4.00×10⁻⁶/h;因此在生产过程中要实施严格的检修制度,规范操作,避免人为因素引发泄漏事故发生比较各类事故对环境影响的可能性和严重性。

5.7 源项分析

原则上环境风险评价重点分析的对象为扩散转移速度快,对厂界内外环境有重大 影响的有毒有害物质。鉴于该项目的特点,结合风险识别情况,风险分析对象重点确 定为:硫酸储罐泄漏、盐酸储罐泄漏、氯气钢瓶泄漏、废水的事故排放和废气事故排 放。

5.7.1 大气环境风险源项分析

(1) 盐酸、硫酸储罐

①、泄漏量计算

根据《建设项目环境风险评价技术导则》(HJ169-2018),发生频率小于 10⁻⁶/a 的事故时极小概率事件,储罐管道发生全管径泄漏概率较大为 1.0×10⁻⁶/a。本次情形主要考虑 10mm 孔径泄漏事故。采用《建设项目环境风险评价技术导则》(HJ169-2018)附录 F 伯努利方程估算储罐泄漏速率。

$$Q_L = C_d A \rho \sqrt{\frac{2(P - P_0)}{\rho} + 2gh} \qquad (\triangle \stackrel{<}{\precsim} 5.7-1)$$

式中: Q1---液体泄漏速率, kg/s;

P——容器内介质压力, Pa;

Po——环境压力, Pa:

ρ——泄漏液体密度, 1.18×103kg/m3;

g——重力加速度, 9.81m/s²;

h——裂口之上液位高度, 8.5m;

Cd ──液体泄漏系数, 按表 5.6-2 取 0.65:

A-----裂口面积, m²;

经计算, 硫酸 Re>5110、盐酸 Re>430004, Re 均大于 100。

 電诺数 Re
 製口形状

 圆形 (多边形)
 三角形
 长方形

 >100
 0.65
 0.6
 0.55

 ≤100
 0.50
 0.45
 0.40

表 5.7-1 液体泄漏系数表

项目盐酸、硫酸储罐是常压贮存的液体,推动力是液位的势差,排放速率随着排放时间的延续,液面势差下降而变小。项目采用常压单包容储罐,本次评价考虑泄漏孔径为10mm 孔径,裂口形状为圆形,以上各风险物质的泄漏量计算系数取值见表5.7-2。

				TOTAL CONTRACTOR OF			_
系数名称	Cd	A (m ²)	P(Pa)	P ₀ (Pa)	g(m/s²)	h(m)	ρ (kg/m³)
98%硫酸	0.65	0.000078	101325	101325	9.8	8.5	1840
36%盐酸	0.65	0.000078	101325	101325	9,8	8.5	1180

表 5.7-2 单座物料泄漏量计算参数一览表

按公式 5.7-2 计算,则储罐区单座储罐硫酸、盐酸泄漏速率分别为 0.11kg/s、0.067kg/s。

②、蒸发量计算

本项目在硫酸和盐酸罐区设置面积约为 754.2m²的液池,设置有 1.9m 高的围堰。 泄漏后的硫酸、盐酸会收集在围堰中,在围堰中形成液池,液态物质部分蒸发进入大 气,其余仍以液态形式存在,气态物质将会全部弥散到环境中,并向外环境扩散。

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 F, 质量蒸发的公式如下:

$$Q_3 = ap \frac{M}{RT_0} u^{\frac{(2-n)}{(2+n)}} r^{\frac{(4+n)}{(2+n)}}$$
 (公式 5.7-1)

式中: Q3---质量蒸发速率, kg/s;

p——液体表面蒸气压, Pa;

R——气体常数, J/(mol·K);

To----环境温度, K;

M——物质的摩尔质量, kg/mol;

μ——风速, m/s;

r-----液池半径, 588.2m;

 α,n ——大气稳定度系数,气象稳定度按稳定(D和E~F),取值见表5.7-3。

 大气稳定度
 n
 α

 不稳定 (A,B)
 0.2
 3.846×10⁻³

 中性 (D)
 0.25
 4.685×10⁻³

 稳定 (E,F)
 0.3
 5.285×10⁻³

表 5.7-3 大气稳定度系数

表 5.7-4 物料蒸发量计算一览表

系数	T ₀ (K)	R (J/ (mol·K))	P(Pa)	M(kg/mol)	μ(m/s)	Q3 (kg/s)
		E~F气	象条件			
硫酸	298	8.314	0.0033	0.09808	1.5	0.0682
盐酸	298	8.314	27930	0.03646	1.5	0.3334
		D气象	象条件			
硫酸	298	8.314	0.0033	0.09808	1.7	0.0701
盐酸	298	8.314	27930	0.03646	1.7	0.3426

(2) 氯气钢瓶源强

①、泄漏量计算

本项目液氯钢瓶中的液体为过热液体(即液体的沸点低于周围环境温度,液体流过裂口时由于压力减小而突发蒸发,蒸发所需热量取自液体本身,而容器内剩下的液体温度降降至常压沸点)。

$$F_{\nu} = \frac{C_{p}(T_{LG} - T_{C})}{H}$$

式中: F, ____蒸发液体占液体总量的比例;

 C_p —液体的定压热容, 896J/(kg·K);

Tic---泄漏前液体的温度, 取 20 摄氏度, 293.15K:

Tc——液体在常压下的沸点,取-34.03℃,239.12K;

H---液体的汽化热, 252757J/kg。

根据上式计算, F_v 为 0.19。根据资料, F_v 总是在 0~1之间,事实上,泄漏时直接蒸发的液体将以细小烟雾的形式形成云团,与空气相混合而吸热蒸发,如果空气传给液体烟雾的热量不足以使其蒸发,有一些液体烟雾将凝结成液滴降落到地面,形成液池。据《危险化学品安全评价》一书的介绍,当 F_v >0.2 时,一般不会形成液池,当 F_v <0.2 时,F 与带走的液体呈线性关系,当 F=0 时,没有液体蒸发,当 F_v =0.1 时,有 50%的液体蒸发。

因此,一旦钢瓶发生泄漏,氯气先以液体形式进行泄漏,再在裂口处及地面蒸发,本次评价氯气泄漏源强以导则推荐的液体泄漏公式计算。

根据《建设项目环境风险评价技术导则》(HJ169-2018),发生频率小于 10% 的事故时极小概率事件,钢瓶管道发生全管径泄漏概率较大为 1.0×10% 。本次情形主要考虑 10mm 孔径泄漏事故。

本次评价考虑泄漏孔径为 10mm 孔径, 裂口形状为圆形, 氯气的泄漏量计算系数 取值见表 5.7-5。

系数 名称	Cd	A (m ²)	P(Pa)	P ₀ (Pa)	g(m/s ²)	h(m)	ρ (kg/m³)
液氯	0.65	0.000078	101325	300848	9.8	0.4	1412.58

表 5.7-5 单座物料泄漏量计算参数一览表

按公式 5.7-5 计算,则液氯钢瓶泄漏速率为 0.333kg/s。根据建设单位的设计资料, 氯气钢瓶间及气化室配备 GDS 系统(气体检测报警系统),液氯储存及卸载系统设置 有压力变送器及联锁的气动切断阀,液氯气化系统设置有超压排放控制阀及氯气切断 阀。因此,根据类比同类企业自控装置,事故发生后,泄漏可在 10s (0.17min)内得 到有效控制。

②、蒸发量计算

由于氯气沸点为-34.03℃,常温下完全蒸发为气体,因此,可以认为泄漏的液氯最终闪蒸完全,没有热量蒸发和质量蒸发。可认为泄漏量即闪蒸量为 0.333kg/s。

5.7.2 水环境风险源项分析评价

(1) 地表水风险源项分析

本次环评事故风险情景设定为生产废水架空输送管道发生泄漏事故, 极端事故状

况下,废水最终进入后锁小溪。

生产废水架空输送管道泄漏,架空管道管径为 80mm,泄漏的生产废水未得到有效收集直接进入后锁小溪,本次预测情景考虑失效汽车尾气催化剂生产线一段硫酸浸出液输送至污水处理站时管道全管径发生泄漏,生产废水泄漏量约为 0.32m³, 主要污染物浓度铁 39059.74mg/L、硫酸盐 232441.38mg/L、镍 159.75mg/L、铬 929.99mg/L、锌 233.92mg/L、锰 8832.09mg/L,则污染物泄漏量为铁 12499.17g、硫酸盐 74381.37g、镍 51.12g、铬 297.597g、锌 74.854g、锰 2826.267g。

(2) 地下水风险源项分析

本次地下水环境风险评价考虑污水处理站污水池防渗措施破损时对地下水的影响,事故排放的污染源强见表 5.7-6。

事故装置	泄漏量 (m³/d)	泄漏时间 (d)	污染物	浓度 (mg/L)	泄漏量 (kg)	
		Ni	159.75	0.0072		
37 L ML	0.001.5	2.2	As	30.8	0.0014	
污水池 0.0015	污水池	0.0015	30	硫酸盐	255429.9	11.4943
			氨氮	9200	0.4140	

表 5.7-6 水污染物环境风险事故源强一览表

5.7.3 源项汇总

环境风险事故源项汇总见表 5.7-7。

序号	风险事故 情形描述	危险单元	危险物质	影响途径	释放或泄漏速 率 /(kg/s)	释放或泄漏时 间 /min	最大释放或泄 漏量 /kg	最大泄漏液 体蒸发量 /kg	其他事故源 参数	
	硫酸储罐	17. #40 fr le fells	Th see					66,1861	最不利气象 条件	
1	泄漏	硫酸储罐	硫酸	大气影响	0.11	10	66.1888	66.1874	最常见气象 条件	
	4 h. 20% AUL OF S	45. 事份 7. 发 方法	Hell	1.64 116 05	h. 4 11 11 4 min	0.072		44	14.6714	最不利气象 条件
2	盐酸泄漏	盐酸储罐	HCI	大气影响	0.067	10	41.0	14.7332	最常见气象 条件	
3	氯气泄漏	氯气钢瓶	Cl ₂	大气影响	0.333	0.17	3.33	3.33	1	
			硫酸盐		20,832	10	12499.117	1	1	
			Fe		123.969	10	74381.242	1	1	
4	生产废水	输送管道	Ni	地表水环	0.085	10	51.120	1	1	
4	泄漏	棚达自坦	Cr	境影响	0.496	10	297.597	1	1	
			Mn		0.125	10	74.854	1	- 1	
			Zn		4.710	10	2826.269	1	1.	
			Ni		159.75mg/L	30d	0.0072	1	1	
5	防渗层破	层破 As 地下水环	As As	地下水环	30.8mg/L	30d	0.0014	1	1	
3	损	污水池	硫酸盐	境影响	255429.9mg/L	30d	11.4943	1	1	
			氨氮	3	9200mg/L	30d	0.4140	1	1	

表 5.7-7 环境风险事故源项汇总表

5.8 风险预测与评价

5.8.1 大气环境风险预测与评价

(1) 预测模型

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 G, 经计算 R $_{nem}$ 的 =0.133, R $_{nem}$ <1/6, 为轻质气体,硫酸气体扩散计算采用 AFTOX 模型进行预测。R $_{nem}$ 的 =0.213, R $_{nem}$ 的=2.035, R $_{nem}$ >1/6, 为重质气体,盐酸和氯气气体扩散计算采用 SLAB 模型进行预测。

(2) 预测范围及计算点

大气风险预测范围以项目厂址为中心,半径 5km 的圆形区域。计算点设置为500m 边长 10m 的网格距、大于500m 设置为边长 100m 的网格距,且包括预测范围内的大气环境敏感保护目标等关心点。

(3) 气象参数

根据《建设项目环境风险评价技术导则》(HJ169-2018),一级评价需选取选取最不利气象条件和最常见气象条件进行后果预测。最不利气象条件取 F 类稳定度,1.5m/s 风速,温度 25 ℃,相对湿度 50%。根据收集的玉屏县 2023 年全年气象资料统计,最常见气象条件为:稳定度 D,平均风速 1.7m/s,温度 30.5℃,相对湿度 74%。模型其他预测参数见表 5.8-1。

		硫酸储罐			
参数类型	选项	参数			
	事故源经度(°)	109.	007518		
基本情况	事故源纬度(°)	27.3	341901		
	事故源类型	液化	本泄漏		
	气象条件类型	最不利气象条件	最常见气象条件推荐		
	风速(m/s)	1.5000	1.7000		
气象参数	环境温度(℃)	25.00 30.5			
	相对湿度(%)	50.0	74.0		
	稳定度	F(稳定)	D(中性)		
tt // 62 M/r	地表粗糙度 (m)		0.5		
其他参数一	地形数据精度	9	90m		
		盐酸储罐			
参数类型	选项	4	参数		
甘木桂加	事故源经度(°)	109.007613			
基本情况一	事故源纬度(°)	27.341795			

表 5.8-1 大气风险预测模型主要参数表

稀贵金属资源循环利用项目环境影响报告书

	事故源类型	液化	本泄漏			
	气象条件类型	最不利气象条件	最常见气象条件推荐			
	风速(m/s)	1.5000	1.7000			
气象参数	环境温度(℃)	25.00	30.50			
	相对湿度(%)	50.0	74.0			
	稳定度	F(稳定)	D(中性)			
世長粗糙度 (m)			0.5			
其他参数一	地形数据精度	9	90m			
		氯气钢瓶				
参数类型	选项	参数				
	事故源经度(°)	109.006869				
基本情况	事故源纬度(°)	27.340634				
	事故源类型	两相流泄漏				
	气象条件类型	最不利气象条件	最常见气象条件推荐			
	风速(m/s)	1.5000	1.7000			
气象参数	环境温度(℃)	25.00	30.50			
	相对湿度(%)	50.0	74.0			
	稳定度	F(稳定)	D(中性)			
tt 44 55 W	地表粗糙度 (m)		0.5			
其他参数一	地形数据精度	90m				

(4) 预测评价标准

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 H,选择大气毒性 终点浓度值作为预测评价标准,大气毒性终点浓度值见表 5.8-2。

表 5.8-2 危险物质大气终点浓度值选取一览表

序号	物质名称	CAS 号	毒性终点浓度-1/(mg/m³)	毒性终点浓度-2/ (mg/m³)
1	硫酸	7664-93-9	160	8.7
2	盐酸	7647-01-0	150	33
3	氯气	7782-50-5	58	5.8

(5) 预测结果

①、下风向不同距离处有毒有害物质的最大浓度情况

下风向不同距离处有毒有害物质的最大浓度情况详见表 5.8-3~5.8-5。

表 5.8-3 下风向不同距离处硫酸最大浓度统计表

序号		最不利气象条件			常见气象条件				
17-5	下风向距离(m)	出现时间(s)	浓度(mg/m³)	下风向距离(m)	出现时间(s)	浓度(mg/m³)			
1	0.5	3	0	0.5	3	0			
2	1	3	1.30394E-36	1	3	0			
3	2	3	6.49062E-05	2	3	6.29903E-15			
4	3	6	6.501244	3	3	3.55887E-06			
5	4	6	201.026	4	6	0.01067942			
6	5	6	741.0477	5	6	0.5910984			
7	6	12	1273.743	6	6	5.863196			
8	7	12	1579.959	7	12	24.40855			
9	8	12	1677.598	8	12	62.40316			
10	9	12	1645,48	9	12	118.7412			

稀贵金属资源循环利用项目环境影响报告书

序号	工具合理的	最不利气象条件	Mr INE	ाट को की गांद और e	常见气象条件	Me the contract
	下风向距离(m)	出现时间(s)	浓度(mg/m³)	下风向距离(m)	出现时间(s)	浓度(mg/m³)
11	10	12	1547.611	10	12	186,9611
12	20	24	588,5911	20	18	594.1757
13	30	30	274.0817	30	30	522.201
14	40	48	154.5486	40	36	403.0323
15	50 60	60	98.18207	50 60	48 60	310.9367
16 17	70	90	67.50642 49.08203	70	60	245.028
18	80	90	37.1966	80	90	197.6038 162.7165
19	90	90	29.10419	90	90	136.4195
20	100	120	23.357	100	90	116.1411
21	110	120	19.13486	110	120	100.1825
22	120	120	15.94581	120	120	87.39673
23	130	150	13.48063	130	120	76.99085
24	140	150	11.53722	140	120	68.40413
25	150	150	9.979147	150	150	61.23167
26	160	180	8.711611	160	150	55.17537
27	170	180	7.667158	170	150	50.01197
28	180	180	6.796751	180	150	45.57164
29	190	180	6.064064	190	180	41.72329
30	.200	210	5.441729	200	180	38.3644
31	.210	210	4.90883	210	180	35.41392
32	220	210	4.449155	220	210	32.80703
33	230	240	4.049988	230	210	30.49137
34	240	240	3.701248	240	210	28.42429
35	250	240	3.394859	250	210	26.57072
36	260	270	3.124289	260	240	24.90167
37	270	270	2.884213	270	240	23.39291
38	280	270	2.670256	280	240	22.02412
39	290	270	2.478797	290	240	20.77815
40	300	300	2.306817	300	270	19,6404
41	310	300	2.151784	310	270	18.59843
42	320	300	2.011563	320	270	17.64153
43	330	330	1.884344	330	270	16.76048
44	340	330	1.768582	340	300	15.94729
45	350	330	1.662954	350	300	15.19501
46	360	360	1,566324	360	300	14.49756
47	370	360	1.477705	370	300	13.84961
48	380	360	1.396247	380	330	13.24648
49	390	360	1.321205	390	330	12.68404
50	400	390	1,251928	400	330	12.1586
51	410	390	1.187848	410	360	11.66692
52	420 430	390 420	1.128462	420 430	360 360	11.2061
54	440	420	1.022051	440	360	10.77355
55	450	420	0.9742858	450	390	9,984186
56	460	450	0.9297211	460	390	9.623416
57	470	450	0.8880802	470	390	9.282934
58	480	450	0.8491157	480	390	8.961211
59	490	450	0.812605	490	420	8.656857
60	500	480	0.7783487	500	420	8.368615
61	600	570	0.5274833	600	480	6.163019
62	700	960	0.3780601	700	570	4.756642
63	800	1020	0.2774791	800	660	3,799803
64	900	1080	0.2081643	900	720	3.1165
65	1000	1140	0.1719734	1000	810	2,609845
66	1100	1200	0.15126	1100	870	2,222726
67	1200	1200	0.1342977	1200	1170	1.826654
68	1300	1200	0.1176617	1300	1200	1,563114
69	1400	1200	0.1014783	1400	1200	1.329531
70	1500	1200	0.08634505	1500	1200	1.140537
71	1600	1200	0.07271204	1600	1200	0.9760523
72	1700	1200	0.06078888	1700	1200	0.8275309

稀贵金属资源循环利用项目环境影响报告书

序号		最不利气象条件			常见气象条件				
丁 · 与	下风向距离(m)	出现时间(s)	浓度(mg/m³)	下风向距离(m)	出现时间(s)	浓度(mg/m³)			
73	1800	1200	0.05059522	1800	1200	0.696481			
74	1900	1200	0.04201449	1900	1200	0.58309			
75	2000	1200	0.03487715	2000	1200	0.4864951			
76	2500	1200	0.01417681	2500	1200	0.1959181			
77	3000	1200	0.00632036	3000	1200	0.08364648			
78	3500	1200	0.003112216	3500	1200	0.03895784			
79	4000	1200	0.001673327	4000	1200	0.01974868			
80	4500	1200	0.000967964	4500	1200	0.01078488			
81	5000	1200	0.000594894	5000	1200	0.006274887			
82	5500	1200	0.000384408	5500	1200	0.00385146			
83	6000	1200	0.000258999	6000	1200	0.002473327			
84	6500	1200	0.000180749	6500	1200	0.001650554			
85	7000	1200	0.000129964	7000	1200	0.001138319			
86	7500	1200	9,58712E-05	7500	1200	0,000807638			
87	8000	1200	7.2304E-05	8000	1200	0,000587311			
88	8500	1200	5.55916E-05	8500	1200	0.000436393			
89	9000	1200	4.34715E-05	9000	1200	0.000330466			
90	9500	1200	3.4506E-05	9500	1200	0.000254493			
91	10000	1200	2.77561E-05	10000	1200	0.000198943			

表 5.8-4 下风向不同距离处盐酸最大浓度统计表

		最不利气象条件		Land Street	常见气象条	4
序号	下风向距离 (m)	出现时间(s)	浓度(mg/m³)	下风向距离 (m)	出现时间(s)	浓度(mg/m³
1	0	23.3	88.3	-13.7	36.9	0
2	0.0126	23.3	88.3	-11	33.8	14.7835627
3	0.0371	23.3	88.4	-8.24	30.7	19.7342505
4	0.0737	23.3	88.5	-5,49	27.7	22,76650158
5	0.125	23.3	88.7	-2.75	24.6	24,96618137
6	0,193	23.3	89	0.00000262	21.5	26,70296294
7	0.284	23.3	89,3	2.75	24,6	28.09707722
8	0.402	23.3	89.7	5.49	27.7	29,26814187
9	0,555	23.3	90.2	8.24	30.7	30.31604365
10	0.75	23.3	90.9	11	33,8	31,07017126
1.1	0.999	23.3	91.7	13.7	36.9	31.75653322
12	1.32	23.3	92.7	14	37.2	31.56643848
13	1.71	23.3	93.7	14.3	37.6	31.22871604
14	2.22	27.4	95.5	14.7	38	30.93593251
15	2.85	27.4	97.5	15.2	38.5	30.55050917
16	3.64	27.4	99.7	15.7	39.1	30.26383821
17	4.63	27.4	102	16.3	39.8	29.73157396
18	5.86	32.1	106	17.1	40.7	29.03275933
19	7.4	32.1	108	18.1	41.8	28.37990279
20	9.31	37.7	112	19.2	43	27.58994973
21	11.7	44.1	116	20.5	44.3	26,50953949
22	14.6	44.1	119	22.1	45.8	25,12248413
23	18.2	44.1	115	24.1	47.7	23,70857155
24	22.7	51.6	101	26.5	49.9	21,91206105
25	28.2	60.3	88.4	29.4	52.5	20,46774232
26	35	70.5	76.8	33	55,6	18,65547828
.27	43,3	82.3	66.9	37.4	59.4	16,86059524
28	53,5	96	58	42.8	63.8	15,18884698
29	66.1	112	50.1	49.5	69.2	13.46936784
30	81.4	130	42.9	57.7	75.5	11.87870194
31	100	152	36.6	67.9	83,2	10.22744926
32	123	177	30.3	80.5	92.3	8.719441365
33	151	206	25.3	96	103	7.339953401
34	185	240	20.6	115	116	5.928556494
35	227	280	16.5	139	132	4.796175307
36	277	325	13.2	169	150	3.80059544
37	339	379	10.2	205	172	2.95010441
38	414	441	7.73	251	199	2.219043132

稀贵金属资源循环利用项目环境影响报告书

		最不利气象条件		-	常见气象条件	牛
序号	下风向距离 (m)	出现时间(s)	浓度(mg/m³)	下风向距离 (m)	出现时间(s)	浓度(mg/m³
39	506	513	5.79	307	230	1.647035522
40	618	597	4.3	377	268	1.205258072
41	754	694	3.17	464	313	0.868509798
42	920	807	2.27	571	367	0.612907891
43	1120	939	1.63	704	432	0.431345524
44	1370	1090	1.15	868	509	0.30103928
45	1670	1270	0.824	1070	600	0.207896104
46	2030	1480	0.592	1320	710	0.143370888
47	2470	2000	0.416	1630	841	0.098434184
48	3000	2000	0.299	2010	998	0.068044402
49	3640	2700	0.218	2480	1190	0.047190145
50	4420	3140	0.158	3060	1410	0.032617939
51	5360	3660	0,114	3770	1680	0.022775507
52	6490	4250	0.0824	4630	2000	0.015864531
53	7850	4940	0.0596	5700	2380	0.011257002
54	9490	5750	0.0427	7000	2830	0.007977284
55	11500	6690	0.031	8600	3380	0.005713832
56	13800	7780	0.0224	10500	4030	0.004100122
57	16600	9040	0.0161	12900	4800	0.002970789
58	20000	10500	0.0116	15800	5730	0.002183898
59	24000	12200	0.00821	19300	6840	0.001604266
60	28800	14200	0.00583	23600	8160	0.001183034
61	34500	16500	0.00417	28700	9740	0.000870027

表 5.8-5 下风向不同距离处氯气最大浓度统计表

序号	1	最不利气象条件			常见气象条件	
H-5	下风向距离(m)	出现时间(s)	浓度(mg/m³)	下风向距离(m)	出现时间(s)	浓度(mg/m³
1	1	5	8.27307E-05	1	5	8.12322E-05
2	1	5	2800.387352	1	5	3800,523218
3	1.02	5.04	3752,20027	1.02	5.05	4476.238483
4	1.05	5.09	6148.103115	1.05	5.09	6165.652779
5	1.08	5.15	1353.183371	1.08	5.15	3682.279393
6	1.12	5.23	8.260362445	1.12	5.23	0.233669664
7	1.17	5.32	112.0748304	1.17	5.32	40.51340476
8	1.23	5.42	166.1739119	1.23	5.42	137.2453975
9	1.29	5.55	179.7761805	1.29	5.55	195.4094592
10	1.38	5.71	183.2248459	1.38	5.71	236.3270209
11	1.48	5.9	185.3056451	1.48	5.9	255.2917076
12	1.61	6.14	192,4058895	1.61	6.14	256.1737259
13	1.76	6.42	193.3678529	1.76	6.42	246.4201410
14	1.94	6.77	186.8528529	1.94	6.77	232.0274224
15	2.17	7.19	175.7988645	2.17	7.19	210.9287093
16	2.44	7.7	164.6386745	2.44	7.7	189,452135
17	2.77	8.33	151.6646024	2.77	8.33	168,183099
18	3.18	9.08	137.5743765	3.18	9.08	138.8879539
19	3.67	10	123.7892898	3.67	10	114.4710354
20	4.1	11.6	131.5490292	4.18	11.2	124.6379564
21	4.51	13.4	149,9530267	4.77	12.7	112,512189
22	5	15.7	152,4926374	5.55	14.6	92.0219162
23	5.61	18.5	144,5455981	6.62	16.8	71.7776165
24	6.4	21.9	132.137831	8.1	19.5	54.17667486
25	7.43	26.1	115.8169231	10.1	22.8	39.8843853
26	8.79	31.1	100.0545236	12.9	26.8	29.42924989
27	10.6	37.2	83.67413379	16.7	31.7	21.4789926
28	13	44.6	69.60289594	21.7	37.6	15.6970867
29	16.2	53.6	56.23393947	28.5	44.7	11.48149509
30	20.4	64.6	45.06909379	37.5	53.5	8.356407355
31	26.1	77.9	35.75118089	49.3	64.1	5.952210179
32:	33.6	94.1	28.16107663	64.8	76.9	4,287522398
33	43.6	114	21.88290752	85	92.6	3.003371802
34	56.9	138	16.82361653	111	112	2.104110306

稀贵金属资源循环利用项目环境影响报告书

rise EX	i	设不利气象条件			常见气象条件	
序号	下风向距离(m)	出现时间(s)	浓度(mg/m³)	下风向距离(m)	出现时间(s)	浓度(mg/m³
35	74.6	167	12.85942917	145	135	1.438490207
36	97.9	202	9.631428916	189	163	0.972162711
37	129	245	7.218166749	246	197	0.640732203
38	169	297	5.327592042	318	239	0.416958453
39	223	360	3.828673887	411	289	0.274582581
40	293	438	2.691449045	529	350	0.174761388
41	385	531	1.845508296	679	425	0.11268835
42	505	645	1.257525829	871	516	0.072074466
43	662	783	0.832814169	1110	626	0.046142432
44	866	952	0.543582851	1420	760	0.029709822
45	1130	1160	0.348821039	1810	923	0.019130394
46	1470	1400	0.226465116	2290	1120	0.012543684
47	1920	1710	0.145213081	2910	1360	0.008206717
48	2490	2070	0.093493219	3680	1650	0.005480293
49	3220	2520	0.061014769	4640	2010	0.003649274
50	4160	3060	0.040064213	5850	2440	0.002460997
51	5360	3720	0.026201213	7350	2960	0.001674964
52	6890	4520	0.017127473	9230	3600	0.001153684
53	8830	5490	0.011018408	11600	4380	0.000804064
54	11300	6680	0.00721422	14500	5320	0.000565348
55	14400	8120	0.004721238	18100	6460	0.000400357
56	18300	9860	0.003060259	22500	7860	0.000287446
57	23300	12000	0.001972809	28100	9550	0.00020342
58	29500	14600	0.001271805	34800	11600	0.000144952
59	37300	17700	0.000820082	43200	14100	0.000105204
60	47000	21500	0.00052946	53500	17100	7.59103E-05
61	59100	26200	0.000347895	66100	20800	5.5258E-05

②、毒性终点浓度最大影响范围

根据预测结果可知,盐酸储罐泄漏风险情景下,常见气象条件无超标阈值,不再表征盐酸储罐泄漏常见气象条件下的毒性浓度最大影响范围;本次环评列出盐酸储罐泄漏不利气象条件下,硫酸储罐泄漏及液氯储罐泄漏情景下不同阈值毒性终点浓度最大影响范围情况见表 5.8-6 及图 5.8-1~图 5.8-4。

表 5.8-6 各阈值的廓线对应的位置

危险物质	气象条件	阈值 (mg	最大影响范围宽 (m)	
	最不利气象条件	毒性终点浓度-1	160	39.5
硫酸	取个个几家东门	毒性终点浓度-2	8.7	160.1
THE REC	类可与各女师	毒性终点浓度-1	160	81
	常见气象条件	毒性终点浓度-2	8.7	488.6
	最不利气象条件	毒性终点浓度-1	150	1
Al- mide		毒性终点浓度-2	33	101.9
盐酸	2014 101 to 20 17 M	毒性终点浓度-1	150	1
	常见气象条件	毒性终点浓度-2	33	1
	具工制与4.2 //	毒性终点浓度-1	58	15.78
Aut No	最不利气象条件	毒性终点浓度-2	5.8	159.0
氯气	沙田与东 友林	毒性终点浓度-1	58	7.78
	常见气象条件	毒性终点浓度-2	5,8	50.72

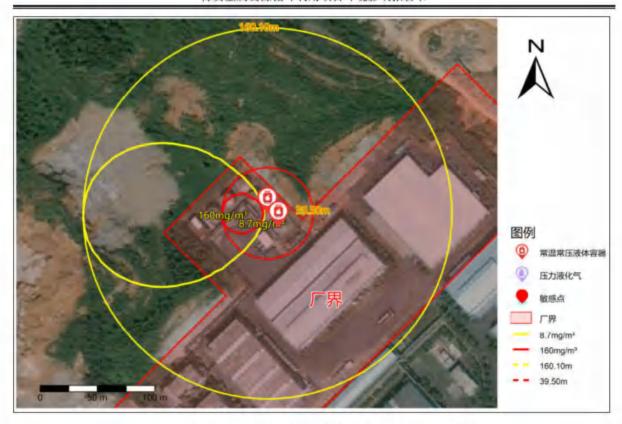


图5.8-1 硫酸泄漏最不利气象条件最大影响范围图

图5.8-2 硫酸泄漏常见气象条件最大影响范围图

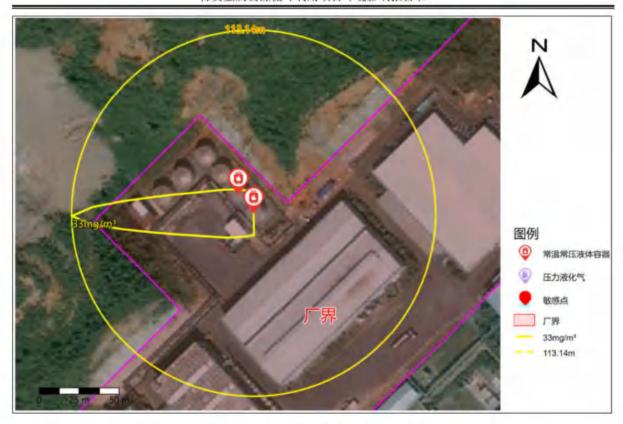


图5.8-3 盐酸泄漏最不利气象条件最大影响范围图

图5.8-5 氯气泄漏最不利气象条件最大影响范围图

图5.8-6 氯气泄漏常见气象条件最大影响范围图

③、各关心点的有毒有害物质浓度随时间变化情况

根据导则要求需给出各关心点的有毒有害物质浓度随时间变化情况,以及关心点的预测浓度超过评价标准时对应的时刻和持续时间情况。关心点各关心点的有毒有害物质浓度随时间变化情况见表5.8-7~5.8-12。由于所有泄漏状态下,在最不利气象条件和最常见气象条件下关心点均未超标。

序号	名称	最大浓度 时间(min)	5min	10min	15min	20min	25min	30min
1	白粉墙	0.00154 20	0,00006	0.00022	0.00064	0.00154	0	0
2	白家庄	0.18724 20	0.01296	0.08746	0.17367	0.18724	0	0
3	白猫冲	0.03667 20	0.00074	0.00438	0.01559	0.03667	0	0
4	白岩塘	0.01093 20	0.00025	0.00126	0.00428	0.01093	0	0
5	菜溪村	0.01079 20	0.00267	0.01856	0.05906	0.10179	0	0
6	蔡溪屯	0.47338 15	0.00000	0.47338	0.47338	0.42323	0	0
7	崇滩	0.00046 15	0.00004	0.00017	0.00046	0.00108	0	0
8	串相圭	0.00105 20	0.00004	0.00016	0.00045	0.00105	0	0
9	大古磉	0.00532 20	0.00015	0.00065	0.00209	0.00532	0	0
10	大龙社区第二 居委会	0.00082 20	0.00004	0.00013	0.00036	0.00082	0	0
11	陆家塆	0.64552 10	0.00000	0.64552	0.64552	0.54319	0	0
12	大湾	0.00221 20	0.00008	0.00030	0.00090	0.00221	0	0
13	大央坪	0.00098 20	0.00004	0.00015	0.00042	0.00098	0	0
14	道场坪	0.00083 20	0.00004	0.00013	0.00036	0.00083	0	0
15	德龙社区	0.00162 20	0.00006	0.00023	0.00068	0.00162	0	0

表 5.8-7 硫酸泄漏关心点的有毒有害物质浓度随时间变化情况(最不利气象条件)

稀贵金属资源循环利用项目环境影响报告书

		1-17-34-36-79-34-15	37 4 5 1 1 2 1 3 4 E		111111111111111			
16	德龙小学	0.00121 20	0.00005	0.00018	0.00051	0.00121	0	0
17	洞脑上	0.00121/20	0.00317	0.02236	0.06869	0.11182	0.	0
18	陡滩	0.00084[20	0.00004	0.00013	0.00037	0.00084	0	0
19	对门泰	0.0017(20	0.00006	0.00024	0.00071	0.00170	0.	0
20	对溪屯	0.00118 20	0.00005	0.00018	0.00050	0.00118	0	0
21	恶滩	0.00089 20	0.00004	0.00014	0.00039	0.00089	0	0
22.	凡溪屯	0.01366 20	0.00031	0.00156	0.00537	0.01366	0	0
23.	分洲	0.01878]20	0.00040	0.00214	0.00748	0.01878	0	- 0
24	甘龙村	0.00071 15	0.00006	0.00024	0.00071	0.00170	0	0
25	赶纸山	0.05548 20	0.00115	0.00727	0.02557	0.05548	0	0
26	干龙	0.00053 20	0.00003	0.00009	0.00024	0.00053	0	0
27	高号滩	0.02034 20	0.00043	0.00232	0.00814	0.02034	-0	0
28	观音滩	0.00956 20	0.00023	0.00111	0.00374	0.00956	0	0
29	后龙	0.00065 20	0.00003	0.00011	0.00029	0.00065	0	0
30	后锁	0.21300 20	0.00003	0.11721	0.20816	0.21300	0	0
31	胡家	0.0109 20	0.00009	0.00040	0.00122	0.00302	0	
32	湖南田			0.00040	0.01000	0.00302	0	0
	荒田	0.02463 20	0.00051					0
33		0.00674 20	0.00017	0.00081	0.00264	0.00674	0	0
34	架枧村	0.00241/20	0.00008	0.00033	0.00098	0.00241	0	0
35	蒋家塆	0.0328220	0.00066	0.00386	0.01374	0.03282	0	0
36	井塆	0.01122 20	0.00026	0.00129	0.00439	0.01122	0.	0
37	腊岩	0.00399 20	0.00012	0.00051	0.00159	0.00399	0	0
38	鲢鱼塘村	0.00146 20	0.00006	0.00021	0.00061	0.00146	0	0
39	辽家塆	0.07576 20	0.00169	0.01128	0.03839	0.07576	0	0
40	零散居民点	0.12645 20	0.00412	0.02942	0.08490	0.12645	0	0
41	桁树井	0.02264 20	0.00047	0.00259	0.00913	0.02264	0	0
42	龙王溪	0.00098 20	0.00004	0.00015	0.00042	0.00098	0	0
43	龙眼村	0.00594 20	0.00016	0.00072	0.00233	0.00594	0	0
44	马公塘	0.00132 20	0.00005	0.00020	0.00056	0.00132	0	0
45	马家头	0.00148 20	0.00006	0.00022	0.00062	0.00148	0	D
46	猫猫冲	0.00872 20	0.00021	0.00102	0.00341	0.00872	0	0
47	磨沟	0.01267 20	0.00029	0.00145	0.00497	0.01267	0	0
48	磨沟冲	0.00295 20	0.00009	0.00039	0.00119	0.00295	0	0
49	木老田	0.00425 20	0.00012	0.00054	0.00169	0.00425	0.	0
50	木弄村	0.00104 20	0,00004	0.00016	0.00045	0.00104	0	0
51	牛塘冲	0.00385 20	0.00011	0.00049	0.00153	0.00385	0.	0
52	彭家	0.27191 15	0.03030	0.17820	0.27191	0.26419	0	0
53	前光村	0.00109 20	0.00004	0.00017	0.00046	0.00109	0.	0
54	前龙村	0.01030 20	0,00024	0.00119	0.00403	0.01030	0	0
55	钱家寨	0.00059 20	0.00003	0.00010	0.00026	0.00059	0	0
56	清水塘村	0.00129 20	0.00005	0.00019	0.00055	0.00129	0	0
57	清塘	0.00129 20	0,00005	0.00019	0.00055	0.00129	0	0
58	三脚岩	0.03918 20	0.00079	0.00473	0.01683	0.03918	0	0
59	三寨村	0.04527 20	0.00092	0.00562	0.01995	0.04527	0	0
60	杉木林	0.07805 20	0.00177	0.01181	0.04000	0.07805	0	0
61	上廖溪	0.04099[20	0.00083	0.00499	0.01774	0.04099	0	0
62	上寨	0.00292 20	0.00009	0.00039	0.00118	0.00292	0	0
63	深塆	0.00205 20	0.00007	0.00029	0.00084	0.00205	0	-0
64	胜利村	0.07714 20	0.00074	0.00029	0.03935	0.00203	0	0
65	舒家塆	0.00124 20	0.00005	0.00019	0.00053	0.00124	0	0
66	水竹林	0.00190 20	0.00007	0.00019	0.00033	0.00124	0.	0
	松树林							
67		0.00060 20	0.00003	0.00010	0.00027	0.00060	0	0
68	腾龙社区	0.00051 20	0.00003	0.00009	0.00023	0.00051	0.	0
69	田池村	0.00125 20	0.00005	0.00019	0.00053	0.00125	0	0
70	田家	0.0059 20	0.00016	0.00072	0.00233	0.00592	0.	0
71	田新岩	0.00281 20	0.00009	0.00037	0.00114	0.00281	0	0
72	跳破	0.04665 20	0.00095	0.00583	0.02068	0.04665	0	0

稀贵金属资源循环利用项目环境影响报告书

73	跳岩	0.04665 20	0.00006	0.00024	0.00071	0.00170	0	0
74	铁厂	0.00124 20	0.00005	0.00019	0.00053	0.00124	0.	0
75	桐木坳	0.00141 20	0.00005	0.00021	0.00059	0.00141	0	0
76	铜鼓	0.00334 20	0.00010	0.00043	0.00134	0.00334	0	0
77	土湾	0.00683 20	0.00018	0.00082	0.00268	0.00683	0	0
78	湾地	0.00496 20	0.00014	0.00061	0.00196	0.00496	0	0
79	湾头	0.00165 20	0.00006	0.00024	0.00069	0.00165	0	0
80	王家	0.00085 20	0,00004	0.00014	0.00037	0.00085	0	0
81	下廖溪	0.01210 20	0.00028	0.00139	0.00474	0.01210	0	0
82	下龙眼	0.00594 20	0.00016	0.00072	0.00233	0.00594	0	0
83	下垅	0.00115 20	0.00005	0.00017	0.00049	0.00115	-0	0
84	下木弄	0.00193 20	0.00007	0.00027	0.00080	0.00193	0	0
85	下寨	0.00190 20	0.00007	0.00027	0.00079	0.00190	0	0
86	肖家	0.00605 20	0.00016	0.00073	0.00238	0.00605	0	0
87	斜滩	0.00829 20	0.00020	0.00098	0.00324	0.00829	0	0
88	岩盆	0.00172 20	0.00006	0.00025	0.00072	0.00172	0	0
89	岩坎上	0.12487 20	0.00401	0.02855	0.08301	0.12487	0.	0
90	岩湾	0.00429 20	0,00012	0.00054	0.00170	0.00429	0	0
91	岩下	0.02975 20	0.00060	0.00346	0.01231	0.02975	0.	0
92	堰塘塆	0.03001 20	0.00061	0.00350	0.01243	0.03001	0	0
93	燕家	0.00351 20	0.00011	0.00045	0.00140	0.00351	0	0
94	羊庄	0.01961 20	0.00041	0.00223	0.00783	0.01961	0	0
95	杨大园	0.00082 20	0.00004	0.00013	0.00036	0.00082	0	0
96	杨柳冲	0.01622 20	0.00035	0.00185	0.00641	0.01622	0	0
97	张家	0.00796 20	0,00020	0.00094	0.00311	0.00796	0	0
98	赵家溪	0.00214 20	0.00007	0.00030	0.00088	0.00214	-0	0
99	郑家塆	0.00070 20	0.00003	0.00012	0.00031	0.00070	0	-0
100	中寨	0.0032 20	0.00010	0,00042	0.00131	0.00326	0	0

表 5.8-8 硫酸泄漏关心点的有毒有害物质浓度随时间变化情况 (最常见气象条件)

序号	名称	最大浓度 时间(min)	5min	10min	15min	20min	25min	30min
1	白粉墙	0.0046 25	0	-0	0	0	0.0046	0.0046
2	白家庄	0.0074 10	0.0003	0.074	0	0	0	0
3	白猫冲	0.0169 15	0	0	0.0169	0.0169	0	0
4	白岩塘	0.0092 20	0	0	0.001	0,0092	0.0092	0.0092
5	菜溪村	0.0276 10	0	0.0276	0.0276	0	0	0
6	蔡溪屯	0.0944 10	0.0163	0.0944	0	0	0	0
7	崇滩	0.0045 25	0	-0	0	0	0.0045	0.0045
8	串相圭	0.0039 25	0	0	0	0	0.0039	0.0039
9	大古磉	0.0074 20	0	0	0	0.0074	0.0074	0.0074
10	大龙社区第二 居委会	0.0039 25	0	0	0	0	0.0039	0.0039
11	陆家塆	0.1353 5	0.1353	0.1353	0	0	0	0
12	大湾	0.0053 25	0	0	0	0.0009	0.0053	0.0053
13	大央坪	0.0037 30	0	0	0	0	0.0024	0.003
14	道场坪	0.0038 30	0	0	0	0	0.0034	0.003
15	德龙社区	0.0051 25	0	-0	0	0.0002	0.0051	0.005
16	德龙小学	0.0046 25	0	0	0	0	0.0046	0.0046
17	洞脑上	0.0286 10		0.0286	0.0286	0	0	0
18	陡滩	0.0035 30	0	0	0	0	0.0009	0.003:
19	对门赛	0.0052 25	0	0	0	0.0005	0.0052	0.0053
20	对溪屯	0.0046 25	0	0	0	0	0.0046	0.0046
21	恶滩	0.0036 30	0	0	0	0	0.0013	0.0036
22	凡溪屯	0.0117 15	0	0	0.0117	0.0117	0.0117	0
23	分洲	0.0127 15	0	0	0.0127	0.0127	0.0127	0
24	甘龙村	0.0051 25	0	0	0	0.0003	0.0051	0.005
25	赶纸山	0.0215 15	0	0.003	0.0215	0.0215	0	0

稀贵金属资源循环利用项目环境影响报告书

26	干龙	0.0034 30	0	0	0	0	0.0003	0.0034
27	高弓滩	0.0122 15	0	0	0.0122	0.0122	0.0122	0
28	观音滩	0.0105 20	0	0	0.0068	0.0105	0.0105	0.0001
29	后龙	0.0035 30	Ü	0	0	0	0.0011	0.0035
30	后锁	0.0708 10	0.0001	0.0708	0	0	0	0
31	胡家	0.0065 20	0	0	0	0.0065	0.0065	0.0065
32	湖南田	0.0158 15	0	0	0.0158	0.0158	0.0158	0
33	荒田	0.0081 20	0	0	0.0001	0.0081	0.0081	0.008
34	架枧村	0.006 25	0	0	0	0.0055	0.006	0.006
35	蒋家塆	0.0181 15	0	0.0001	0.0181	0.0181	0	0
36	井塆	0.0102 20	0	0	0.0042	0.0102	0.0102	0.0103
37	腊岩	0.0074 20	0	0	0	0.0074	0.0074	0.007
38	鲢鱼塘村	0.0049 25	0	0	0	0.0001	0.0049	0.004
39	辽家塆	0.0241 15	0	0.0139	0.0241	0.0241	0	0
40	零散居民点	0.0437 10	0	0.0437	0.0437	0	0	0
41	榴树井	0.0121 15	0	0	0.0121	0.0121	0.0121	0
42	龙王溪	0.0038 30	0	0	0	0	0.0032	0.003
43	龙眼村	0.0079 20	0	0	0	0.0079	0.0079	0.007
44	马公塘	0.0079 20	0	0	0	0.0075	0.0042	0.004
45	马家头	0.0042 25	0	0	0	0.0002	0.0042	0.005
46	猫猫冲	0.003 20	0	0	0.0002	0.0002	0.003	0.008
47	磨沟	0.01 20	0	0	0.0034	0.003	10.0	0.00
48	磨沟冲	0.0057 25	0	0	0.0034	0.003	0.0057	0.005
49	木老田	0.0037[23	0	0	0	0.003	0.0057	0.005
50	木弄村	0.0043 25	0	0	0	0.0008	0.0043	0.004
51	牛塘冲	0.0043 23	0	0	0	0.0067	0.0043	0.004
52	彭家		0	0.064	0			0.000
53	前光村	0.064 10	0	0.064	0	0	0.0041	0.004
	前龙村	0.0041 25	0	0		0.0088	0.0041	
54 55	钱家寨	0.0088 20	0	0	0.0005	0.0088	0.0002	0.008
56		0.0033 30	0	0	0	0	0.0002	0.003
57	清水塘村清塘	0.0046 25	0	0	0	0	0.0040	0.004
		0.0042 25						
58	三脚岩	0.0183 15	0	0.0001	0.0183	0.0183	0	0
59	三寨村	0.0211 15	0	0.0023	0.0211	0.0211	0	0
60	杉木林	0.0265 10	0	0.0265	0.0265	0.0265	0	0
61	上廖溪	0.0203 15	0	0.0014	0.0203	0.0203	0	0
62	上寨	0.0054 25	0	0	0	0.0017	0.0054	0.005
63	深塆	0.0053 25	0	0	0	0.0008	0.0053	0.005
64	胜利村	0.0231 15	0	0.0079	0.0231	0.0231	0	0
65	舒家塆	0.0045 25	0	0	0	0	0.0045	0.004
66	水竹林	0.0051 25	0	0	0	0.0003	0.0051	0.005
67	松树林	0.0035 30	0	0	0	0	0.0006	0.003
68	腾龙社区	0.0033 30	0	0	0	0	0.0002	0.003
69	田冲村	0.0042 25	0	0	0	0	0.0042	0.004
70	田家	0.008 20	0	0	0.0001	0.008	0.008	0.008
71	田新岩	0.0054 25	0	0	0	0.0015	0.0054	0.005
72	跳破	0.0185 15	0	0.0002	0.0185	0.0185	0	0
73	跳岩	0.0047 25	0	0	0	0	0.0047	0.004
74	铁厂	0.0044 25	0	0	0	0	0.0044	0.004
75	桐木坳	0.0044 25	0	0	0	0	0.0044	0.004
76	铜鼓	0.0064 20	0	0	0	0.0064	0.0064	0.006
77	土湾	0.0078 20	0	0	0	0.0078	0.0078	0.007
78	湾地	0.0071 20	0	0	0	0.0071	0.0071	0.007
79	湾头	0.0049 25	0	0	0	0.0001	0.0049	0.004
80	王家	0.0038 30	0	0	0	0	0.0036	0.003
81	下廖溪	0.0116 15	0	0	0.0116	0.0116	0.0116	0
82	下龙眼	0.0079 20	0	0	0	0,0079	0.0079	0.007

稀贵金属资源循环利用项目环境影响报告书

83	下垅	0.0042 25	0	0	0	0	0.0042	0.0042
84	下木弄	0.0053 25	-0	0	0	0.001	0.0053	0.0053
85	下寨	0.0049 25	0	0	0	0.0001	0.0049	0.0049
86	肖家	0.0084 20	0	0	0.0003	0.0084	0.0084	0.0084
87	斜滩	0.0092 20	.0	0	0.001	0.0092	0.0092	0.0092
88	岩盆	0.0051 25	0	0	0	0.0004	0.0051	0.0051
89	岩坎上	0.0376 10	0	0.0376	0.0376	0	0	0
90	岩湾	0.0071 20	0	0	0	0.0071	0.0071	0.0071
91	岩下	0.0136 15	0	0	0.0136	0.0136	0.0136	0
92	堰塘塆	0.0158 15	0	0	0.0158	0.0158	0.0036	0
93	燕家	0.006 20	0	0	0	0.0055	0,006	0.006
94	羊庄	0.0144 15	0	0	0.0144	0.0144	0.0144	0
95	杨大园	0.0035 30	0	0	0	0	100.0	0.0035
96	杨柳冲	0.0108 20	0	-0	0.0099	0.0108	0.0108	0
97	张家	0.0091 20	0	0	0.0008	0.0091	0.0091	0.0091
98	赵家溪	0.0054 20	0	0	0	0.0015	0.0054	0.0054
99	郑家塆	0.0035 30	0	0	0	0	0.0011	0.0035
100	中寨	0.0069 20	0	0	0	0.0069	0.0069	0.0069

表 5.8-9 盐酸泄漏关心点的有毒有害物质浓度随时间变化情况(最不利气象条件)

序号	名称	最大浓度 时间(min)	5min	10min	15min	20min	25min	30min
1	白粉墙	0.0179 30	0	0	0	0	0	0.0179
2	白家庄	2.0689 15	0	1.6942	2.0689	2.0689	2.0689	0.0002
3	白猫冲	0.6041 20	0	0	0.0021	0.6041	0.6041	0.6041
4	白岩塘	0.3791 25	0	0	0	0.0084	0.3791	0.3791
5	菜溪村	1.0796 15	0	0	1.0796	1.0796	1.0796	1.0796
6	蔡溪屯	4.0101 15		0.0001	4.0101	4.0101	0.0001	0
7	崇滩	0.0025 30	0	0	0	0	0	0.0025
8	串相圭	0.0018 30	0	-0	0	0.	0	0.0018
9	大古磉	0.2874 30	0	0	0	0	0.0758	0.2874
10	大龙社区第二 居委会	0.0004 30	0	0	0	0	0	0.0004
11	陆家塆	5.1689 10	0.0082	5,1689	5.1689	0.0011	0	0
12	大湾	0.095 30	0	0	0	0	0.0004	0.095
13	大央坪	0.0012 30	0	0	0	0	0	0.0012
14	道场坪	0.0004 30	0	0	0	0	0	0.0004
15	德龙社区	0.0251 30	0	0	0	0	0	0.025
16	德龙小学	0.0052 30	0	0	0	0	0	0.0053
17	洞脑上	1,1881 15	0	0.0001	1.1881	1.1881	1.1881	1.188
18	陡滩	0,0004 30	0	0	0	.0	0	0.0004
19	对门寨	0.0291 30	0	0	0	0	0	0.029
20	对溪屯	0.004 30	0	0	0	0	0	0.004
21	恶滩	0.0006 30	0	0	0	0	0	0.000
22	凡溪屯	0.4049 25	0	0	0	0.0297	0.4049	0.4049
23	分洲	0.4728 25	0	0	0	0.1834	0.4728	0.472
24	甘龙村	0.0276 30	0	0	0	0	0	0.0276
25	赶纸山	0.752 20	0	0	0.0666	0.752	0.752	0.752
26	干龙	1	0	0	0	0	0	0
27	高弓滩	0.4875 25	0	0	0	0.2523	0.4875	0.487
28	观音滩	0.3636 25	0	0	0	0.0038	0.3636	0.3636
29	后龙	1	0	0	0	0	0	0
30	后锁	2.4329[10	0	2.4329	2.4329	2.4329	2.4329	0.000
31	胡家	0.2367 30	0	0	0	0	0.0038	0.236
32	湖南田	0.5263 20	0	0	0.0001	0.5263	0.5263	0.5263
33	荒田	0.1746 25	0	0	0	0.0002	0.1746	0.306
34	架枧村	0.129 30	0	0	0	0	0.0008	0.129
35	蒋家塆	0,5805 20	0	0	0.0012	0.5805	0.5805	0.580

稀贵金属资源循环利用项目环境影响报告书

					_			
36	井塆	0.379 25	0	0	0	0.0083	0.379	0.379
37	腊岩	0.2622 30	0	0	0	0	0.0177	0.2622
38	鲢鱼塘村	0.0148 30	0	0	0	0	0	0.0148
39	辽家塆	0.9226 20	0	0	0.7082	0.9226	0.9226	0.9226
40	零散居民点	1.3725 15	0	0.0026	1.3725	1.3725	1.3725	1.3725
41	榴树井	1,3725 25	0	0	0	0.3767	0.5064	0.5064
42	龙王溪	0.0011 30	0	0	0	0	0	0.0011
43	龙眼村	0.2933 30	0	0	0	0.0001	0.1058	0.2933
44	马公塘	0.0075 30	0	0	0	0	0	0.0075
45	马家头	0.0146 30	.0	0	0	0	0	0.0146
46	猫猫冲	0.3446 25	0	0	0	0.0014	0.3446	0.3446
47	磨沟	0.3983 25	0	0	0	0.0215	0.3983	0.3983
48	磨沟冲	0.2332 30	0	0	0	0	0.0031	0.2332
49	木老田	0.2656 30	0	0	0	0	0.0217	0.2656
50	木弄村	0.0018 30	0	0	0	0	0	0.0018
51	牛塘冲	0.2567 30	0	0	0	0	0.0128	0.2567
52	彭家	2.7112 10	0	2.7112	2.7112	2.7112	2.7112	0
53	前光村	0,0022 30	0	0	0	0	0	0.0022
54	前龙村	0.3682 25	0	0	0	0.0048	0.3682	0.3682
55	钱家寨	/	0	0	0	0	0	0
56	清水塘村	0.0075 30	0	0	0	0	0	0.0075
57	清塘	0.0066 30	0	0	0	0	0	0.0066
58	三脚岩	0.6317 20	0	0	0.0042	0.6317	0.6317	0.6317
59	三寨村	0.6874 20	0	0	0.0042	0.6874	0.6874	0.6874
60	杉木林	0.9455 20	0	0	0.8857	0.9455	0.9455	0.9455
61	上廖溪	0.6552 20	0	0	0.0073	0.6552	0.6552	0.6552
62	上寨		0	0	0.0073			0.0332
63	深垮	0.2297 30	0	0	0	0	0.0025	
	胜利村	0.0629 30		0				0.0629
64	舒家垮	0.9286 20	0	0	0.7511	0.9286	0.9286	0.9286
		0.0052 30	0	0	0	0	0.0001	
66	水竹林	0.0445 30						0.0445
67	松树林		0	0	0	0	0	0
68	腾龙社区	0.00000	0	0	0	0	0	0
69	田冲村	0.006 30	0	0	0	0	0	0.006
70	田家	0.2962 30	0	0	0	0.0001	0.1237	0.2962
71	田新岩	0.2144 30	0	0	0	0	0.0021	0.2144
72	跳破	0.7085 20	0	0	0.0252	0.7085	0.7085	0.7085
73	跳岩	0.0285 30	0	0	0	0	0	0.0285
74	铁厂	0.0051 30	0	-0	0	0	0	0.0051
75	桐木坳	0.0114 30	0	0	0	0	0	0.0114
76	铜鼓	0.2466 30	0	0	0	0	0.007	0.2466
77	土湾	0.308 30	0	0	0	0.0002	0.182	0.308
78	湾地	0.2789 30	0	0	0	0	0.0467	0.2789
79	湾头	0.027 30	0	0	0	0	0	0.027
80	王家	0.0004 30	0	0	0	0	0	0.0004
81	下廖溪	0.3933 25	0	0	0	0.0169	0.3933	0.3933
82	下龙眼	0.2935 30	0	0	0	0.0001	0.1068	0.2935
83	下垅	0.0037 30	0	0	0	0	0	0.0037
84	下木弄	0.0503 30	0	0	0	0	0.0001	0.0503
85	下寨	0.0463 30	0	0	0	0	0.0001	0.0463
86	肖家	0.2974 30	0	0	0	0.0001	0.1322	0.2974
87	斜滩	0.3442 25	0	0	0	0.0014	0.3442	0.3442
88	岩盆	0.0295 30	0	0	0	0	0.	0.0295
89	岩坎上	1.3521 15	0	0.0019	1.3521	1.3521	1.3521	1.3521
90	岩湾	0.27 30	0	0	0	0	0.028	0.27
91	岩下	0.5521 20	0	0	0.0003	0.5521	0.5521	0.5521
7.5		Are seed here			0.0000	No reproduce to	Section and the Party	Secretarian I

稀贵金属资源循环利用项目环境影响报告书

93	燕家	0.2479 30	0	0	0	0	0.0076	0.2479
94	羊庄	0.4799 25	0	0	0	0.2142	0.4799	0.4799
95	杨大园	0.0004 30	0	0	0	0	0	0.0004
96	杨柳冲	0.4349 25	0	0	0	0.0788	0.4349	0.4349
97	张家	0.3324 30	0	0	0	0.0007	0.3252	0.3324
98	赵家溪	0.0757 30	0	0	0	0	0.0003	0.0757
99	郑家塆	0.0001 30	0	0	0	0	0	0.0001
100	中寨	0.2428 30	0	0	0	0	0.0055	0.2428

表 5.8-10 盐酸泄漏关心点的有毒有害物质浓度随时间变化情况(最常见气象条件)

序号	名称	最大浓度 时间(min)	5min	10min	15min	20min	25min	30min
1	白粉墙	0.0206 25	0	0	0	0.0003	0.0206	0.0206
2	白家庄	0.2656 10	0	0,2656	0	0	0	0
3	白猫冲	0.0701 15	0	0.0001	0.0701	0.0701	0	0
4	白岩塘	0,0433 20	0	0	0.0206	0.0433	0.0433	0.0433
5	菜溪村	0.131 10	0	0.131	0.131	0	0	0
6	蔡溪屯	0,5357 10	0.5357	0,5357	0	0	0	0
7	崇滩	0.018 25	0	0	0	0	0.018	0.018
8	串相圭	0.0176 25	0	0	0	0	0.0176	0.0176
9	大古磉	0.0321 20	0	0	0.0001	0.0321	0.0321	0.0321
10	大龙社区第二 居委会	0.0158 30	0	Ō	0	0	0.0098	0.0158
11	陆家塆	0.6997 5	0.6997	0.0002	0	0	0	0
12	大湾	0.023 25	0	0	0	0.005	0.023	0.023
13	大央坪	0.017 25	0	0	0	0	0.017	0.017
14	道场坪	0.0158 30	0	0	0	0	0.0096	0.0158
15	德龙社区	0.021 25	0	0	0	0.0005	0.021	0.021
16	德龙小学	0.0189 25	0	0	0	0	0.0189	0.0189
17	洞脑上	0.1416 10	0	0.1416	0.1416	0	0	0
18	陡滩	0.0158 30	0	0	0	0	0.0099	0.015
19	对门寨	0.0212 25	0	0	0	0.0006	0.0212	0.0213
20	对溪屯	0.0186 25	0	0	0	0	0.0186	0.0186
21	恶滩	0.0162 30	0	0	0	0	0.0138	0.0162
22	凡溪屯	0.0461[15	0	0	0.0461	0.0461	0.0461	0
23	分洲	0.0547 15	0	0	0.0547	0.0547	0.0547	0
24	甘龙村	0.0212 25	0	0	0	0.0006	0.0212	0.0212
25	赶纸山	0.0888 15	0	0.0092	0.0888	0.0888	0	0
26	于龙	0.0139 30	0	0	0	0	0.0004	0.0139
27	高弓滩	0.0566 15	0	0	0.0566	0.0566	0.0566	0
28	观音滩	0.0415 20	0	0	0.0095	0.0415	0.0415	0.0413
29	后龙	0.0148 30	0	0	0	0	0.002	0.0148
30	后锁	0.3026 10	0.0013	0.3026	0	0	0	0
31	胡家	0.0268 20	0	0	0	0.0268	0.0268	0.0268
32	湖南田	0.0614 15	0	0	0.0614	0.0614	0.0614	0
33	荒田	0.0351 20	0	0	0.0004	0.0351	0.0351	0.035
34	架枧村	0.024 25	0	0	0	0.0084	0.024	0.024
35	蒋家塆	0.0676[15	0	0	0.0676	0.0676	0	0
36	井塆	0.0433 20	0	0	0.0204	0.0433	0.0433	0.043
37	腊岩	0.0294 20	0	0	0	0.0294	0.0294	0.029
38	鲢鱼塘村	0.0203 25	0	0	0	0.0002	0.0203	0.0203
39	辽家塆	0,1084 10	0	0,1084	0,1084	0.0189	0	0
40	零散居民点	0.1677 10	0	0.1677	0.1677	0	0	0
41	榴树井	0.0589 20	0	0	0	0.0589	0.0589	0
42	龙王溪	0.017 25	0	0	0	0	0.017	0.017
43	龙眼村	0.0328 20	0	0	0.0001	0.0328	0.0328	0.032
44	马公塘	0.0194 25	0	0	0	0.0001	0.0194	0.0194
45	马家头	0.0203 25	0	0	0	0.0002	0.0203	0.0203

稀贵金属资源循环利用项目环境影响报告书

46	猫猫冲	0.0394 20	0	0	0.0035	0.0394	0.0394	0.0394
47	磨沟	0.0454[15	0	0	0.0454	0.0454	0.0454	0
48	磨沟冲	0.0264 20	0	0	0	0.0264	0.0264	0.0264
49	木老田	0.0298 20	0	0	0	0.0298	0.0298	0.0298
50	木弄村	0.0176 25	0	0	0	0	0.0176	0.0176
51	牛塘冲	0.0289 20	0	0	0	0.0289	0.0289	0.0289
52	彭家	0,3502 10	0.0164	0,3502	0	0	0	0
53	前光村	0,0179 25	0	0	0	0	0.0179	0.0179
54	前龙村	0.0421 20	0	0	0.012	0.0421	0.0421	0.042
55	钱家寨	0.0145 30	0	0	0	0	0.0011	0.014
56	清水塘村	0.0194 25	0	0	0	0.0001	0.0194	0.019
57	清塘	0.0193 25	0	0	0	0	0.0193	0.019
58	三脚岩	0.0736 15	0	0.0002	0.0736	0.0736	0.0133	0
59	三寨村	0.0807 15	0	0.0012	0.0807	0.0807	0	0
60	杉木林	0.1117 10	0	0.1117	0.1117	0.0007	0	0
61	上廖溪	0.0766 15	0	0.0004	0.0766	0.0766	0	0
62	上寨		0	0.0004	0.0766	0.0227	0.026	
63	深均	0.026 25		0	0	0.0024	0.026	0.026
64	胜利村		0	0.1093	0.1093		0.0223	0.022.
65	舒家塆	0.1093 10	0	0.1093	0.1093	0.0034	0.019	0.019
					-			
66	水竹林	0.0218 25	0	0	0	0.0013	0.0218	0.021
67	松树林	0.0145 30	0	0	0	0.	0.0012	0.014
68	腾龙社区	0,0137[30	0	0	0	0	0.0003	0.013
69	田冲村	0,0191 25	0	0	0	0	0.0191	0.019
70	田家	0.0335 20	0	0	0.0002	0.0335	0.0335	0.033:
71	田新岩	0.0257 25	0	0	0	0.0197	0.0257	0.025
72	跳礅	0.0834 15	0	0.0024	0.0834	0.0834	0	0
73	跳岩	0.0212 25	0	-0	0	0.0006	0.0212	0.0213
74	铁厂	0.0189 25	0	0	0	0	0.0189	0.0189
75	桐木坳	0.02 25	0	0	0	0.0001	0.02	0.02
76	铜鼓	0.0278 20	0	0	0	0.0278	0.0278	0.027
77	上湾	0.0353 20	0	0	0.0005	0.0353	0.0353	0.035
78	湾地	0.0312 20	0	0	0	0.0312	0.0312	0.0313
79	湾头	0.0211 25	0	0	0	0.0005	0.0211	0.021
80	王家	0.0158 30	0	.0	0	0	0.0106	0.015
81	下廖溪	0.0449 20	0	0	0.0402	0.0449	0.0449	0
82	下龙眼	0.0328 20	0	0	0.0001	0.0328	0.0328	0.032
83	下垅	0.0185 25	0	0	0	0	0.0185	0.018
84	下木弄	0.022 25	0	0	.0	0.0016	0.022	0.022
85	下寨	0.0219 25	0	0	0	0.0014	0.0219	0.021
86	肖家	0.0338 20	0	0	0.0002	0.0338	0.0338	0.033
87	斜滩	0.0394 20	0	0	0.0035	0.0394	0.0394	0.039
88	岩岔	0.0212 25	0	0	0	0.0006	0.0212	0.021
89	岩坎上	0.1646 10	0	0.1646	0.1646	0	0	0
90	岩湾	0.0303 20	0	0	0	0.0303	0.0303	0.030
91	岩下	0.0646 15	0	0	0.0646	0.0646	0.0646	0
92	堰塘塆	0.0648 15	0	0	0.0648	0.0648	0.032	0
93	燕家	0.0279 20	0	0	0	0.0279	0.0279	0.027
94	羊庄.	0.0556 15	0	0	0.0556	0.0556	0.0556	0
95	杨大园	0.0158 30	0	-0	0	0	0.0095	0.015
96	杨柳冲	0.05 15	0	0	0.05	0.05	0.05	0
97	张家	0.038 20	0	0	0.0018	0.038	0.038	0.038
98	赵家溪	0.0225 25	0	0	0	0.0033	0.0225	0.022
99	郑家塆	0.0151 30	0	0	0	0	0.0032	0.015
~ ~	2 45 900 5	2.036.1046		34				2000

表 5.8-11 液氯泄漏关心点的有毒有害物质浓度随时间变化情况(最不利气象条件)

稀贵金属资源循环利用项目环境影响报告书

		PP 24 36 PP 24 04 PE	2 (17 - 18) (8-1)	11 7 7430 12				
予号	名称	最大浓度 时间(min)	5min	10min	15min	20min	25min	30min
1	白粉墙	0.0007 30	0	0	0	0	0	0.0007
2	白家庄	0.5484 15	0	0.4541	0.5484	0.5484	0.5484	0
3	白猫冲	0.1393 20	0	0	0	0.1393	0.1393	0.1393
4	白岩塘	0.0819 30	0	0	0	0.0001	0.0623	0.0819
5	菜溪村	0.2208 20	0	0	0.1035	0.2208	0.2208	0,220
6	蔡溪屯	0.6858 10	0	0.6858	0,6858	0.6858	0.6858	0
7	崇滩	0.0005 30	0	0	0	0	0	0.000
8	串相圭	0.0001 30	0	0	0	0	0	0.000
9	大古磉	0.0634 30	0	0	0	0	0.0044	0.063
10	大龙社区第二 居委会	0.0001 30	0	0	0	0	0	0.000
11	陆家塆	00.9324 10	0	00.9324	0.9324	0.9324	0	0
12	大湾	0.0091 30	0	0	0	0	0	0.009
13	大央坪	1	0	0	0	0	0	0
14	道场坪	1	0	0	0	0	0	0
15	德龙社区	0.004 30	0	0	0	0	0	0.004
16	德龙小学	0.0007 30	0	0	0	0	0	0.000
17	洞脑上	0.2275 20	0	0	0.1601	0.2275	0.2275	0.227
18	陡滩	/	0	0	0	0	0	0
19	对门寨	0.0064 30	0	0	0	0	0	0.006
20	对溪屯	0.0008 30	0	0	0	0	0	0.000
21	恶滩	/	0	0	0	0	0	0.000
22	凡溪屯	0.1004 25	0	0	0	0.0048	0.1004	0.100
23	分洲	0.1138 25	0	0	0	0.0048	0.1138	0.113
24	甘龙村	0.0044 30	0	0	0	0.0193	0.1136	0.004
25	赶纸山	0.1817 20	0	0	0.0045	0.1817	0.1817	0.004
	于龙	0,181/ 20	0		100000000		0.1817	
26 27		0.1072126	0	0	0	0.0099	-	0.107
	高弓滩	0.1072 25					0.1072	0.107
28	观音滩	0.0892 25	0	0	0	0.0006	0.0892	0.089
29	后龙	0.531/15	0	0	0	0	0	0
30	后锁	0.5316 15	0	0.3041	0.5316	0.5316	0.5316	0
31	胡家	0.0542 30	0	0	0	0	0.0005	0.054
32	湖南田	0.1325 25	0	0	0	0.1123	0.1325	0.132
33	荒田	0.0738 30	0	0	0	0	0.0203	0.073
34	架枧村	0.0313 30	0	0	0	0	0.0002	0.031
35	蒋家塆	0.1504 20	0	0	0.0003	0.1504	0.1504	0.150
36	井塆	0.0872 25	0	0	0	0.0004	0.0872	0.087
37	腊岩	0.0637 30	0	0	0	0	0.0046	0.063
38	鲢鱼塘村	0.002 30	0	0	0	0	0	0.002
39	辽家塆	0.1979 20	0	0	0.0174	0.1979	0.1979	0.197
40	零散居民点	0.3386 15	0	0.0002	0.3386	0.3386	0.3386	0
41	榴树井	0.1067 25	0	0	0	0.0094	0.1067	0.106
42	龙王溪	1	0	0	0	0	0	0
43	龙眼村	0.0705 30	0	0	0	0	0.0128	0.070
44	马公塘	0.0002 30	0	0	0	0	0	0.000
45	马家头	0.0032 30	0	0	0	0	0	0.003
46	猫猫冲	0.0767 30	0	0	0	0	0.0308	0.076
47	磨沟	0.0865 25	0	0	0	0.0003	0.0865	0.086
48	磨沟冲	0.0207 30	0	0	0	0	0.0001	0.020
49	木老田	0.0585 30	0	0	0	0	0.001	0.058
50	木弄村	0.0003 30	0	0	0	0	0	0.000
51	牛塘冲	0.0582 30	0	0	0	0	0.0009	0.058
52	彭家	0.4847 15	0	0.0728	0.4847	0.4847	0.4847	0.001
53	前光村	0.0001 30	0	0.0720	0.4647	0.4047	0.4647	0.000
	前龙村	0.0796 30	0		0	0	0.0456	0.079
54	HII /V FA	0.073030	1.1	0	1 1 1	1 14		

稀贵金属资源循环利用项目环境影响报告书

56	清水塘村	0.0008 30	0	0	0	0	0	0.0008
57	清塘	0.0002 30	0	0	0	0	0	0.0002
58	三脚岩	0.1531 20	0	0	0.0003	0.1531	0.1531	0.1531
59	三寨村	0.1791 20	0	0	0.0036	0.1791	0.1791	0.1791
60	杉木林	0.2135 20	0	0	0.0597	0.2135	0.2135	0.2135
61	上廖溪	0.1742 20	0	0	0.0023	0.1742	0.1742	0.1742
62	上寨	0.0144 30	0	0	0	0	0	0.0144
63	深塆	0.009 30	0	0	0	0	0	0.009
64	胜利村	0.1917 20	0	0	0.0105	0.1917	0.1917	0.1917
65	舒家塆	0.0006 30	0	0	0	0	0	0.0006
66	水竹林	0.0049 30	0	0	0	0	0	0,0049
67	松树林	1	0	0	0	0	0	0
68	腾龙社区	1	0	0	0	0	0	0
69	田冲村	0.0002 30	0	0	0	0	0	0.0002
70	田家	0.0733 30	0	0	0	0	0.0189	0.0733
71	田新岩	0.0133 30	0	0	0	0	0	0.0133
72	跳破	0.1568 20	0	0	0.0005	0.1568	0.1568	0.1568
73	跳岩	0.0011 30	0	0	0	0	0	0.0011
74	铁厂	0.0004 30	0	0	0	0	0	0.0004
75	桐木坳	0.0004 30	0	0	0	0	0	0.0004
76	铜鼓	0.0513 30	0	0	0	0	0.0005	0.0513
77	土湾	0.0703 30	0	0	0	0	0.0124	0.0703
78	湾地	0.0602 30	0	0	0	0	0.0021	0.0602
79	湾头	0.0027 30	0	0	0	0	0	0.0027
80	王家	1	0	0	0	0	0	0
81	下廖溪	0.0985 25	0	0	0	0.004	0.0985	0.0985
82	下龙眼	0.0717 30	0	0	0	0	0.0152	0.0717
83	下垅	0.0002 30	0	0	0	0	0	0.0002
84	下木弄	0.01 30	0	0	0	0	0	0.01
85	下寨	0.0019 30	0	0	0	0	0	0.0019
86	肖家	0.0772 30	0	0	0	0	0.0331	0.0772
87	斜滩	0.0819 30	0	0	0	0.0001	0.0626	0.0819
88	岩盆	0.0051 30	0	0	0	0	.0	0.0051
89	岩坎上	0.2984 15	0	0	0.2984	0.2984	0.2984	0.2984
90	岩湾	0.0601 30	0	0	0	0	0.0021	0.0601
91	岩下	0.1193 25	0	0	0	0.0331	0.1193	0.1193
92	堰塘塆	0.1329 25	0	0	0	0.1163	0.1329	0.1329
93	燕家	0.0311 30	0	0	0	0	0.0002	0.0311
94	羊庄	0.1245 25	0	0	0	0.054	0.1245	0.1245
95	杨大园	1	0	0	0	0	0	0
96	杨柳冲	0.0907 25	0	0	0	0.001	0.0907	0.0907
97	张家	0.0809 30	0	0	0	0.0001	0.055	0.0809
98	赵家溪	0.0132 30	0	0	0	0	0	0.0132
99	郑家塆	1	0	0	0	0	0	0
100	中寨	0.0592 30	0	0	0	0	0.0014	0.0592

表 5.8-12 液氯泄漏关心点的有毒有害物质浓度随时间变化情况 (最常见气象条件)

序号	名称	最大浓度 时间(min)	5min	10min	15min	20min	25min	30min
1	白粉墙	0,0046 25	0	0	0	0	0.0046	0.0046
2	白家庄	0.074 10	0.0003	0.074	0	0	0	0
3	白猫冲	0,0169 15	0	0	0.0169	0.0169	0	0
4	白岩塘	0.0092 20	0	0	0.001	0.0092	0.0092	0.0092
5	菜溪村	0.0276 10	0	0.0276	0.0276	0	0	0
6	蔡溪屯	0.0944 10	0.0163	0.0944	0.0944	0	0	0
7	崇滩	0.0045 25	0	0	0	0	0.0045	0.0045
8	串相圭	0.0039 25	0	0	0	0	0.0039	0.0039
9	大古磉	0.0074 20	0	0	0	0.0074	0.0074	0.0074

稀贵金属资源循环利用项目环境影响报告书

10	大龙社区第二	0.0039 25	0	0	0	0	0.0039	0.0039
11	居委会 陆家塆	0.1353 5	0.1353	0.1353	0	0	0	0
12	大湾	0.0053 25	0.1555	0.1555	0	0.0009	0.0053	0.0053
13	大央坪	0.0037 30	0	0	0	0.0005	0.0033	0.003
14	道场坪	0.0037[30	0	0	0	0	0.0024	0.003
15	德龙社区	0.0051 25	0	0	0	0.0002	0.0051	0.005
16	徳龙小学		0	0	0	0.0002	0.0031	0.003
17	洞脑上	0.0046 25	0	0.0286	0.0286	0	0.0046	
18	陡滩	0.0286 10	0	0,0286	0.0280	0	0.0009	0.003
19	对门寨	0.0035 10		0	0			0.005
		0.0052 25	0		_	0.0005	0.0052	-
20	对溪屯	0.0046 25	0	0	0	0	0.0046	0.004
21	恶滩	0.0036 30	0	0	0	0	0.0013	0.003
22	凡溪屯	0.0117 15	0	0	0.0117	0.0117	0.0117	-0
23	分洲	0.0127 15	0	0	0.0127	0.0127	0.0127	0
24	甘龙村	0.0051 25	0	0	0	0.0003	0.0051	0.005
25	赶纸山	0.0215 15	0	0.003	0.0215	0.0215	0	0
26	干龙	0.0034 30	0	0	0	0	0.0003	0.003
27	高弓滩	0.0122 15	0	0	0.0122	0.0122	0.0122	0
28	观音滩	0.0105 20	0	0	0.0068	0.0105	0.0105	0.000
29	后龙	0.0035 30	0	0	0	0	0.0011	0.003
30	后锁	0.0708[10	0.0001	0.0708	0	0	0	0
31	胡家	0.0065 20	0	0	0	0.0065	0.0065	0.006
32	湖南田	0.0158 15	0	0	0.0158	0.0158	0.0158	0
33	荒田	0.0081)20	0	0	0.0001	0.0081	0.0081	0.008
34	架枧村	0.006 25	0	0	0	0.0055	0.006	0.006
35	蒋家塆	0.0181 15	0	0,0001	0.0181	0.0181	0	0
36	井塆	0.0102[20	0	0	0.0042	0.0102	0.0102	0.010
37	腊岩	0.0074 20	0	0	0	0.0074	0.0074	0.007
38	鲢鱼塘村	0.0049 25	0	0	0	0.0001	0.0049	0.0049
39	辽家塆	0.0241 15	0	0.0139	0.0241	0.0241	0	0
40	零散居民点	0.0437 10	0	0.0437	0.0437	0	0	0
41	榴树井	0.0121 15	0	0	0.0121	0.0121	0.0121	0
42	龙王溪	0.0121 30	0	0	0	0	0.0032	0.003
43	龙眼村	0.0079 20	0	0	0	0.0079	0.0079	0.007
44	马公塘	0.0042 25	0	0	0	0	0.0042	0.004
45	马家头	0.005 25	0	0	0	0.0002	0.005	0.005
46	猫猫冲	0.0083 20	0	0	0.0002	0.0083	0.0083	0.008
47	磨沟	0.01 25	0	0	0.0034	0.01	0.01	0.01
48	磨沟冲	0.0057 25	0	0	0	0.003	0.0057	0.005
49	木老田	0.0068 20	0	0	0	0.0068	0.0068	0.006
50	木弄村	0.0043 25	0	0	0	0	0.0043	0.004
51	牛塘冲	0.0067 20	0	0	0	0.0067	0.0067	0.006
52	彭家	0.064 10	0	0.064	0	0	0	0
53	前光村	0.0041 25	0	0	0	0	0.0041	0.004
54	前龙村	0.0088 20	0	0	0.0005	0.0088	0.0088	0.008
55	钱家寨	0.0033 30	0	0	0	0	0.0002	0.003
56	清水塘村	0.0046 25	0	0	0	0	0.0046	0.004
57	清塘	0.0040 25	0	0	0	0	0.0042	0.004
58	三脚岩	0.0183 15	0	0.0001	0.0183	0.0183	0	0.004
59	三寨村	0.0211 15	0	0.0023	0.0211	0.0211	0	0
60	杉木林	0.0265 10	0	0.0265	0.0265	0.0265	0	0
61	上廖溪	0.0203 15	0	0.0014	0.0203	0.0203	0	0
62	上寨	0.0054 25	0	0.0014	0.0203	0.0017	0.0054	0.005
63	深垮	0.0053 25	0	0	0	0.0007	0.0053	0.005
64	胜利村	0.0033 23	0	0.0079	0.0231	0.0008	0.0055	0.005
AUT I	0.054.04.0	0.0231[13	V	0.0079	0.0231	0.0431	U	U

稀贵金属资源循环利用项目环境影响报告书

66	水竹林	0.0051 25	0	0	0	0.0003	0.0051	0,0051
67	松树林	0.0035 30	0	0	0	0	0.0006	0.0035
68	腾龙社区	0.0033 30	0	0	0	0	0.0002	0.0033
69	田冲村	0.0042 25	0	0	0	0	0.0042	0.0042
70	田家	0.008 20	0	0	1000.0	0.008	0.008	0.008
71	田新岩	0.0054 25	0	0	0	0.0015	0.0054	0.0054
72	跳破	0,0185 15	0	0,0002	0.0185	0.0185	0	0
73	跳岩	0,0047 25	0	0	0	0	0.0047	0.0047
74	铁厂	0.0044 25	0	0	0	0	0.0044	0.0044
75	桐木坳	0.0044 25	0	0	0	0	0.0044	0.0044
76	铜鼓	0.0064 20	0	0	0	0.0064	0.0064	0.0064
77	土湾	0.0078 20	0	0	0	0.0078	0.0078	0.0078
78	湾地	0.0071 20	0	0	0	0.0071	0.0071	0.0071
79	湾头	0.0049 25	0	-0	0	0.0001	0.0049	0.0049
80	王家	0.0036 25	0	0	0	0	0.0036	0.0036
81	下廖溪	0.0116 15	.0	0	0.0116	0.0116	0.0116	0
82	下龙眼	0.0079 20	0	0	0	0.0079	0.0079	0.0079
83	下垅	0.0042 25	0	0	0	0	0.0042	0.0042
84	下木弄	0.0053 25	0	0	0	0.001	0.0053	0.0053
85	下寨	0.0049 25	0	0	0	0.0001	0.0049	0.0049
86	肖家	0.0084 20	0	0	0.0003	0.0084	0.0084	0.0084
87	斜滩	0.0092 20	0	0	0.001	0.0092	0.0092	0.0092
88	岩盆	0,0051)25	0	0	0	0.0004	0.0051	0.0051
89	岩坎上	0,0376 10	0	0.0376	0.0376	0	0	0
90	岩湾	0.0071 20	0	0	0	0.0071	0.0071	0.0071
91	岩下	0.0136 15	0	0	0.0136	0.0136	0.0136	0
92	堰塘塆	0.0158 15	0	0	0.0158	0.0158	0.0036	0
93	燕家	0.006 25	0	-0.	0	0.0055	0.006	0.006
94	羊庄	0.0144 15	0	0	0.0144	0.0144	0.0144	0
95	杨大园	0.0035 30	0	0	0	0	0.001	0.0035
96	杨柳冲	0.0108 20	0	0	0.0099	0.0108	0.0108	-0
97	张家	0.0091 20	0	0	0.0008	0.0091	0.0091	0.0091
98	赵家溪	0.0054 25	0	0	0	0.0015	0.0054	0.0054
99	郑家塆	0.0035 30	0	0	0	0	0.0011	0.0035
100	中寨	0.0069 20	0	0	0	0.0069	0.0069	0.0069

④、风险预测结果

以上所设定的大气风险事故情形中,硫酸泄漏事故所造成的最大影响范围、超标持续时间及关心点伤害概率较大。其中,大气毒性终点浓度-1最大影响范围最大影响范围最大影响范围最大影响范围为488.6m,硫酸储罐488.6m 范围内无敏感保护目标。据此确定环境风险评价范围为距离厂界5km的范围,评价范围内共有敏感保护目标101个,根据预测分析,该范围无超标敏感保护目标。总体来看,各类风险事故情形对关心点的影响程度随风险源与关心点的距离增加而逐渐减小,即距离风险源越近的关心点越容易受到影响且影响持续时间越长。因此,在环境风险防控措施的设置方面应着重考虑该类关心点的防护措施,风险事故发生后,尽快采取针对性的防护措施,对敏感目标影响不大。

5.8.2 地表水环境风险预测与评价

本次环评事故风险情景设定为反钙液污水池发生泄漏事故,极端事故状况下,废水最终进入后锁小溪,造成地表水体水质受到污染。污水池发生泄漏事故后,废水进入厂区雨水管网后随雨水排入大龙经开区一号主干道后在项目北侧变电站附近排入后锁小溪。事故排放路线详见图 5.8-5。

(1) 预测模型

根据《环境影响评价技术导则地表水环境》(HJ/T2.3-2018),采用一维瞬时排放源河流扩散方程浓度分布公式为:

$$C(x,t) = \frac{M}{A\sqrt{4\pi E_1 t}} \exp(-kt) \exp\left[-\frac{(x-ut)^2}{4E_1 t}\right]$$

在t时刻、距离污染源下游x=ut处的污染物浓度峰值为:

$$C_{\text{max}}(x) = \frac{M}{A\sqrt{4\pi E_x x/u}} \exp(-kx/u)$$

式中: C(x, t) —在距离排放口 x 处, t 时刻的污染物浓度, mg/L;

X----离排放口距离, m:

t——排放发生后的扩散历时, s;

M——污染物的瞬时排放总质量, g;

u---断面流速, m/s:

A---断面面积, m2;

Ex---污染物横向扩散系数, m²/s:

π-----圆周率, 取 3.14;

k---降解系数, 1/s。

(2) 河流水文参数

表 5.8-5 河流水文参数

断面	最枯月流量 (m³/s)	平均河宽 B(m)	平均水深 h(m)	设计平均流 速 U(m/s)	河底坡度‰	横向扩散系 数 Ex
后锁小溪	0.016	3.2	0.5	0.056	8	0.52
车坝河	2.5	65	6	0.1	6.2	21.48
舞阳河	12.5	132	7.4	0.6	0.46	105.7

(3) 河流背景值

河流背景值采用本次评价期间的现状监测数据。

3.111		A LILLOUTE TO			_	_
断面	硫酸盐	Mn	Ni	Fe	Cr	Zn
后锁小溪 W2 断面	18	0.002	0.003	0.01	0.002	0.002
车坝河 W4 断面	18	0.002	0.003	0.01	0.002	0.002
舞阳河 W6 断面	18	0.002	0.003	0.01	0.002	0.002

表 5.8-6 河流背景值统计表 单位: mg/L

(4) 预测结果

在风险事故情景下,污水突发性泄漏直接进入后锁小溪后进入车坝河汇入舞阳河,污染物在水体扩散情况见表 5.8-7。

情景	河流	污染物	最大浓度 (mg/L)	超标持续时间 (s)	超标最远距 离(m)	备注
		硫酸盐	2424.24	354.84	344.45	
		Mn	91,442	566.34	2800	
	后锁小溪	Ni	1.657	473.64	2800	达 级的人词即却长
	归映小侠	Fe	404.35	580.94	2800	流经的全河段超标
		Cr ⁺⁶	9.629	505.34	2800	
		Zn	2.424	240.34	18.85	
		硫酸盐	18.455	0	0	
污水输		Mn	0.0193	0	0	
送管道	车坝河	Ni	0.0033	0	0	
	干块(円)	Fe	0.0087	0	0	
泄漏		Cr ⁺⁶	0.0038	0	0	
		Zn	0.00246	0	0	
date		硫酸盐	18.141	0	0	
		Mn	0.0074	0	0	
	舞阳河	Ni	0.0031	0	0	
	24F MEI (m)	Fe	0.0337	0	0	
		Cr ⁺⁶	0.0028	0	0	
		Zn	0.0021	0	0	

表 5.8-7 污染物影响情况一览表

根据表 5.8-7 预测结果可知,生产线输送至污水处理站的输送管道发生泄漏风险事故情景下,污染物进入锁小溪,锰、镍、铁、六价铬全河段超标,硫酸盐、锌的最远超标距离分别为 344.45m、18.85m;车坝河和舞阳河所有污染物均未超标。

舞阳河与车坝河汇口分布有舞阳河特有鱼类国家级水产种质资源保护区核心区, 污水池泄漏虽然不会造成舞阳河硫酸盐、锌、锰、镍、铁、六价铬的超标,但项目排 放的重金属仍会对水产种质资源保护区核心区的鱼类产生一定影响。因此,应加强事 故废水防控措施,杜绝事故废水的排放。

5.8.3 地下水环境风险预测与评价

根据"4.3.3 营运期地下水环境影响预测与评价",厂区做好防渗措施,不会对地下水产生影响,但一旦发生污水池渗漏的风险事故,将会对项目所在地的地下水环境产生污染影响。事故情景下,污染物短暂泄漏,超标污染晕的污染面积及迁移距离呈先增大后减小的趋势,最后全部衰减到《地下水质量标准》(GBT-14848-2017)Ⅲ类标准值以下。由于污染物浓度较大,不同污染物污染晕均会迁移出东南侧厂界。事故情景污染物均未迁移到下游的分散式饮用水点。因此,为防止厂区污水池及其他设施事故渗漏对地下水的污染,建设单位应加强防渗排查,加强对储存有液态物料或废水的生产设施、污水处理设施等流量的监控,定期开展液态物料的进出平衡校核;厂区应加强对设备设施的检修,杜绝事故泄漏;同时做好地下水监测,避免地下水受到污染。

5.9 环境风险防范措施及应急要求

5.9.1 环境管理目标

环境管理目标是采用最低合理可行原则(as low as reasonable practicable, ALARP)管控环境风险。采取的环境风险防范措施应与社会经济技术发展水平相适应,运用科学的技术手段和管理方法,对环境风险进行有效地预防、监控、响应。

5.9.2 危险化学品贮运风险防范措施

5.9.2.1 储罐

本项目储罐按以下原则进行设置:

- (1) 设置符合消防规定的灭火设施和消防环形通道:
- (2) 在贮罐和贮槽周围设计围堰。围堰采用钢筋混凝土结构,直径根据储罐的具体尺寸确定;罐区设置大于储罐最大储存量的围堰,并做好防渗、防腐措施,避免发生事故泄漏时,能有效收集泄漏液体,减少污染周边环境。围堰设置因满足以下要求;
- ①、围堰高度不低于0.15m, 围堰区域范围一般按照设备大小最大外形再向外延伸 0.8m;
 - ②、围堰不应有地漏,但必须有排水措施,围堰坡度不应小于3%;

- ③、不得有无关管道从围堰中穿过:
- ④、如果储罐泄漏出物料需要收集时,所做围堰厚度至少150mm,其容积足以容纳围堰内最大的常压贮槽的容量,围堰最低高度不小于450mm,围堰内积水坑便于集中回收,或者有管道连接到防爆耐腐蚀泵。各储罐使用部门负责确定收集的泄漏物料存储设备,并配备足够数量临时管路备用。
 - (5)、酸类(或碱类)储罐围堰附近应堆放可以中和一个储罐的烧碱(或酸)。
- ⑥、易燃易爆类危险品液体储罐围堰要求: a、围堰内内的有效容积,不小于围堰内1个最大储罐的容积。b、立式储罐至围堰堤内堤脚线的距离,不应小于罐壁高度的一半; 卧式储罐至防火堤内堤脚线的距离,不应小于3m。c、室外立式储罐围堰堤的高度,应为计算高度加0.2m,其高度应为1.0m至2.2m; 室外卧式储罐防火堤的高度,不应低于0.5m。
 - (3) 安装液位上限报警装置和可燃气体报警仪,按规程操作;
 - (4) 安装防静电和防感应雷的接地装置, 罐区内电气装置符合防火防爆要求;
 - (5) 储罐贮存量不得超过贮罐容量的85%;
- (6) 严格按照存储物料的理化性质保障贮存条件,应避免储罐受热,高温季节应采取降温措施:
- (7) 储罐区设置自动探测装置,若易燃易爆物质的浓度超过允许浓度,则开启报警装置;
- (8) 定期对罐区储罐、管线进行检修,对破裂的管线及时进行修补,并执行严格的用 火管理制度;
 - (9) 制定完善的罐区巡检制度和重大事故应急措施和救援预案;
- (10)加强罐物料输送、卸料过程的监管,在物料装卸料过程中,必须由专人负责监控,防止发生风险事故;
- (11) 储罐区附近必须设置惰性吸附材料、黄砂、应急泵、防毒面具等应急物资和设备,并定期更换过期的风险应急物资。

5.9.2.2 仓库

本项目设有原料/产品间,试剂库、危废暂存库等。

仓库应按照《 建筑设计防火规范 (2018年版)》 (GB50016-2014)和《石油化工企业

设计防火标准(2018年版)》(GB50160-2008)、《危险化学品安全管理条例》等文件的要求进行设计。仓库设置要求如下:

- (1) 按照相关工艺要求设置原辅材料和成品的贮存量,该贮存量要符合导则附录中规 定的相关物质临界量,在满足生产装置安全运行的前提下,尽量减少危险化学品最大存储 量:
 - (2) 加强库房通风、保持库房干燥, 危险化学品不混放;
 - (3) 设置有毒有害气体在线监测、监控设施,一旦有异常情况可立即做出应急反应;
- (4) 危化品仓库应设置专职养护员,负责对危险化学品的技术养护、管理和监测,养 护员应进行培训,须考核合格后持证上岗;
- (5) 危险化学品仓库内严禁吸烟和使用明火。装卸、搬运危险化学品时应按照规定进行,做到轻装轻卸,严禁摔、碰、撞击、倾斜和滚动;
- (6) 装卸易燃液体需穿防静电工作服,禁止穿带钉鞋,大桶不得在水泥地面滚动,不得使用产生火花的机具。
- (7)储存于阴凉通风库房内,远离火种、热源、氧化剂及酸类。不可与其他危险化学 品混放。
 - (8) 搬运时轻装轻卸, 防止拖、拉、摔、撞, 保持包装完好。
- (9) 平时应注意通风散热,防止受潮发霉,并应注意储存期限。储存期较长时(如一年),应拆箱检查有无发热发霉变质现象,如有则应及时处理。
 - (10) 在储存中 对不同品种的事故应区别对待。

5.9.2.3 运输过程

危险货物在运输过程中,从装卸、运输到保管,工序长,参与人员多;运输方式和工具多;运输范围广、行程长;气温、压力、干湿变化范围大,这些复杂众多的外界因素是运输中造成风险的诱发条件。

针对危险货物本身的危险特性,运输危险货物首先要进行危险货物包装,减少外界环境如雨雪、阳光、潮湿空气和杂质等影响;减少运输过程中受到碰撞、震动、摩擦和挤压;减少货物泄漏、挥发以及性质相悖的货物直接接触造成事故。

危险货物运输的基本程序及其风险分析见表 5.9-1。危险货物在其运输过程中托运一仓

储一装货—运货—卸货—仓储—收货过程中,装卸、运输和仓储三个环节中均存在造成事故、对环境造成风险的概率。

序号	过程	类别	风险类型	风险分析
		腐蚀性物品包装	环境危害	水体污染、土壤污染和生态污染
1 包装		爆炸品专用包装	火灾	反应速度快、释放热量和气体污染物、财 产损失
	物品危险品法规			重大风险事故
2	运输	运输包装法规	_	重大风险事故
		运输包装标准法规	_	重大风险事故
		腐蚀性物品包装类	环境危害	水体污染、土壤污染和生态污染
3	装卸	爆炸品专用包装类	火灾	反应速度快、释放热量和气体污染物、财 产损失

表 5.9-1 运输过程风险分析表

危险货物运输中,由于经受多次搬运装卸,因温度、压力的变化;重装重卸,操作不当;容器多次回收利用,强度下降,桶盖垫圈失落没有拧紧,安全阀开启,阀门变形断裂等原因,均易造成气体扩散、液体滴漏、固体散落,出现不同程度的渗漏,甚至可能引起火灾、爆炸或污染环境等事故。对这类事故的应急,按照应急就近的原则,运输操作人员首先采取相应的应急措施,进行渗漏处理,防止危险物质扩散至环境。

在运输途中,由于各种意外原因,产生汽车翻车、装船或沉船等,危险货物有可能散落、抛出至大气、水体或陆域,造成重大环境灾害,对于这类风险事故,要求采取应急措施,包括工程应急措施和社会救援应急预案。

包装过程要求包装材料与危险物相适应、包装封口与危险物相适应;包装标志执行《危险货物包装标志》(GB190-2009)等相关规定要求。运输过程应执行《危险货物运输包装通用技术条件》(GB12463-2009)和各种运输方式的《危险货物运输规则》。

装卸过程要求防震、防撞、防倾斜; 断火源、禁火种; 通风和降温。

5.9.3 环保设施运行风险防范措施

5.9.3.1 废气处理装置风险防范措施

为杜绝事故废气排放,建议采用以下防范措施来确保废气达标排放:

(1) 平时加强废气处理设施的维护保养,及时发现处理设备的隐患,并及时进行维修,确保废气处理系统正常运行,若遇到非正常排放无法及时处理时,必须停产

检修, 避免非正常排放对环境造成不利影响;

- (2) 建立健全的环保机构,对管理人员和技术人员进行岗位培训,对废气处理实行全过程跟踪控制:
- (3) 项目应设有备用电源,以备停电或设备出现故障时保障废气全部抽入净化 系统进行处理以达标排放;
- (4) 应定期对液碱等吸收液等进行更换,并设置备用系统,以便于废气的有效 处理
- (5) 采用 PLC 自动控制系统,并定期巡查,一旦发现事故排放且备用设施无法 切换时,应立即停产检修,响应时间控制在 1 小时内。

5.9.3.2 废水处理风险防范措施

本项目废水进入厂内污水预处理站,厂内污水处理站风险防范措施如下:

- (1) 加强对污水预处理站的日常检查, 做好记录备查;
 - (2) 对污水预处理站设备进行定期保养,尽可能减少设备事故性停运;
- (3) 污水预处理车间做好每日的进出水水站质分析,严格监控接管废水的水质情况;
- (4)加强对架空管廊内生产废水管道的维护和巡检,减少跑冒漏滴及事故性排放 补的发生。
- (5)项目购置贵州资源循环公司现有建筑进行改建,依托该片区贵州资源循环公司已建设的1座容积为800m³事故池,雨、污水排放口设置截流阀切断装置。污水处理站发生事故时,及时关闭雨水排口和污水排口截流阀,切换事故废水管网三通阀门,将事故废水通过耐腐蚀输送泵经厂内废水输送管网输送至事故池。待污水处理站正常运营后,切换事故废水管网三通阀门,再将事故废水通过耐腐蚀输送泵经厂内耐腐蚀污水输送管网输送至厂内污水处理站处理达标后接管至园区污水处理厂。

5.9.3.3 地下水环境风险防范措施

详见地下水污染防治措施章节。

5.9.3.4 固体废物暂存、运输风险防范措施

- 一般固废管理风险防范措施:
- (1) 将固体废物污染防治纳入生产经营管理,采取符合清洁生产要求的生产工艺和技术,减少固体废物产生的种类、数量,实现资源的高效利用和循环利用;
- (2) 厂区内一般固废暂存场地必须严格按照《一般工业固体废物贮存和填埋污染 控制标准》(GB18599-2020)要求设置和管理;
- (3) 固废暂存场地应建有堵截泄漏的裙脚,地面与裙脚要用坚固的防渗材料建造;应有隔离设施、报警装置和防风、防晒、防雨设施;
- (4) 固废暂存场地应采用耐腐蚀的硬化地面,地面无裂缝;衬层上需建有渗漏液 收集清除系统;
- (5) 不同种类性质的固体废物应分区贮存,并设置固废识别标志,明确每种固废的来源、性质,以及处置利用去向;
- (6)加强日常管理,暂存场地配备灭火器及其他应急物资,有效预防突发环境污染事故。

危险废物管理风险防范措施:

- (1) 危险废物暂存场所必须严格按照《危险废物贮存污染控制标准》(GB18597-2023)及其修改单的要求设置和管理,必须设置防渗、防漏、防腐、防雨等防范措施。
- (2) 危险废物暂存场所应设置废水导排管道,将渗出液或冲洗废水纳入废水处理 设施处理;贮存液态或半固态废物的,还应设置泄漏液体收集装置。
- (3)各类危险废物必须分类储存,并设置相应的标签,标明危废的来源、具体的成分、主要成分的性质和泄漏、火灾等处置方式,不得混合储存,各储存分区之间必须设置相应的防护距离,防止发生连锁反应。
- (4)必须定期对所贮存的危险废物包装容器及贮存设施进行检查,发现破损,应 及时采取措施清理更换。
- (5) 危险废物暂存场所应在厂区门口安装危废监控视频,严格监控危废的贮存和管理情况。

5.9.4 事故应急处置措施

- (1) 工厂给水管网的进水管不少于两条。当其中一条发生事故时,另一条能满足 100%的消防用水和 70%的生产、生活用水总量的要求。消防用水由消防水罐供给时,工厂给水管网的进水管,能满足消防水罐的补充水和 100%的生产、生活用水总量的要求。
- (2)本项目室外消防用水水量、消防给水管道及消火栓的设计按照《消防给水及消火栓系统技术规范》(GB50974-2014)的规定,室内用水水量、消防给水管道及消火栓的设置按照《建筑设计防火规范》(GB 50016-2014)(2018 年版)的规定。
- (3)本项目各区域灭火器的设置需符合《消防给水及消火栓系统技术规范》 (GB50974-2014)有关规定的要求。
- (4) 本项目火灾危险场所设置火灾自动报警系统和火灾电话报警。火灾自动报警系统设计符合现行国家标准《火灾自动报警系统设计规范》GB50116 的规定。
- (5)项目根据《工业企业设计卫生标准》(GBZ1-2015)以及《化工企业安全卫生设计规定》(HG20571-2014)的有关规定设计必要的淋洗器、洗眼器等卫生防护设施,其服务半径小于 15m。并在劳动者便于取用的地方设置个人防护设备、应急药箱、应急柜、应急救援通讯设备等应急急救设施。
 - (6) 储罐等重点风险区域设置有毒有害气体泄漏报警装置。

(7) 事故废水防控体系

为防止事故废水入河,按照"单元-厂区-园区"的水环境风险防控体系要求,设置事故废水收集和应急储存设施,以防止本项目在事故状态下由于工艺物料泄漏、事故消防水或污染雨水外泄,造成地表水体污染。

①、单元防控

装置区设置围堰、储罐设置防火堤, 收集一般事故泄漏的物料, 防止轻微事故泄漏时造成的污染水流出界区。罐区防火堤外设置的雨水系统阀门为常关。发生事故时, 事故区工艺物料、消防水及雨水均被拦截在防火堤内。未发生事故的区域内雨水不会进入事故水收集系统, 而是被截留在未发生事故的防火堤内, 从而减少事故水的容积。罐区的防火堤容积能够容纳防火堤内最大罐的容积。

②、厂区防控

为了最大程度降低建设项目事故发生时对水环境的影响,对厂区的事故废水将采取三级拦截措施。

- 一级拦截措施:在生产厂房及储罐区四周设置防护围堤,并对厂区内地面进行硬化处理。
- 二级拦截措施: 依托贵州中伟资源循环公司的的事故废水池 1 座 (1 座 800m³) 用于贮存事故消防废水。
- 三级拦截措施:在厂区内集、排水系统管网中设置截流阀,具体为:雨水和污水接管口分别设置截流阀,围堰区与厂区雨水收集系统相通,围堰区与雨水收集系统处同样设置。正常情况下通向雨水系统的阀门关闭,通向应急事故池、污水收集系统的阀门打开,发生泄漏、火灾或爆炸事故时,泄漏物、事故伴生、次生消防水流入雨水收集系统或污水收集系统,紧急关闭污水收集系统的截流阀,可将泄漏物、消防水截流在雨水收集系统或污水收集系统内,然后通过系统泵,将伴生、次生污水打入事故应急池,事故废水经处理达标后方可接入园区污水管网,若建设单位不能处理泄漏物,必须委托有资质的单位安全处置,杜绝以任何形式进入园区的污水管网和雨水管网。上述管理措施应安排专人负责日常管理和维护,设专人负责阀门切换。

事故状态下切断措施见图 5.9-1。

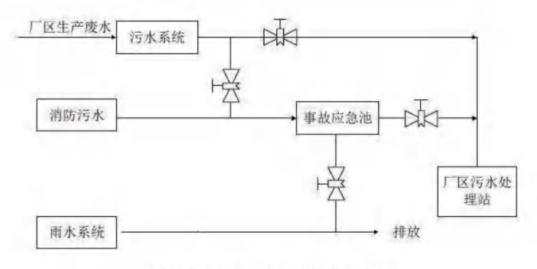


图 5.9-1 事故状态下切断措施示意图

③、园区

园区设置有一个工业污水处理厂,事故情况下污水进入厂区污水处理站处理达标

后进入园区工业污水处理厂避免废水进入地表水水体。

④防控效果

本项目按照"单元一厂区一园区/区域"的环境风险防控体系要求,设置事故废水 收集和应急储存设施,以满足事故状态下收集泄漏物料、污染消防水和污染雨水的需 要,有效形成了防控体系,完善了预防水体污染的能力。在发生重大生产事故时,利 用防控体系,可将泄漏物料和污染消防水进行有效控制。

(8) 事故池依托的可行性

①、事故池容积核算

依据中石化《水体污染防控紧急措施设计导则》,结合《消防给水及消火栓系统技术规范》(GB 50974-2014)并参照《事故状态下水体污染的预防与控制技术要求》(Q/SY1190-2013),针对事故水池按其服务范围进行核算。具体公式如下:

$$V_{18} = (V_1 + V_2 - V_3) \max + V_4 + V_5$$

注: (V₁+V₂-V₃)max 是指对收集系统范围内不同罐组或装置分别计算 V₁+V₂-V₃,取其中最大值。

V₁——收集系统范围内发生事故的一个罐组或一套装置的物料量,储存相同物料的罐组按一个最大储罐计,装置物料量按残留最大物料量的一台反应器或中间储罐计;中伟资源循环东片区设置有 16#及罐区 17#罐区 (50 m³ 硫酸储罐 10 个、50 m³ 盐酸储罐 2 个、50m³ 液碱储罐 6 个、50m³ 氨水储罐 6 个、50m³ 双氧水储罐 1 个)。本项目设置有罐区 1 处(850m³ 硫酸储罐 1 个、850m³ 盐酸储罐 1 个、900m³ 液碱储罐 2 个、50m³ 双氧水储罐 2 个,50m³ 双氧水储罐 2 个,本项目按最大容积的 1 个液碱储罐计为 900m³,中伟资源循环东片区按最大容积的 1 个溶液储罐计为 600m³。

V₂——发生事故的储罐或车间的消防水量;中伟资源循环生产厂房均为戊类厂房,计算消防废水量 270m³;本项目生产厂房为甲类厂房,根据可研一次最大消防用水量为 648m³,蒸发一部分后,消防废水量按用水量的 70%计,则本项目消防废水量为 453.6m³。

V₃——发生事故时可以传输到其他设施的物料量;根据《水体污染防控紧急措施设计导则》7.3罐区防火堤内容积可作为事故排水储存有效容积。

V₄——发生事故时仍必须进入该收集系统的生产废水量,重大事故发生时,生产 厂区立即停产,主要考虑工艺设备中的废水,按日废水量的10%计,中伟资源循环东 片区年处理 10000 金属吨氢氧化镍料生产线 $484.07\text{m}^3/\text{d}$,则 V_4 = 48.41m^3 ;本项目总废水量为 $153.76\text{m}^3/\text{d}$,则 V_4 = 15.34m^3 。

 V_5 ——发生事故时可能进入该收集系统的降雨量,参考《化工建设项目环境保护设计规范》(GB50483-2019)及《有色金属工业环境保护工程设计规范》(GB50988-2014)初期雨水的计算公式进行计算(中伟资源循环东片区按最大车间 8#浆化车间5936 m^2 计算,本项目厂区按最大车间前处理车间4160 m^2 计算),发生事故时可能进入该收集系统的降雨量,中伟资源循环东片区 V_5 =106.85 m^3 ,本项目厂区 V_5 =74.88 m^3 。

收集系统	项目	Vi	V ₂	V_3	V ₁ +V ₂ -V
硫酸、盐酸储罐组	数值 (m³)	50	0	667.74	-617.74
液碱、氨水储罐组	数值 (m³)	50	0	667.74	-617.74
双氧水储罐	数值 (m³)	50	0	20.11	29.89
15#二氧化硫储罐	数值 (m³)	50	0	50	0
13#浸出车间	数值 (m³)	38.5	270	38.5	270
12#萃取车间	数值 (m³)	38.5	270	38.5	270
11#水处理车间	数值 (m³)	38.5	270	38.5	270
10#萃取车间	数值 (m³)	62.3	270	62.3	270
1#浸出回收车间	数值 (m³)	297.5	270	297.5	270
5#中转仓库	数值 (m³)	0	270	0	270
3#固废仓库	数值 (m³)	0	270	0	270
2#原料仓库	数值 (m³)	0	270	0	270
31#机修车间	数值 (m³)	0	270	0	270
	(V1+V2-V3) max	(以上结果最大	值)		270

表 5.9-2 中伟资源循环东片区 (V1+V2-V3) max 计算值一览表

表 50 3	木而日厂区	(VI+V2 V2)	max 计算值一览表
X 3.7-3	42,00 1 1	VITVZ-V3	max 1 FF B DLAX

收集系统	项目	Vi	V_2	V ₃	V ₁ +V ₂ -V ₃
罐区	数值 (m³)	900	0	487.87	412.13
富集车间	数值 (m³)	32	453.6	32	453.6
铑铱精炼车间	数值 (m³)	9	453.6	9	453.6
铂钯精炼车间	数值 (m³)	9	453.6	9	453.6
甲类仓库	数值 (m³)	0	453.6	0	453.6
生产综合配套车间	数值 (m³)	0	453.6	0	453.6
	(V1+V2-V3) max	(以上结果最大	值)		453.6

注:液碱罐区围堰长×宽=35.4m×15m, 围堰高 1.6m, 储罐直径 12m,则计算出围堰容积为 849.6m³-储罐占用容积 361.73m³=487.87m³。

表 5.9-4 事故池容积核算一览表

分区	项目	(V ₁ +V ₂ -V ₃) max	V ₄	V ₅	V.a
中伟资源循环东片区	数值 (m³)	270	48.41	106.85	425.26
本项目	数值 (m³)	453.6	15.34	74.88	543.82

根据表 5.9-4 可知,中伟资源循环东片区事故池最小容积为 425.26m³,本项目事故池最小容积应为 543.82m³。中伟资源循环东片区己建设有 800m³ 的的事故池 1 座,可满足中伟资源循环东片区或本项目事故废水的收集。

②、事故池布置合理性

根据《水体污染防控紧急措施设计导则》及风险导则要求,事故池应设置在厂区较低处能够使事故废水可以通过自流的形式进入事故池,依托事故池设置在西北部,事故情形下项目事故废水均可以自流进入该事故池。

5.9.5 其他事故防范措施

- (1) 加强安全防火措施
- ①、本项目消防设施的设置必须满足厂区消防要求,消防器材的设置应符合国家《建筑灭火器配制设计规范》(GBJ140-1997)中的有关规定,并定期检查、验核消防器材效用,及时更换,工程厂区内设置消防水主管,环状布置,各支管之间相互独立,当一个支管由于事故损坏时,主消防水管仍然能保证水量充足可用。
- ②、厂房的防火分区面积划分应符合国家《建筑设计防火规范》(GB50016-2014)(2018年修订版)中的有关规定。
- ③、采取相应的避雷、防爆措施,其设计应符合国家《建筑物防雷设计规范》 (GB50057-2000)和《生产设备安全卫生设计总则》(GB5083-1985)中的有关规 定。
 - (2) 预防泄漏的防范措施

泄漏是本项目环境风险的主要事故源之一,预防物料泄漏的主要措施为:

- ①、严格操作规程,尤其是罐槽的充装比例,制定可靠的设备检修计划,防止设备维护不当所产生的事故发生。
- ②、在有毒气体或可燃气体可能泄漏的场所,根据规范设置有毒气体或可燃气体 检测,随时检测操作环境中有害气体的浓度,并在控制室设置气体报警系统盘,同时 将信号引入 DCS 系统,以便采取必要的处理措施。
- ③、加强作业时巡视检查。建立系统规范的评估、审批、作业、监护、救援、应急程序、事故报告等管理制度。
 - (3) 建立健全的安全环境管理制度
- ①、应设置专门负责安全环保的管理部门,主要负责人对工厂的安全生产全面负责,遵守安全生产的法律法规,加强安全生产管理,建立、健全安全生产责任制度,落实管理人员和资金,完善安全生产条件,确保安全生产。

- ②、应配合有关主管部门和设计、施工单位在项目的工程设计、施工过程及竣工 验收各个环节,严格执行"三同时"。
- ③、对可能存在的不安全因素采取相应的安全防范措施,消除事故隐患,一旦发生事故应采取有效措施,降低因事故引起的损失和对环境的污染。
- ④、加强对设备运行监视、检查、 定期维修保养,保持设备、设施的完好状态。 对发生过的事故或未遂事件、故障、异常工艺条件和操作失误等,应作详细记录和原 因分析,并找出改进措施。收集、分析国内外的有关案例,类比项目具体情况,加强 安全技术、管理等方面的有效措施,防止类似事故的发生。
- ⑤、对火灾报警装置、监测器等应定期检验,防止失效;做好各类监测目标、泄漏点、检测点的记录和分析,对不安全因素进行及时处理和整改。
- ⑦、制定应急预案,并与区域应急预案相衔接,尽可能借助社会救援,使损失和 对环境的污染降到最低。

区域应急疏散通道、安置场所详见图 5.9-2。

5.9.6 环境风险应急预案

本项目建成以后,建设单位应按照《企业突发环境事件应急预案编制指南》编制 突发环境事件应急预案,并报环保部门备案,定期进行演练。

5.10环境风险评价自查表

表 5.10-1 环境风险评价自查表

	工作区	内容					完成情况	兄			
危险物质		名称	98%硫 酸	36% 盐酸	水合肼	甲醛	氨水	硝酸	氯酸 钠	氯气	氢氟酮
		存在总量/t	1480	300	0.8	0.2	1.8	2	2.4	4	0.005
		大气		00m 范围						人口数 224	160人
风		X (每	公里管段	周边 200	m范围网	内人口数	(最大)			
险调	环境敏感	地表水	1	功能敏感 生		F1 🗆		F2	\square	F;	3 🗆
查	性	地衣小		感目标分 级		S1 ☑		S2		S	3 🗆
		地下水		功能敏感 生		G1 □		G2	Ø	Ġ	3 □
			包气带	防污性能		D1 ☑		D2		D	3 🗆
Fidu F	质及工艺系统	Q值		1 🗆	1:	≤Q<10 □	1	10≤Q<1	100 🗆	Q>1	00 ☑
79/19		M值	M	I 🗹		M2 □		M3	$ \overline{\mathbf{V}} $	M	4 🗆
	危险性	P值	P1 ☑			P2 □		P3		P	
	TT 400 tab tab	大气	E1 🗆			E:	2 🗹			E3 □	
	环境敏感 地表水		E1	$ \overline{\mathbf{A}} $		E2 🗆			E3 🗆		
程度		地下水	E1 ☑			E2 🗆		E3 🗆			
环	境风险潜势	IV ⁺ ☑	IV ☑			m \square		II		1 🗆	
	评价等级	-	-级 ☑			二级 口		三级		简单	分析 口
风险	物质危险 性		有毒有	害团		易燃易					
四识别	环境风险 类型	Ħ	泄漏 ☑			火灾	、爆炸引	发伴生/	次生污染	物排放 🗆	I
加	影响途径)	(气 図			地表水 ☑			地下水 🗹		
事	故情形分析	源强设定方法	计算	法 🗹		经验估	算法 口		其他估算法 □		
风		预测模型	SLA	B⊠		AFT	OX 🗹			其他 🗆	
险	大气	预测结果			大气毒性					m	
预		19.6915日本							488.6	m	
测	地表水		最	近环境敏				寸间	h		
与	Tallet I		游厂区边	界到达时	. [日]	d					
评价	地下水	最近环境敏感目		目标		,到过	达时间	d			
重	点风险防范 措施	做好防火	、监控系统	充的建设;	设置事	改废水"三	三级防控	"系统:(做好防渗、	. 检修工作	F;
评化	介结论与建议	评价结论: 本 漏产生等对周目 前提下,本项目	环境造成	影响。但	发生环境	风险事故	女的概率:	较低, 在	落实好环	境风险防	

6 环境保护措施及其可行性论证

6.1 施工期环境保护措施

6.1.1 施工期大气污染防治措施

- (1) 合理的组织施工、工程施工图设计,尽量做到土石方挖、填平衡,土石方 开挖及时送至填方处,并压实,以减少粉尘污染的产生;场区地面的硬化与绿化应在 施工期同步进行。
- (2) 加强施工机械的使用管理和保养维修,提高机械设备使用效率,缩短工期,降低燃油机械废气排放,将其不利影响降至最低。
- (3) 开挖、钻孔过程中,应洒水使作业面保持一定的湿度;对施工场地内松散、干涸的表土,经常洒水防止扬尘。
- (4) 对开挖区域要加强地面的洒水,防止尘土四处洒落;对于运输车辆在驶离作业点时,对车身进行清洗;严禁车辆超载超速行驶,以防止运输中的二次扬尘产生。
 - (5) 施工期采用电、液化气等清洁能源,避免对大气环境的污染影响。
- (6) 施工过程中使用的水泥和其他细粒散装材料,应贮存于库房内或密闭存放,避免露天堆放,对洒落的水泥等粉尘及时清扫。对运输水泥等易产生扬尘的车辆覆盖篷布,建筑材料轻装轻卸,尽量降低装卸高度;堆置的土石方及时回填;对易扬尘散装物料堆放点,在天气干燥、风速较大时,用帆布或塑料布覆盖或设简易材料棚。禁止现场搅拌混凝土,使用商品混凝土。
- (7) 定期对施工现场的裸露地面进行洒水抑尘,以减轻二次扬尘对环境空气质量的影响。洒水频率以控制场区和道路无扬尘为原则,具体根据天气情况和车流量确定,一般情况下为每2~3次/时,天气干燥的季节,缩短至1次/时。

6.1.2 施工期水污染防治措施

- (1) 施工期废水修建沉淀池和隔油池,通过隔油沉淀处理后全部回用,不外排。
 - (2) 施工人员生活污水排入现有厂区生活污水管网后进入市政污水管网。

6.1.3 施工期噪声污染防治措施

- (1) 施工场地进行合理规划,统一布局。
- (2) 施工机械尽量选用低噪声设备,高噪声设备施工时尽可能远离周边敏感点,必要时对其采取隔声降噪措施。
- (3) 施工现场尽量避免产生可控制的噪声,严禁车辆进出工地时高音鸣笛,严禁野蛮抛扔钢筋等。
 - (4) 施工机械设备应经常维修,并建立定期噪声检测制度。
- (5) 在施工工程中,施工场地设置临时隔声板,并且合理安排施工时间,强噪声的施工机械在夜间(22:00-6:00)应停止施工。对于距离项目较近的居民区,应尽量不在休息时段从事高噪声的施工活动,也可采取临时性防护措施,如安装临时隔声板等;在夜间应尽量不进行施工或安排低噪声施工作业,同时采取降噪措施将施工噪声对居民的影响减小到最低;若因特殊需要连续施工的,必须事前得到有关部门的批准,并事先与居民沟通。
- (6) 对于位置相对固定的设备,尽量置于操作间内,不能置于操作间的,可建立单面简易声屏障。
- (7) 现场施工人员应加强卫生防护措施,包括缩短工作时间或采取个人防护, 防止噪声对人体的损害。

6.1.4 施工期固废污染防治措施

本项目在现有建筑内进行改建,另在西侧新建循环水系统和废水处理系统,新建循环水系统和废水处理系统基础开挖产生的土石方运至当地政府指定的弃土场堆存。建筑垃圾分类收集,部分回收利用或外售,其余全部送至政府指定地点或建筑垃圾场进行处置。防渗施工施工对地面浅层车间混凝土地面开展逐层铲除后开展危险废物鉴别,对属于危险废物的,委托有资质的单位处置,不属于危险废物的按照建筑垃圾运至当地政府指定的建筑垃圾填埋场堆存。施工人员生活垃圾统一收集交由当地环卫部门收运处置。

6.1.5 施工期生态环境保护措施

应合理安排施工时间,尽量避开雨季、雨天施工,在雨季施工中必须加强施工管理、合理安排施工进度,暴雨前及时清理施工场地,采取遮盖砂、石料堆等切实可行的措施,修建截排水设施,设置沉砂池,减少水土流失。

6.2 营运期大气污染防治措施

6.2.1 有组织废气治理措施

根据工程分析,本项目废气污染源和污染物及拟采取的废气治理措施见表 6.2-1。

排气筒 生产线 主要污染源 污染物 拟采取的措施 号 编号 引入 1#布袋除尘器+1#碱液喷淋系统处理后 干燥、破 颗粒物 碎、料仓 经 32m 高的 1#排气筒 (DA001) 排放 颗粒物、NOx、SO2、 Ni, Co, Cu, As, 引入 2#布袋除尘器+1#碱液喷淋系统处理后 电炉熔炼 2 Pb, Sb, Sn, Cr, 经 32m 高的 1#排气筒 (DA001) 排放 Mn、Cd、氟化物、五 DA001 氧化二磷 赤铁矿处 颗粒物 3 水淬 理生产线 氧压浸出及 引入 1#碱液喷淋系统处理后经 32m 高的 1# 压滤、硫酸 排气筒 (DA001) 排放 硫酸雾、H2S 浆化、焙烧 蒸硒 预浸出及压 引入 2#碱液喷淋系统处理后经 15m 高的 2# 5 滤、常压浸 DA002 硫酸雾、SO2 排气筒 (DA002) 排放 出及压滤 引入二燃室+余热锅炉 (SNCR 脱硝)+半干 颗粒物、NOx、SO2、 式急冷塔+半干式反应塔+5#布袋除尘+板式 4 回转窑炉内 CO、HCI、非甲烷总 DA004 换热器+3#碱液喷淋塔+1#水喷淋塔经 35m 高 烃、P2Os、二噁英 的 4#排气筒 (DA004) 排放 失效汽车 回转窑炉膛 颗粒物、NOx、SO2 引入 5#排气筒 (DA005) 排放 DA005 5 尾气催化 干燥,破 引入 1#布袋除尘器+1#碱液喷淋系统处理后 剂生产 碎、料仓、 颗粒物 经 32m 高的 1#排气筒 (DA001) 排放 线、废铂 配料等 催化剂 颗粒物、NOx、SO2、 电炉熔炼、 引入 2#布袋除尘器+1#碱液喷淋系统处理后 DA001 (铝基载 Ni, HF, Mn, Cr, 中频炉 体) 生产 经 32m 高的 1#排气筒 (DA001) 排放 Cu, HCl, Sn, Ni 线、废钯 引入 I#碱液喷淋系统处理后经 32m 高的 I# 催化剂 水淬 颗粒物 排气筒 (DA001) 排放 (铝基载 引入 4#布袋除尘器处理后经 32m 高的 3#排 体)生产 高压水雾化 颗粒物 DA003 气筒 (DA003) 排放 线 引入 2#碱液喷淋系统处理后经 15m 高的 2# 硫酸浸出 硫酸雾、H2S DA002 排气筒 (DA002) 排放 引入 4#碱液喷淋系统处理后经 32m 高的 2# 11 盐酸浸出 HCl, Cl2 DA006 排气筒 (DA006) 排放 引入 4#布袋除尘器处理后经 32m 高的 3#排 含铑均相 球墨、卸料 颗粒物 DA003 气筒 (DA003) 排放

表 6.2-1 拟采取的废气治理措施一览表

稀贵金属资源循环利用项目环境影响报告书

序号	生产线	主要污染源	污染物	拟采取的措施	排气筒编号
13	催化剂处 理生产废	制球	非甲烷总烃	引入 1#活性炭吸附装置处理后经 32m 高的 3#排气筒(DA003)排放	DA003
14	铂锂催化 (其他载 体)处理 生产线 线、	焚烧炉	颗粒物、NOx、SO ₂ 、 CO、HCI、非甲烷总 烃、Cr、Pb、HF、二 隱英	引入二燃室+余热锅炉(SNCR 脱硝)+半干式急冷塔+半干式反应塔+5#布袋除尘+板式 换热器+3#碱液喷淋塔+1#水喷淋塔经 35m 高 的 4#排气筒(DA004)排放	DA004
15	精炼生产 线蒸馏及 提取银钉 工序	整个工序	硫酸雾、HCI、氯气、 硫化氢、非甲烷总烃	引入 4#碱液吸收系统 (两级碱液吸收) 处理 后经 25m 高的 6#排气筒 (DA006) 排放	DA006
16	精炼生产 线银回收	银还原、过 滤	甲醛	引入 1#酸洗喷淋塔+6#碱洗喷淋塔+1#干式过 滤器+2#活性炭吸附装置处理后经 32m 高的 7#排气筒(DA007)排放	DA007
17	工序	干燥、铸锭	颗粒物	引入6#布袋除尘器处理后经32m高的8#排气筒(DA008)排放	DA008
18		萃取、洗 涤、反萃	非甲烷总烃、HCl	引入 1#酸洗喷淋塔+6#碱洗喷淋塔+1#干式过 滤器+2#活性炭吸附装置处理后经 32m 高的 7#排气筒 (DA007) 排放	DA007
19	精炼生产 线金萃取	金煮洗	HCl, NOx	引入 8#碱液喷淋系统 (两级碱液吸收) 处理 后经 25m 高的 9#排气筒 (DA009) 排放	DA009
20	工序	干燥、铸锭	颗粒物	引入6#布袋除尘器处理后经32m高的8#排 气筒(DA008)排放	DA008
21		锌粉置换。 溶解	HCI。氯气	引入 4#碱液吸收系统 (两级碱液吸收) 处理 后经 25m 高的 6#排气筒 (DA006) 排放	DA006
22	精炼生产 线铂钯预 处理工序	整个工序	整个工序 HCI、氯气 引入 4#碱液吸收系统(两级碱液吸收)处于后经 25m 高的 6#排气筒(DA006)排放		DA006
23		萃取,反 萃、有机洗 涤、有机再 生	非甲烷总烃、HCI、氨 气、硫化氢	引入 1#酸洗喷淋塔+6#碱洗喷淋塔+1#干式过 滤器+2#活性炭吸附装置处理后经 32m 高的 7#排气筒 (DA007) 排放	DA007
24	精炼生产 线钯萃取	浓缩,络	氨气	引入 2#酸液喷淋塔+2#水喷淋塔处理后经 15m 高的 10#排气筒 (DA010) 排放	DA010
25	及精炼工序	酸化、酸溶、沉淀、 水溶、锌粉 置换、酸 化、煅烧	颗粒物、HCl、氯气、 氨气	引入 4#碱液吸收系统 (两级碱液吸收) 处理 后经 25m 高的 6#排气筒 (DA006) 排放	DA006
26	property and the	王水溶解	HCl. NOx	引入 7#碱液喷淋系统 (两级碱液吸收) +8# 碱液喷淋系统 (两级碱液吸收) 处理后经 25m 高的 9#排气筒 (DA009) 排放	DA009
27	线铂精炼	The state of the s		引入 8#碱液喷淋系统 (两级碱液吸收) 处理 后经 25m 高的 9#排气筒 (DA009) 排放	a-ports
28	工序	溶解、沉 铂、锌粉置 换、煅烧	HCI、氯气、NOx	引入 4#碱液吸收系统 (两级碱液吸收) 处理 后经 25m 高的 6#排气筒 (DA006) 排放	DA006
29	精炼生产	王水解析	HCI、無气、NOx	引入 7#碱液喷淋系统 (两级碱液吸收) +8# 碱液喷淋系统 (两级碱液吸收) 处理后经 25m 高的 9#排气筒 (DA009) 排放	DA009
30	线辖铱分 离工序	水解、溶 解、预处 理、除钌	HCI、氯气、NOx、硫酸雾、四氧化钌、二氧化氯	引入 4#碱液吸收系统 (两级碱液吸收) 处理 后经 25m 高的 6#排气筒 (DA006) 排放	DA006

稀贵金属资源循环利用项目环境影响报告书

序号	生产线	主要污染源	污染物	拟采取的措施	排气筒 编号
31		萃取、反萃	HCI、非甲烷总烃	引入 1#酸洗喷淋塔+6#碱洗喷淋塔+1#干式过 滤器+2#活性炭吸附装置处理后经 32m 高的 7#排气筒 (DA007) 排放	DA007
32	精炼生产 线铑铱预 处理工序	控电氯化、 水溶液氯化	HCI、氯气	引入 4#碱液吸收系统 (两级碱液吸收) 处理 后经 25m 高的 6#排气筒 (DA006) 排放	DA006
33	精炼生产 线铱精炼	溶解、溶解 还原、沉 铱、煅烧、 煮洗	颗粒物、HCI、NOx、 氟化氢	引入 4#碱液吸收系统(两级碱液吸收)处理 后经 25m 高的 6#排气筒(DA006)排放	DA006
34	上厅		HCI、NOx、氯气	引入 8#碱液喷淋系统(两级碱液吸收)处理 后经 25m 高的 9#排气筒(DA009)排放	DA009
35	that the stands	溶解及氧 化、沉铑、 煅烧、煮洗	HCI、氯气、NOx、氟 化氢、颗粒物	引入 4#碱液吸收系统 (两级碱液吸收) 处理 后经 25m 高的 6#排气筒 (DA006) 排放	DA006
36	精炼生产 线铑精炼 工序	萃取、反 萃、洗涤	非甲烷总烃、HCl	引入 1#酸洗喷淋塔+6#碱洗喷淋塔+1#干式过 滤器+2#活性炭吸附装置处理后经 32m 高的 7#排气筒(DA007)排放	DA007
37		王水溶解、 浓缩赶硝	HCI、NOx、氯气	引入 8#碱液喷淋系统(两级碱液吸收)处理 后经 25m 高的 9#排气筒(DA009)排放	DA009
38	污水处理 站	水处理	NH ₃ , H ₂ S	引入 3#酸液喷淋塔+3#水喷淋塔处理后经 15m 高的 11#排气筒(DA011)排放	DA011
39	16:114:57	分析检测	硫酸雾、HCI、HF、硝酸雾(NOx表征)、NH;	引入 9#碱液喷淋+4#水喷淋塔处理后经 15m 高的 12#排气筒 (DA012) 排放	Diais
40	实验室	火试金,制 样	颗粒物、铅 (Pb)	引入 7#布袋除尘器处理后经 15m 高的 12#排 气筒 (DA012) 排放	DA012
41	甲类仓库 危废库房	原料危废储 存	非甲烷总烃	引入 3#性炭吸附装置 (两级活性炭) 处理后 经 15m 高的 12#排气筒 (DA013) 排放	DA013

6.2.2 无组织排放废气控制措施

本项目无组织废气主要为富集车间料仓、矿热电炉、水淬及二次资源处理区域废 气,以及储罐大小呼吸产生的酸雾。

本项目储罐区无组织硫酸雾和氯化氢主要为硫酸储罐和盐酸储罐大小呼吸产生, 织硫酸雾和氯化氢经呼吸阀直接挥发进入大气。富集车间上料仓经仓顶除尘器收尘在 车间内无组织排放。矿热电炉环境尾气、水淬废气经经集气罩收集后进入矿热电炉尾 气治理设施,未经集气罩收集的废气通过车间换气扇排出车间。富集车间含铑均相催 化剂在处理过程中逸散的非甲烷总烃经集气罩收集后进入活性炭吸附装置(两级活性 炭)处理,未经收集的非甲烷总烃通过车间换气扇排出车间。

6.2.3 废气治理措施的可行性

6.2.3.1 有机废气处理及技术可行性

项目有机废气主要为回转窑焙烧及热解焚烧炉焚烧产生的有机废气以及精炼生产 线萃取产生的有机废气。回转窑焙烧及热解焚烧炉有机废气统一由密闭管道引至燃烧 室燃烧,未充分燃烧的有机废气通过活性炭喷射进一步处理后再排放;精炼生产线有 机废气采用活性炭吸附后排放。

(1) 方案比选

目前,比较常用的有机废气的净化方法主要有:吸附法、吸收法、生物法、冷凝法、燃烧法、催化氧化法等。各种方法的主要优缺点比较见表 6.2-2。

序号	对比项目	吸附法	直接燃烧法	催化燃烧法	冷凝法
1	风量	小—大	小—大	小—大	小
2	温度	常温	700∼800°C	300∼500°C	低温 (一般零度以下)
3	适用范围	低浓度废气	高浓度废气	低—高浓度废气	高浓度
4	设备费用	中等	高	中等	高
5	运行费用	低	高	高	高
6	开机难度	中等	难	难	易
7	二次污染	有	无	有	无
8	实际应用	常见	常见	常见	少见
9	处理效果	50%~70%	>99%	>90%	一般不单独应用

表 6.2-2 有机废气主要净化方法比较一览表

由表 6.2-2 可知,吸附法处理成本低廉,但处理效率波动较大,同时将产生废活性 炭固废,因此,多用于低浓度有机废气的处理。直接燃烧法适宜处理高浓度有机废 气,处理效率较高,但需额外消耗能源,运行成本较高。催化燃烧法适用范围较广, 但为防止催化剂失活、中毒,不宜处理高浓度含尘气体。冷凝法适用于处理组分单一 的高浓度有机废气,一般不单独应用,国内较为少见。

(1) 回转窑焙烧及热解焚烧炉有机废气防治措施

本项目回转窑焙烧及热解焚烧炉产生的有机废气具有污染物量大、浓度高、风量低的特点,且其成分较为复杂,使用燃烧法去除比较合理。同时考虑到,项目热解炉有机废气产量较大,通过燃烧法燃烧有机废气后,其燃烧废气中仍然有未燃烧的有机废气,须进一步去除。为达到较好的处理效果,建设单位回转窑焙烧及热解焚烧炉拟

采用"活性炭喷射"组合工艺对燃烧废气中的有机废气进一步去除,通过活性炭的脱附作用。

综上分析,本项目回转窑焙烧及热解焚烧炉采用的"燃烧法+活性炭喷射"有机废 气处理工艺适合本项目回转窑焙烧及热解焚烧炉有机废气处置的特点。

(2) 萃取有机废气防治措施

本项目萃取工段产生的萃取废气属于低浓度有机废气,废气中没有胶状物质和杂质。所以本项目选用活性炭吸附法处理萃取有机废气。

活性炭具有丰富的微孔结构,可以吸附废气中的有机污染物。当废气通过活性炭层时,有机物质被吸附在活性炭表面,而净化后的气体则排出。随着吸附过程的进行,活性炭会逐渐饱和。此时,需要对活性炭进行脱附操作,以恢复其吸附能力。脱附通常通过加热或引入热空气等方式实现,使吸附在活性炭上的有机物质脱附下来,以便再次利用活性炭进行吸附。

(3) 技术可行性分析

燃烧技术和吸附技术均属于《挥发性有机物治理实用手册》、《排污许可证申请与 核发技术规范 废弃资源加工工业》(HJ 1034-2019)VOCs(表征为非甲烷总烃)治理可行技术,有机废气经处理后能达标排放,因此,本项目采取燃烧技术和吸附技术或其组合工艺处理 VOCs 废气具有可行性。

6.2.3.2 粉尘处理措施及技术可行性

本项目各产尘工序产生的粉尘收集后均采用布袋除尘除尘工艺处理, 矿热电炉烟 气粉尘中携带有重金属等特征污染物。

(1) 脉冲布袋除尘技术概述

脉冲布袋式除尘器是利用纤维纺织制作的布袋过滤元件来捕集含尘气体中的尘粒。含尘气体从除尘器入口均匀地进入到布袋除尘器处理单元后,气体穿过布袋进入除尘的净烟气侧,而粉尘则被滤布和滤布上的粉尘层阻截并粘附在布袋外侧,净化后的气体由净气侧排出到大气中。当布袋上的粉尘层达到一定厚度时,除尘器就上升到整定值,此时喷冲电磁阀开启进行喷闪。布袋外侧的粉尘层由于布袋的刀剧膨胀变形而被抖落到灰斗中,粉尘由灰斗经排料阀排出。

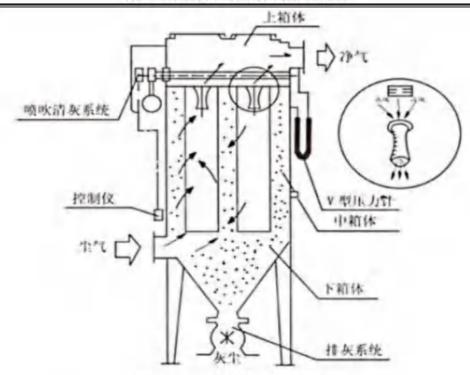


图 6.2-1 布袋除尘装置示意图

(2) 技术可行性分析

根据《排污许可证申请与核发技术规范 工业固体废物和危险废物治理》 (HJ1034-2019) 中附表 C.3 中,布袋除尘工艺均属于该规范中推荐的粉尘颗粒物、重 金属等治理可行技术, 本项目工序特点分别采取布袋除尘工艺处理颗粒物和重金属污 染物 (镍及其化合物、锰及其化合物和钴及其化合物) 等具有可行性。

6.2.3.3 酸性气体处理措施及技术可行性

本项目湿法富集及精炼生产线的酸性废气成分主要为硫化氢、硫酸雾、氯气、氯 化氢、氮氧化物等酸。对于烟气中的酸性气体常用湿法、干法、半干法三种方法之一 或组合使用均可, 各类方法技术特点比较见表 6.2-3。

方法	干法	半干式法	湿式法
过程	将脱酸剂喷入烟道或反应 器,与烟气直接接触	将石灰浆(或NaOH溶液)成雾状喷 入吸收塔	将NaOH等碱性液喷入洗涤塔
效果	反应速度低, 浄化效果一般, 需除尘, 残渣较多	石灰浆接近烟气中酸气的饱和温度, 易发生脱酸反应,净化效果较好,需 进行除尘,排烟含水雾(白烟)	尾气温度较低, 净化效果好, 但 酸性排出液要处理, 烟囱冒白烟
设备	需要一个石灰仓,灰贮存 及喷射设备	需要石灰浆配制槽及酸雾吸收塔	洗涤器结构较复杂,尺寸较大
脱酸剤	消石灰	石灰浆	NaOH 消耗少, 水消耗量大
投资	少	较大	大
运行费	少	大	较大

通常情况下,湿法洗涤安装于布袋除尘器后可避免结露,而干法和半干法工艺通常可安装于干式除尘器之前。就酸性气体净化效率而言湿法>半干法>干法。其中,干式法脱酸剂一般选择石灰,半干法和湿法的脱酸剂多采用 NaOH。为确保废气达标,根据项目各工段酸性废气特点,本项目酸性废气拟采取湿法处理工艺处理产生的酸性气体,根据各工序酸性废气浓度,分别采用一级碱液、二级碱液、三级液碱进行会处理。

(3) 技术可行性分析

碱液喷淋工艺属于《排污许可证申请与核发技术规范 无机化学工业》 (HJ1035-2019) 附"表 A.1 废气治理可行技术表",碱液喷淋工艺属于该规范中推荐的硫酸雾、氯气、氯化氢等治理可行技术。

6.2.3.4 二噁英治理措施及可行性分析

二噁英具有极强的化学稳定性,难以化学分解和生物降解。一般认为二噁英在水中溶解度极小,光降解速率也很低。工程上一般通过控制二噁英产生的条件和尾端处理相结合的方案减轻二噁英排放的影响。一般来说控制二噁英产生的条件都是通过温度、停留时间、氧气含量等来实现,尾端处理则是主要利用活性炭的吸附能力吸附去除烟气中的二噁英成分。一般认为,从头合成机制是焚烧过程中二噁英形成的重要机制,其发生在焚烧炉的后燃烧区域内。Fangmark等人的一系列研究显示后燃烧区域的温度和停留时间是影响含氯芳香化合物含量的较重要的参数。在340℃,2.9s的停留时间条件下会得到较高的含氯芳香烃的污染浓度,从而导致大量二噁英的产生,而当废气快速冷却到260℃以下时,可以获得较小的二噁英浓度。因此,为了减少二噁英的形成量,需要减少废气在后燃烧区域的停留时间,或者在后燃烧区域将废气温度快速的冷却到260℃以下。

本项目采取化学措施对已产生的二噁英进行降解或分解使其变为无害物质的难度 较大,一般对二噁英的后期处理主要是采用物理方法降低对环境的排放。对废气焚烧 产生的二噁英进行后期处理,一般措施为:源头上采用急冷的方法快速降低烟气温 度,避开二噁英产生的温度区间,可以抑制二噁英的再生成。用活性炭吸附烟气中的 二噁英,活性炭再由布袋除尘器过滤去除,从而从系统中去除二噁英。 本项目拟采取"急冷降温+活性炭喷射/布袋除尘"的常规组合工艺处理燃烧废气中的二噁英废气。

6.3 营运期水污染防治措施

6.3.1 雨污分流系统

本项目按"雨污分流"建设三套排水系统,分别为雨水排水系统、生产废水收集系统、生活污水排水系统,实行雨水和污水分流,生产废水和生活污水分流处置。项目生产废水收集管廊架空收集及输送。

6.3.1.1 雨水排水系统

本项目在购置贵州中伟资源循环公司的地块及建筑进行改建,雨水系统沿用原雨水管道,现有雨水管道接入贵州中伟资源循环公司雨水主管网,后期雨水依托贵州中 伟资源循环公司现有厂区雨水排放口排放,不新增雨水排放口。

6.3.1.2 生产废水收集及排放系统

本项目雾化废水、循环冷却系统强制排水全部回用于水淬,不外排;废气喷淋塔废水直接排入中伟新材料股份有限公司污水处理设施处理。一段硫酸浸出液、废均相催化剂处理生产线水浸液及水洗液、精炼生产线含氨废水、精炼生产线其他废水、设备及地面清洁废水排入污水处理站预处理达到《无机化学工业污染物排放标准》(GB31573-2015)表1车间或生产设施废水排放口标准限值后排入中伟新材料股份有限公司污水处理设施处理。

6.3.1.3 生活污水收集及排放系统

项目生活污水排水为独立排水系统,管道单独设置,生活污水不与生产废水混合。生活污水收集均采用地埋式管道进行收集,本项目在购置贵州中伟资源循环公司的地块及建筑进行改建,地块现有生活污水主干管利用,厂区生活污水主干管收集后后汇入贵州中伟资源循环公司现有厂区生活污水主干管后经废水总排放口排入市政污水管网。

6.3.2 生产废水污染防治措施的可行性分析

(1) 生产废水处理设施处理工艺

本项目生产线产出的工艺生产废水主要含盐及 pH、COD、Ni、Co、Fe、Cu、Zn、Mn、Te、As、Pb、Sb、Ag、Sn、Ba、Se、Cr、F·等。根据设计资料,主要采用一级混凝沉淀(采用硫化钠、聚合硫酸铁、PAM、pH调值等)+二级混凝沉淀(采用硫化钠、聚合硫酸铁、PAM+pH调值等)处理工艺,该工艺采用"化学沉淀+混凝絮凝"的组合,分两级进行。第一级主要针对高浓度重金属和部分络合物,第二级作为保障,进一步深度去除残余的金属离子并协同去除其他污染物。

投加氢氧化钠为后续的化学反应创造最合适的碱性环境,大多数重金属氢氧化物 在特定的 pH 范围内(通常为 8.5-11)溶解度最低,通过加碱调节 pH 至最佳点位,为 氢氧化物沉淀做准备。投加硫化钠利用硫离子 S^2 -与多种重金属离子(如 Ni、Cu、 Zn、Pb、Ag等)生成极难溶于水的金属硫化物沉淀;投加聚合硫酸铁和 PAM 主要去 处胶体态和悬浮态的有机物,并协同处置部分污染物,如 As、Sb 及 F^- 。

该工艺是通过分两级、多药剂联用的方式,综合运用了酸碱中和、硫化物沉淀、 混凝、絮凝、吸附、共沉淀等多种物化原理,实现对复杂重金属废水的高效净化。

(2) 技术可行性

根据《排污许可证申请与核发技术规范 无机化学工业》(HJ1035-2019)附"表A.2 废水治理可行技术表",化学沉淀法属于重金属废水治理的可行性技术。因此,本项目生产废水采用"混凝沉淀+中和+絮凝沉淀"处理是可行的。生产废水经预处理达到《无机化学工业污染物排放标准》(GB 31573-2015)车间或设施排放口标准后,经调值后送入中伟新材料股份有限公司污水处理设施进行蒸发结晶处理。

6.3.3 生活污染防治措施

本项目生活污水排入化粪池后经厂区总排口排入市政污水管网后进入大龙工业污水处理厂处理达标后排放。

6.4 营运期地下水染污防治措施

根据《中华人民共和国环境影响评价法》和《中华人民共和国水污染防治法》有

关于地下水保护的相关规定,针对项目可能发生的地下水污染情况,按照"源头控制、分区防渗、污染监控、应急响应",重点突出饮用水水质安全的防控原则。从污染物的产生、入渗、扩散、应急响应全阶段进行控制。拟建项目以主动防渗措施为主,被动防渗措施为辅;人工防渗措施和自然防渗条件保护相结合,防止地下水受到污染。

6.4.1 源头防控措施

- (1) 本项目采用先进、成熟、可靠的工艺技术,可从源头上减少污染物排放; 优化废污水处理系统设计,生产废水、生活污水通过管线送污水处理系统。
- (2) 对可能被废污水污染的区域,地面低点设排水沟或地漏,储罐等设置围堰。对于储存、输送酸、碱等强腐蚀性化学物料的区域设置围堤,围堤的地面采用耐腐蚀材料铺砌。
- (3) 切实贯彻执行"预防为主、防治结合"的方针,加强场地硬化,严禁下渗污染。按"先地下、后地上,先基础、后主体"的原则,通过规划布局调整结构以控制污染。
- (4) 严格按照国家相关规范要求,对工艺、管道、设备、污水储存及处理构筑物采取相应的措施,以防止和降低涂料的跑、冒、滴、漏,将工程废水泄漏的环境风险事故降低到最低程度;管线敷设采用"可视化"原则,做到污染物"早发现、早处理"。减少污水管道的埋地敷设,减少管道接口,提高埋地污水管道的管材选用标准及接口连接形式要求。应采取"明沟+明管"的方式建设生产废水收集管网。
 - (5) 加强埋地污水管道的内外防腐设计。输送污水压力管道尽量采用地上敷设,重力收集管道宜采用埋地敷设,禁止在重力排水的污水管线上使用倒虹吸管。所有穿过污水处理构筑物壁的管道预先设置防水套管,防水套管的环缝隙采用不透水的柔性材料填塞。
 - (6) 定期开展废水污染源排查,从全厂角度识别地下水污染源存在环节,从废水收集、暂存、处理全过程制定污染途径隔离措施,杜绝地下水污染源头。
 - (7) 定期排查污水处理构筑物防渗情况,发现渗漏应立即采取措施,防止污水 对地下水的污染。

6.4.2 分区防控措施

根据项目可能泄漏至地面区域污染物的性质和生产单元的构筑方式,将项目划分为非污染防渗分区、一般污染防渗分区和重点污染防渗分区。同时,根据建设项目特点、本次调查评价区和场地环境水文地质条件,在建设项目工程设计提出的污染物防控措施对策的基础上,结合地下水环境影响预测与评价结果,提出不同分区的防渗技术要求。应做好各车间的防渗设计和施工,满足相应规范。本项目利用购置的现有用地及厂房进行改建,由于该地块建筑为贵州中伟资源循环公司最早期建设的厂房,因早期档案管理不完善,导致该公司已无法提供防渗施工佐证材料,因此,建设单位拟对现有厂房进行防渗施工改造。本次评价依据《环境影响评价技术导则 地下水环境》(HJ610-2016)提出防渗施工技术要求,详见图 6.4-1 和表 6.4-1。

表 6.4-1 本项目分区防渗技术要求表

防渗级 别	单项工程名称	天然包气带 防污性能	污染物控制 难易程度	污染物 类型	防渗标准	防渗要求		
	富集车间	弱	易					
	铂钯精炼车间	弱	易					
	铑铱精炼车间	弱弱	易	重金 属、其 他类型	do mu			
	生产综合配套 车间-赤铁矿暂 存库	弱	易		属、其	参照 (HJ610- 2016)表7 重点防渗区	满足等效黏土防渗层 Mb≥6.0m,K≤I×10 ⁻⁷ cm/s;可	
	生产综合配套 车间-渣库	弱	易			要求进行防	参照 GB18598 执行	
	污水处理站	弱	易		渗			
	甲类仓库(含 危废暂存间)	弱	易	持久性 污染物				
重点防 渗区	生产综合配套 车间-危废原料 库	弱	易	重金持八人性物	GB18597- 2023	贮存设施地面与裙脚应采取表面防渗措施:表面防渗措施:表面防渗材料应与所接触的物料或污染物相容,可采乙烯膜、钠差膨润土、高密度聚乙烯膜、钠渗性能等效直接接触地面的,还应变物直接接触地面的,还应进行基础防渗,防渗层系数不大于)10°cm/s),或至少2mm厚高密度聚乙烯膜等不大于)10°cm/s),或其他防渗性能等效的材料。		
一般防渗分区	罐区	弱	易		参照	Tourse of Section 14 of Co.		
	循环水系统	弱	易	其他类型		(HJ610-	港口标是新工作公司	
	废气处理系统	弱	易			2016)表7 一般防渗区 要求进行防 渗	满足等效黏土防渗层 Mb≥1.5m, K≤1×10 ⁻⁷ cm/s; 頁 参照 GB16889 执行	

稀贵金属资源循环利用项目环境影响报告书

防渗级 别	单项工程名称	天然包气带 防污性能	污染物控制 难易程度	污染物 类型	防渗标准	防渗要求
简单防 滲分区	其他区域	弱	易	其他类 型	1	一般地面硬化

根据建设单位提供的设计资料,重点防渗分区防渗施工改造初步方案为破开现有厂房地面混凝土层后重新铺设 2.0mm 厚 HDPE 膜(渗透系数≤1×10⁻¹⁰cm/s)+P8 抗渗混凝土层,根据表 6.4-1 可知,采用的防渗施工改造方案可满足重点防渗要求。

6.4.3 跟踪监测计划及监测管理措施

(1) 跟踪监测计划

为了及时准确的掌握厂区以及附近地下水环境质量状况和地下水体中各指标的动态变化,保护地下水环境,结合地下水环境影响评价结果,本项目拟建立完善的地下水长期监控系统,设计科学的地下水污染控制井,建立合理的监测制度,并配备先进的检测仪器和设备,以便及时发现并有效的控制可能产生的地下水环境风险。

厂区已建设 2 口地下水监测井,分布于项目地下水上游、侧游,下游监测由于井项目场地受限,利用贵州中伟循环公司 JC01 监测井作为下游监测井。根据导则要求地下水评价等级为一级的项目应至少布置 3 个监测井,分别位于建设项目上游、侧游和下游,点位布置满足导则要求。点位布置见表 6.4-2。

监测点编 监测点与本项目 监测井坐标 监测井结构 功能 号 装置位置关系 经度(°) 纬度(°) 开孔口径 150mm,终 JC01 109.0116032 孔孔径 110mm, 井深 背景监测井 27.3380683 项目北侧 64m, 水位 28m 开孔口径 150mm,终 污染物扩散 孔孔径 110mm, 井深 JC02 109.0141372 27.33900331 项目东侧 监测井 65m, 水位 17m 应急抽水井 开孔口径 219mm, 终 JC03(循 跟踪监测井 环公司 27.34038784 孔孔径 190mm, 井深 东南侧 109.0118263 污染物扩散 40m, 水位 16.8m JC01) 监测井

表 6.4-2 跟踪监测并信息一览表

根据《地下水环境监测技术规范》(HJ 164-2020)监测井取水位置一般在目标含水层的中部,取水位置应在含水层底部和不透水层的顶部;并管的内径要求不小于50mm,以能够满足洗井和取水要求的口径为准;监测井的结构类型包括单管单层监测井、单管多层监测井、巢式监测井、丛式监测井、连续多通道监测井。厂区现有设置

的监测井开孔口径大于 50mm,采用单管单层监测井,且完整可用,满足《地下水环境监测技术规范》(HJ 164-2020)要求。

建设单位委托有资质的监测单位实施地下水环境监测时,在保证地下水监测数据的有效性基础上。

(2) 监测管理

为保证地下水跟踪监测有效、有序管理,须制定相关规定明确职责,采取以下管理措施和技术措施。

①、管理措施

- (1) 防止地下水污染管理的职责属于环境保护管理部门的职责之一。项目环境保护管理部门指派专人负责防治地下水污染管理工作。
- (2)项目环境保护管理部门负责地下水监测工作,按要求及时分析整理原始资料、监测报告的编写工作。
 - (3) 建立地下水监测数据信息管理系统,与项目环境管理系统相联系。
- (4)根据实际情况,按事故的性质、类型、影响范围、严重后果分等级地制订相 应的预案。在制定预案时要根据本项目环境污染事故潜在威胁的情况,认真细致地考 虑各项影响因素,适当的时候组织有关部门、人员进行演练,不断补充完善。

②、技术措施

- (1)按照《环境影响评价技术导则 地下水环境》(HJ610-2016)要求,及时上报地下水环境跟踪监测报告。
- (2)在日常例行监测中,一旦发现地下水水质监测数据异常,应尽快核查数据,确保数据的正确性。并将核查过的监测数据通告项目安全环保部门,由专人负责对数据进行分析、核实,并密切关注生产设施的运行情况,为防止地下水污染采取措施提供正确的依据。应采取的措施如下:

了解项目厂区是否出现异常情况,加大监测密度,如监测频率由每月一次临时加密为每天一次或更多,连续多天,分析变化动向。

- ①、周期性地编写地下水动态监测报告。
- ②、定期对产污装置进行检查。

6.4.4 应急预案

制定风险事故应急预案的目的是为了在发生风险事故时,能以最快的速度发挥最大的效能,有序地实施救援,尽快控制事态的发展,降低事故对地下水的污染。针对应急工作需要,参照相关技术导则,结合地下水污染治理的技术特点,制定地下水污染应急治理程序如图 6.4-2 所示。

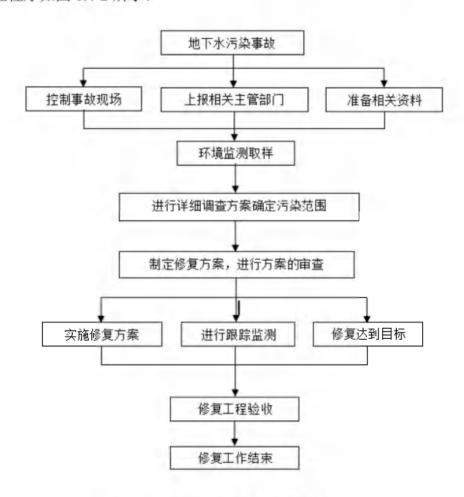


图 6.4-2 地下水污染应急治理程序图

一旦事故液态污染物进入地下水环境,应及时采取构筑围堤、挖坑收容和应急井抽注水。把液态污染物拦截住,并用抽吸软管移除液态污染物,或用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场处置;少量液态污染物可用防爆泵送至污水管网,由污水站处理。迅速将被污染的土壤收集,转移到安全地方,并进一步对污染区域环境作降解消除污染物处置。其中,主要采用应急井进行抽水,将污染物质及时抽出处理,提高地下水径流速度,加快污染物的流动,使得应急井能快速抽出全部

污染物,形成小范围的阻水帷幕,提高应急处理的效果。

依据拟建项目工程特点,应急井实行"一井多用"的原则,即厂区日常运转时, 作为监测井监测厂区地下水水位和水质动态变化特征;事故情景下,作为应急抽水 井,起快速抽离污染物作用。项目的3口应急井在厂区日常运行过程中,主要负责环 境监测;在应急处理过程中,起抽水井作用,能在最短时间快速抽离事故下装置产生 并进入地下水的污染物,形成阻水帷幕,防止污染物对地下水环境造成更大的影响。

6.4.5 信息公开

本着"谁获取谁公开、谁制作谁公开"的原则,本项目信息公开主体为后续实际营运单位。

- (1) 公开内容
- ①、基础信息:企业名称、法人代表、所属行业、地理位置、生产周期、联系方式、监测机构名称等;
 - ②、跟踪监测方案;
- ③、跟踪监测结果:监测点位、监测时间、污染物种类及浓度、标准限制、达标情况、超标倍数、污染物排放方式及排放去向;
 - ④、未开展自行监测的原因:
 - ⑤、跟踪监测年度报告。
 - (2) 公开时限
- ①、基础信息应随监测结果一并公布,基础信息、监测方案等如有调整变化时,应于变更后的五日内公布最新内容:
 - ②、每期跟踪监测结果应在三十天内予以公开;
 - ③、每年一月底前公布上年度跟踪监测年度报告。
 - (3) 公开方式

企业可通过对外网站、报纸、广播、电视等便于公众知晓的方式公开监测信息。 同时,应当在省级或地市级环境保护主管部门统一组织建立的公布平台上公开监测信息,并至少保持一年。

常用信息公开方式如下:

- ①、公告或公开发行的信息专刊;
- ②、广播、电视等新闻媒体;
 - ③、信息公开服务、监督热线电话:
 - ④、本单位的资料索取点、信息公开栏、电子屏幕等场所或设施。

企业拟采用的方式为:设立信息公开资料索取点,网站公布资料索取点所在位置,上班时间,负责人联系方式等内容,由资料索取点负责发放相关资料。

6.5 营运期噪声污染防治措施

拟建项目主要噪声源为矿热炉、回转窑、球磨机、破碎机、压滤机、风机、泵类等运转设备。按噪声产生的机理来看,设备噪声以机械噪声为主,通常一种发声设备同时存在几种噪声形式。针对不同设备,不同噪声形式,应采取不同的控制措施。拟建项目具体污染防治对策如下:

- (1) 采用工艺先进、噪声小的机械设备,设备采购合同中提出设备噪声的限制要求,从噪声源头控制;
- (2) 破碎机、风机、压滤机、泵类等均考虑安装减振机座,同时放置于车间内部,采用实体墙结构隔音;
- (3) 提高自动控制水平,风机、水泵等高噪声设备的参数检测和自控运行做到 无需要人员在现场工作。检修时应对有关人员的工作时间作出相应规定以减少人员受 噪声危害。
- (4) 水泵与进出口管道间安装软橡胶接头,同时,泵体基础设橡胶垫或弹簧减振动器,降低管道和基础产生的固体传声。
- (5) 车辆产生的噪声,可以通过加大车辆行驶管理力度,如限制鸣笛和车速来 降低交通噪声。

采取以上降噪措施后,总图合理布局结合适宜的厂区绿化,再经过厂房建筑的隔 声、空气的吸收以及噪声传播过程中的衰减后,对周边声环境的影响是可以接受。

6.6 固体废物污染防治措施

6.6.1 一般固废处置措施

废石墨电极、失效汽车尾气催化剂外壳、赤铁矿废破损吨袋、未沾染毒性的化学品包装物等属于一般工业固废,暂存在一般固废暂存间后定期外售综合利用。赤铁矿处理生产线水淬渣主要含铁,外售铁回收冶炼企业。

废催化剂处理二段盐酸浸出渣、精炼生产线铂精炼置换渣、铂精炼王水溶解过滤渣、铂钯预处理不溶渣、铑铱分离王水解吸不溶渣、钯萃取及精炼锌置换渣返回精炼生产线铑铱预处理工序,钯萃取及精炼浓缩不溶渣、钯萃取及精炼络合不溶渣、铑铱分离过滤渣、铑铱分离置换渣、铑铱预处理过滤渣、铑精炼过滤渣、铱精炼置换渣、铱精炼过滤渣送入富集车间矿热电炉熔炼。

一般工业固体废物的厂内暂存执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020),固体废弃物的收集、管理、处置应形成制度,做到规范化,固体废弃物的管理具有全过程特点,从生产、运输、贮存到处置一系列环节都须严格控制,防治措施须落实到每个环节。如厂内堆场地面应采取硬化措施,并加盖防雨棚;为防止雨水径流进入贮存场,贮存场周边应设置导流渠;若有渗滤液,应设置渗滤液集排水设施;为防止固废和渗滤液的流失,应构筑堤、坝、挡土墙等设施。

6.6.2 危险废物处置措施

本项目产生的危险废物主要为回转窑耐火材料、铜镍渣、含油废活性炭、压滤渣、废滤布、废滤料、废布袋、废活性炭、废催化剂废吨袋、沾染毒性的化学品包装物、废矿物油、废机油桶、化验室废物。对于有价值回收的铜镍渣,属于项目火法富集工段需投加的辅料,送至矿热电炉作为辅料;对于本项目焚烧炉可自行处置的,如废滤布、废滤料、废布袋、废催化剂废吨袋等可热解焚烧的,投入热解焚烧炉处置;对于本项目无利用价值且焚烧炉不能处置的,暂存于危废暂存间后交由环境主管部门许可具有危废处置资质单位处置。

表 6.6-1 危险废物产生情况统计表 单位: t/a

序号	固废名称	产生环节	固废类别	固废代码	年产生量 (t/a)	形态	危险特 性	固废处置
1	废耐火材	回转窑	危险废物	722-003-18	0.15	固	T	交由环境主管部

稀贵金属资源循环利用项目环境影响报告书

	料							门许可, 具有危 废处置资质单位 处置
2	铜镍渣	铂钯预处理、铑 铱预处理	危险废物	261-087-46	17.5	固	T	送矿热电炉
3	压滤渣	除重、絮凝沉淀	危险废物	772-006-49	763	固	T/In	送矿热电炉
4	废滤布	板框压滤机	危险废物	900-041-49	0.50	固	T/In	送热解焚烧炉处 置
5	废滤料	干式过滤器	危险废物	900-041-49	2.5	固	T/In	送热解焚烧炉处 置
6	废布袋	布袋除尘器	危险废物	900-041-49	0.14	固	T/In	送热解焚烧炉处 置
7	废活性炭	活性炭吸附装置	危险废物	900-039-49	1,5	固	Т	送热解焚烧炉处 置
8	废催化剂 废吨袋	原料包装	危险废物	900-041-49	6.67	固	T/In	送热解焚烧炉处 置
9	沾染毒性 的化学品 包装物	辅料包装	危险废物	900-041-49	2617 ↑/a	固	T/In	送焚烧炉处置。 金属桶外售交由 危废资质单位处 置
10	废矿物油	设备维修	危险废物	900-214-08	1.5	液	T, I	交由环境主管部
11	废机油桶	设备维修	危险废物	900-249-08	0.3	固	T, I	门许可, 具有危
12	化验室废 物	实验室检测	危险废物	900-047-49	0.8	固/	T/C/I/R	废处置资质单位 处置

项目建设有 1 座 756m² 的危险废物暂存库,主要为固态废催化剂和自产危险废物的暂存。危险废物暂存间应严格按照《危险废物贮存污染控制标准》(GB18597-2023)进行建设,标识、标志按照《危险废物识别标志设置技术规范》(HJ1276-2022)进行建设,运行后按照《危险废物管理计划和管理台账制定技术导则》(HJ1259-2022)制定相关管理计划和管理台账等。

6.6.3 待鉴定废物

本项目矿热电炉废耐火材料,失效汽车尾气催化剂处理生产线、废铂催化剂处理生产线、废钯催化剂处理生产线水淬渣、精炼生产线银回收浸银渣,由于其成分含有有毒有害成分,且无类比资料,本次评价按待鉴定废物归类,待项目正式投产后,根据《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)开展危险废物鉴别后,开展鉴别结果采用相应的处置措施。在未鉴别确定固废性质前,堆存于生产综合配套车间内的渣库内,渣库按照《危险废物贮存污染控制标准》(GB18597-2023)进行建设。

6.7 营运期土壤污染防治措施

污染影响型建设项目对土壤环境的影响保护措施重点强调源头控制和过程防控,

具体措施如下:

- (1) 厂区做好雨污分流,杜绝厂区地面漫流进入周边环境,厂区修建截排水沟,在 厂区最低处建好初期雨水收集池;
- (2)设计有毒有害物质的生产装置、储罐和管道,或污水处理池、应急池等存在土壤污染风险的设施,应当按照国家有关标准和规范要求,设计、建设和安装有关的防腐蚀、防泄/渗漏等设施和泄/渗漏监测装置,防止有毒有害物质污染土壤和地下水;
- (3)建立土壤和地下水污染隐患排查治理制度,定期对重点区域(如涉及有毒有害物质的生产区、装置区,原料及固体废物的堆存区和转运区等)、重点设施(如涉及有毒有害物质的地下储罐、地下管线,以及污染治理措施等)开展隐患排查。发现有污染隐患的,应当制定整改方案,即使采取技术、管理措施予以消除,并将隐患排查、治理情况如实记录并建立档案。
- (4) 涉及拆除有毒有害物质的生产设施设备、建构筑物和污染治理设施的,应按照有关规定,事先制定企业拆除活动污染防治方案,并在拆除活动前十五个工作日报所在地县级生态环境、工业和信息化主管部门备案。拆除活动应当按照有关规定实施残留物料和污染物、污染设备和设施的安全处理处置,并做好拆除活动相关记录,防范拆除活动污染土壤和地下水,相关记录应长期保存。
- (5) 应按照相关技术规范要求,自行或者委托第三方定期开展土壤和地下水监测, 重点监测存在污染隐患的区域和设施周边的土壤、地下水,并按照规定公开相关信息;
- (6) 企业编制突发环境事件应急预案时应当包括防治土壤和地下水污染的相关内容。突发环境事件造成或者可能造成土壤和地下水污染的,应当制定应急措施避免或减少污染;应急处置结束后,应立即组织开展环境影响和损害评估工作,评估认为需要开展治理与修复的,制定并落实相关方案。

6.8 营运期生态环境保护措施

(1) 实行清洁生产,注意生产工艺技术的先进性,合理布置。在工艺设计时就 应把污染控制问题考虑在内,做到尽量少排污或不排污,加强资源的合理利用,回收 使用和循环使用。在设计工艺流程时,应加入污染控制环节,使其少排污,合理利用

资源:

- (2) 加强生产及环境管理,使废气治理措施设施正常运行,严格控制酸性气体的排放量,实行稳定达标排放,杜绝事故发生,严禁污染物超标排放,减轻对生态环境的影响;
- (3) 加强厂区绿化,在厂区周边营造抗污、吸声、耐尘,三者兼有的防护林带;在加强厂区绿地管理,采取抗污染强的乔、灌、草和花卉相结合的绿化措施,净化厂区空气,削减噪声,美化环境。

6.9 污染防治措施汇总

本工程污染防治措施及竣工环保验收汇总详见附表 2、附表 4。

7 环境影响经济损益分析

通过环境经济损益分析,衡量项目环保投资所收到的环境保护效果以及可能带来 的社会效益和环境效益,同时也是衡量环保设施投资在经济上是否合理的一个重要尺 度。

本项目的建设和运营本身就是一个治理污染、控制污染的项目,对废催化剂进行 无害化处置和资源化利用起到示范作用。但在其运行过程中也不可避免的产生各种污染物,需对其本身各环节产生的污染进行控制和治理,以充分发挥其经济效益、社会 效益和环境效益。

7.1 环保投资概算

《建设项目环境保护设计规定》第六十三条指出: "凡属于污染治理和保护环境所需的装置、设备、监测手段和工程设施等均属于环境保护设施"、"凡有环境保护设施的建设项目均应列出环境保护设施的投资概算"。

项目环保总投资在 3601 万元, 占总投资 (63600 万元) 的 5.87%, 包括废气治理、废水治理、噪声治理等相关内容, 主要投资内容见表 7.1-1。

污染源	环保设施名称	数量	环保投资 (万元)	备注
	表冷+2 台布袋除尘器+1 套碱液吸收系统(两级碱液吸收) +排气筒	1 套	155	新增
	碱液吸收系统(三级碱液吸收)+排气筒	1 套	105	新增
	碱液吸收系统 (两级碱液吸收) +排气筒	1 套	170	新增
	二燃烧+余热锅炉(SNCR脱硝)+半干式急冷塔+半干式反应塔(喷消石灰、活性炭粉)+布袋除尘+板式换热器+碱液喷淋塔+水喷淋塔+排气筒	1 套	483	新增
废气	布袋除尘器+排气筒	1 套	100	新增
	活性炭吸附装置+排气筒	2 套	70	新增
	酸洗喷淋塔+碱洗喷淋塔++干式过滤器+活性炭吸附装置+ 排气筒	1 套	207	新增
	酸液喷淋塔+水喷淋塔+排气筒	2 套	125	新增
	碱液喷淋系统 (两级碱液吸收)+碱液喷淋系统 (两级 碱液吸收)+排气筒	1 套	150	新增
	布袋除尘器+碱液喷淋塔+水喷淋塔+排气筒	1 套	109	新增
废水	污水处理站	1座	1020	新增
	防渗施工改造工程	若干	760	拆除后 重建

表 7.1-1 主要环境保护投资一览表

稀贵金属资源循环利用项目环境影响报告书

	初期雨水池	1座	0	依托
	地下水跟踪监测井	3 座	8	利用 1 座,新 建 2座
tir late to	事故池	1座	0	依托
环境风	厂区监控	1 套	55	新增
险	应急物资库	1 座	15	新增
tud else	危废暂存间	2座	85	新增
固废 ———	一般固废暂存间	1座	35	新增
噪声	设备降噪措施	1	80	新增
	合计		3732	

7.2 社会效益分析

项目投产后,有利于扩大劳动就业,缓解当地就业压力。可使本区的资源优势转 化为经济优势,带动地方经济发展,具有良好的经济效益和社会效益。

- (1) 有利于促进地区经济的发展,该项目的建设,充分发挥了大龙经开区的资源优势,同时又具有良好的经济效益,一方面可为国家带来一定的税收;另一方面,也可带动当地经济经一步发展,活跃地区经济,为当地带来新的经济增长点。
- (2) 随着本项目的实施,将增加一部分人的就业机会,减轻当地的就业压力, 充分利用当地闲散劳动力,使这部分人生活水平得到改善,项目对这些劳动者进行技 能培训,有利于提高劳动者的综合素质。
- (3) 项目的清洁生产措施,很大程度上节约了资源和能源,起到了"节能、降耗、减污、增效"的作用,符合国家产业政策和环保治理要求。

7.3 环境经济损益分析

7.3.1 分析方法

本项目环境经济损益分析方法采用指标计算方法。指标计算方法是把项目对环境 经济产生的损益,首先分解成各项经济指标,包括环保费用指标、污染损失指标和环 境效益指标,再按完整的指标体系进行逐项计算。然后通过环境经济的静态分析,得 出项目环保投资的年净效益,环保治理费用的经济效益和效益与费用比例等各项参 数。

年净效益是指环保投资的直接经济效益, 扣除污染控制费用。

环保污染治理费用的经济效益等于环保效益指标与污染控制费用(年运行费用)

之比。当比值大于等于1时,可以认为项目的环保治理方案在经济上是可行的,否则 是不可行的。

环保效益与费用比是在对项目污染控制投资进行分析时,当比值大于或等于 1 时,认为环保费用投资在环保经济效益上是可行的,否则是不合理的。

7.3.2 基础数据

(1) 环保工程建设及投资费用

该项目环保投资约 3732 万元, 占总投资的 5.87%。

(2) 环保设施年运行费用

环保设施的年运行费用,按环保投资的 8~15%计算,本项目取 12%,约为 447.84 万元。

(3) 环保辅助费用

环保辅助费用主要包括相关管理部门的办公费、监测费、技术咨询、学习交流及环境机构所需的资金和人员工资等,根据本项目的实际情况,一般按新增环保投资的0.5-0.8%计,本项目取 0.6%,约为 22.39 万元。

(4) 废水外委年处置费

本项目生产废水经污水处理站预处理后,委托中伟新材料股份有限公司处置,预 计年处置费用为 2350 万元。

7.3.3 环保经济指标确定

(1) 环保费用指标

环保费用指标是指项目污染治理需用的各项投资费用,包括污染治理的投资费用、污染控制运行费用和其它辅助费用构成。

环保费用指标按下式计算:

$$C = \frac{C_1 \times \beta}{\eta} + C_2 + C_3$$

式中: C---环保费用指标:

C1——环保投资费用,本工程设施总环保投资为 3732 万元;

C2----环保年运行费用, 447.84 万元;

C3——环保辅助费用, 本工程为 22.39 万元;

β——为固定资产形成率,以环保费用的 50%计算,;

η——为设备折旧年限,以有效生产年限5年计。

经计算可得,本项目环保费用指标为843.43万元。

(2) 污染损失指标

污染损失指标是指建设项目产生的污染与破坏对环境造成的损失最终以经济形式的表述。主要包括资源和能源流失的损失,各类污染物对生产、生活造成的损失,以及各种环境补偿性损失。污染损失指标由下式计算:

$$L = \sum_{i=1}^{n} L_1 + \sum_{i=1}^{n} L_2 + \sum_{i=1}^{n} L_3 + \sum_{i=1}^{n} L_4 + \sum_{i=1}^{n} L_5$$

式中: L---污染损失指标;

L1---资源和能源流失造成的损失;

L2——各类污染物对生产造成的损失;

L3——各类污染物对生活造成的损失:

L4—污染物对人体健康和劳动力的损失;

L5——各种补偿性损失:

经计算,污染损失共计562.8万元。

7.4 环境效益指标

环境效益指标包括直接经济效益和间接经济效益。直接经济效益主要是清洁生产 工艺带来的环境效益,间接经济效益指环保项目实施后的社会经济效益。

7.4.1 直接经济效益指标计算

直接经济效益指标计算公式如下:

$$R_1 = \sum_{i=1}^{n} N_i + \sum_{j=1}^{n} M_j + \sum_{k=1}^{n} S_k$$

式中: R1---直接经济效益指标;

Ni---大气资源利用的经济效益;

Mi---水资源利用的经济效益;

Sk——固体废物综合利用的经济效益;

i、j、k—分别为大气资源、水资源和固体废物的种类。

根据本项目水资源、大气资源及固体废物综合回收利用情况估算出项目直接经济效益 R_1 为 988.3 万元。

7.4.2 间接经济效益指标计算

间接经济效益指标计算公式如下:

$$R_2 = \sum_{i=1}^{n} J_1 + \sum_{j=1}^{n} K_j + \sum_{k=1}^{n} Z_k$$

式中: R2---间接经济效益指标;

J: 控制污染后减少对环境影响支出:

K--控制污染后减少对人体健康支出;

Zk——控制污染后减少对排污费支出;

i、j、k——分别为减少环境影响、人体健康及排污费支出种类。

控制污染后减少的对环境影响支出约为 273.1 万元/a,减少对人体健康支出为 115.6 万元/a,减少排污费支出 4535 万元/a,故间接经济效益 R_2 约为 4923.7 万元。

7.4.3 环境经济效益指标计算

环境经济效益指标计算公式如下:

 $R=R_1+R_2$

环境经济效益指标计算结果为 5912 万元/a。

7.5 环境经济的静态分析

7.5.1 环境年净效益

环境年净效益指直接环境经济效益(本项目即为效益指标)扣除环保费用指标后所得到的经济效益。根据前面计算,该项目环境效益指标为5912万元,扣除环保费用和污染损失指标后,得到年净效益为5068.57万元。

7.5.2 环保治理费用的经济效益

环保治理费用经济效益计算公式如下:

环保治理费用的经济效益=环境年净效益/环保年运行费用

环境年净效益与环保年运行费用比,一般认为比值大于或等于1时,该项目的环境控制方案在技术上是可行的,否则认为是不合理的。根据前面计算得到环境效益与年运行费用比为5068.57/2797.34=1.81。

由此可见,该项目环保措施减少污染物排放量,项目建设投资和环保投资在环境 污染控制方面取得一定的经济效益。因此,该项目工程投资及环境污染控制措施在技术上先进的,在环境经济上也是合理的,并能获得较好的环境经济效益。

7.6 经济效益分析结论

通过指标计算法对环境经济损益进行分析表明;在严格按照本报告提出的环境污染治理措施进行环境投入和严格环境管理的前提下,环境年净效益与环保年运行费用比为1.81>1,说明本项目建设在环境经济上是完全可行的。

8 环境管理与监测计划

环境管理是以科学理论为基础,运用经济、法律、技术、行政、教育等手段对经济、社会发展过程,施加给环境的污染和破坏影响进行调节控制,实现经济、社会和 环境效益的和谐统一。

为了缓解建设项目对环境构成的负面影响,在采取工程缓解措施解决建设项目环境影响的同时,企业必须制定全面的、长期的环境管理计划。根据环境评价报告书提出的主要环境问题、环保措施,提出项目的环境管理和监测计划。

8.1 环境管理

8.1.1 环境管理的基本原则

本项目开展环境管理将遵守环境保护法规有关规定,针对项目特点,遵循以下基本原则:

- (1) 按"可持续发展战略",正确处理发展生产和保护环境之间的关系,把经济和环境效益统一起来。
- (2) 把环境管理作为企业管理的一个组成部分,并贯穿于生产全过程,将环保指标纳入生产计划指标,同时进行考核和检查。
- (3) 企业在生产运营中,认真吸取国内外先进经验,在选用清洁的能源、原材料、 清洁工艺及无污染、少污染的生产方式等方面不断进取和提高,提高清洁生产水平。
 - (4) 加强全公司职工的环境保护意识,将专业管理和群众管理相结合。

8.1.2 施工期环境管理要求

建设期施工单位应加强自身的环境管理,配备必要的专、兼职环保管理人员,这 些人员应是施工前经过相关培训、具备一定能力和资质的技术人员,并赋予相应的职 责和权力,使其充分发挥施工现场环保监督、管理职能,确保工程施工按照国家有关 环保法规及工程设计的措施要求进行。

落实建设单位施工期环境管理职能是做好工程中环境保护工作的关键,首先是在 工程施工承发包工作中,应将环保工程摆在主体工程同等的地位,环保工程质量、工 期及与之相关的施工单位资质、能力都将作为重要的发包条件写入合同书中,为环保工程能够高质量地"同时施工"奠定基础。其次是及时掌握工程施工环保动态,定期检查和总结工程环保措施实施情况,资金使用情况,确保环保工程的进度要求。第三是协调各施工单位关系,消除可能存在环保项目遗漏和缺口,出现重大环保问题或环境纠纷时,积极组织力量解决,并协调施工单位处理好地方环境保护部门、公众三方相互利益的关系。

建设期环境管理要点主要包括以下几点内容:

- (1) 施工单位应加强驻地和施工现场的环境管理,合理安排计划,切实做到组织计划严谨,文明施工;环保措施逐条落实到位,确保环保工程与主体工程同时施工、同时运行;
- (2) 对施工单位提出要求,明确责任,督促施工单位采取有效措施减少施工过程中地面扬尘、建筑粉尘、施工机械尾气和废水排放对大气、地表水环境的污染以及噪声影响;
- (3) 定期检查,督促施工单位按要求回填处理建筑垃圾,收集和处理施工废渣 和生活垃圾;
- (4) 施工单位应特别注意工程施工中的水土保持,尽可能保护好土壤、植被, 弃土弃渣运至设计中指定地点弃置,并做好防护,严禁随意堆置,防止对大气及地表 水环境造成影响;
- (5) 认真落实各项补偿措施,做好工程各项环保设施的施工监理与验收,保证环保工程质量,真正做到环保工程"三同时";
 - (6) 项目建成后,应全面检查施工现场的环境恢复情况。

8.1.3 运营期环境管理要求

8.1.3.1 环境管理机构及职责

环境管理体系应是企业全面管理体系的一个组成部分,本项目将按照体系要求建立环境管理机构,负责企业的一切环境保护工作,使环境管理与企业的生产、销售、行政、质量管理相一致,并尽可能结合起来。为了做好生产全过程的环境保护工作,减轻本项目外排污染物对环境的影响,公司还将高度重视环境保护工作,设立环境保

护管理科室,设专职环境监督人员 2~3 名,负责环境监督管理工作,同时实行定岗定员,岗位责任制,负责各生产环节的环境保护管理,保证环保设施的正常运行。

环境管理机构职责如下:

- (1) 保持与生态环境主管机构的密切联系,及时了解国家、地方有关环境保护的法律、法规和其他要求,及时向生态环境主管机构反映与项目有关的污染因素、存在的环境问题、采取的污染控制对策等环境保护方面的内容,听取生态环境主管机构的批示意见。
- (2) 及时将国家、地方环境保护有关的法律、法规和规定向单位负责人汇报, 及时向本单位有关机构、人员通报,组织职工进行环境保护方面的教育、培训,提高 环保意识。
- (3) 及时向单位负责人汇报与本项目有关的污染因素、存在的环境问题、采取的污染控制对策、实施情况等,提出改进建议。
- (4) 负责制定、监督实施本单位的有关环境保护管理规章制度,负责实施污染 控制措施、管理污染治理措施,并进行详细的记录,做好环境统计,监测报表、污染 源等基本工作,以备检查。
- (5) 负责组织突发性污染事故的应急处置和善后处理,追查事故原因及事故隐患,总结经验教训,并根据有关规章制度对事故责任人作出妥善处理。

8.1.3.2 环境管理制度

(1) "三同时"制度

在项目实施和建设阶段,应严格执行"三同时",确保各三废处理等环保设施能够和生产工艺"同时设计、同时施工、同时投产使用"。

(2) 报告制度

要定期向当地生态环境部门报告污染治理设施运行情况,污染物排放情况以及污染事故、污染纠纷等情况。企业排污发生重大变化、污染治理设施改变或企业改、扩建等都必须向当地生态环境部门申报,按《建设项目环境保护管理条例》等相关文件要求实施。

(3) 污染治理设施的管理制度

本项目建成后,必须确保污染处理设施长期、稳定、有效地运行,不得擅自拆除或者闲置污染处理设施,不得故意不正常使用污染处理设施。污染处理设施的管理必须与生产经营活动一起纳入企事业单位日常管理工作的范畴,落实责任人、操作人员、维修人员、运行经费、设备的备品备件、化学药品和其他原辅材料,同时要简历岗位责任制、操作规程和管理台账。企业应制定并逐步完善对各类生产和消防安全事故的环保处置预案、建设环保应急处置设施。报当地环保局备案,并定期组织演练。

(4) 档案管理制度

加强环保档案管理,确保有关的档案、资料、单据在规定的期限内保存完备,且 又方便查询、使用。

(5) 环保奖惩条例

企业应加强宣传教育,提高员工的污染隐患意识和环境风险意识;制定员工参与 环保技术培训的计划,提高员工技术资质水平;设立岗位实则制,制定严格的奖、罚 制度。建议企业设置环境保护奖励条例,纳入人员考核体系。对爱护环保设施、节能 降耗、改善环境者实行奖励;对环保观念淡薄、不按环保管理要求,造成环保设施损 坏、环境污染及资源和能源浪费者予以处罚。

8.1.4 排污口规范化设置

排污口规范化根据《关于开展排放口规范化整治工作的通知》(国家环境保护总局环发 [1999]24号)文件的要求,一切新建、改建的排污单位以及限期治理的排污单位,必须在建设污染治理设施的同时,建设规范化排污口。因此,建设单位在投产时,各类排污口必须规范化建设和管理,而且规范化工作应于污染治理同步实施,即治理设施完工时,规范化工作必须同时完成,并列入污染物治理设施的验收内容。同时要求按照国家环保总局制定的《环境保护图形标志实施细则(试行)》的规定,设置与排污口相应的图形标志牌。

- (1) 排气筒设置取样口,并具备采样监测条件,排放口附近树立图形标志牌。
- (2) 排污口管理。建设单位应在各个排污口处树立标志牌,并如实填写《规范 化排污口标记登记证》,由生态环境主管部门签发。生态环境主管和建设单位可分别 按以下内容建立排污口管理的专门档案:排污口性质和编号;位置;排放主要污染物

种类、数量、浓度;排放去向;达标情况;治理设施运行情况及整改意见。

- (3) 安装满足《固定污染源排放烟气连续监测系统技术要求及检测方法》要求 的烟气排放连续监测装置,并与当地环保部门联网。
- (4) 环境保护图形标志在厂区的废气排放源、固体废物贮存处置场应设置环境保护图形标志,图形符号分为提示图形和警告图形符号两种,分别按 GB15562.1-1995、GB15562.2-1995 及 2023 年修改单执行。环境保护图形符号见图 8.1-1。

	A	D(((
废气排放口	废气排放口	噪声排放源	噪声排放源

一般固体废物	一般固体废物储存、处置场	危险废物物储存、处置 场	

图 8.1-1 环境保护图形标志—排放口(源)

表 8.1-1 标志的形状及颜色说明

类型	形状	背景颜色	图形颜色
警告标志	三角形边框	黄色	黑色
提示标志	正方形边框	绿色	白色

8.1.5 信息公开

根据《企业事业单位环境信息公开办法》(环境保护部令第 31 号),建设单位需向社会公开的信息包括:

- (1) 基础信息,包括单位名称、组织机构代码、法定代表人、生产地址、联系方式,以及生产经营和管理服务的主要内容、产品及规模;
- (2) 排污信息,包括主要污染物及特征污染物的名称、排放方式、排放口数量和分布情况、排放浓度和总量、超标情况,以及执行的污染物排放标准、核定的排放总量;
 - (3) 防治污染设施的建设和运行情况:
 - (4) 建设项目环境影响评价及其他环境保护行政许可情况:

(5) 突发环境事件应急预案。

8.2 监测计划

环境监测的主要对象为大气污染源监测与生产、生活污水监测。环境监测方法、 仪器设备的使用及监测的频次时段等,应严格遵守国家有关技术规范文件的要求。定 期监测厂内各类污染源排放状况及临近地区的大气环境质量,监控环保设施的工作状态,当环保设施发生故障时,能及时发现并解决。

8.2.1 监测要求

- (1) 按有关法律和《环境监测管理办法》等规定,建立监测制度,制定监测方案,并向当地环境保护行政主管部门和行业主管部门备案。对污染物排放状况及其周边环境质量的影响开展自行监测,保存原始监测记录,并公布监测结果。
 - (2) 设计、建设、维护永久采样口、采样测试平台和排污口标志。
- (3) 根据监测污染物的种类,在规定的污染物排放监控位置进行;有废气处理设施的,应在设施后检测。

8.2.2 环境质量现状监测计划

项目投入运营后,根据《排污单位自行监测技术指南 总则》(HJ819-2017)、《排污许可证申请与核发技术规范 废弃资源加工工业》(HJ1034-2019)制定自行监测方案,并开展环境质量监测;为环境管理提供依据,按环境管理要求进行环境质量监测。

(1) 环境空气质量

环境空气质量监测计划见表 8.2-1。

监测点编 监测点名 距厂界的方位和距 监测因子 监测频率 称 离 HCI、硫酸雾、甲醛、氟化物、非甲 G1 洞下 1 烷总烃、氨气、氯气、砷、钴、镍、 1次/半a, 铅、镉、铬、锡、锑、锰、H2S、 3天/次 G2 下廖溪 SW 1633m P2O5、二噁英

表 8.2-1 环境空气监测点布设一览表

(2) 地下水环境

地下水环境质量监测计划见表 8.2-2。

表 8.2-2 地下水监测点布设一览表

监测点编号	监测点名称	监测因子	监测频率	备注
JC01	1#地下水监测井	pH、色度、耗氧量(COD _{Mn}		《地下水环
JC02	2#地下水监测井	法,以O2计)、Ni、Zn、		100
JC03	循环公司 1#深度回收 车间东侧	Mn、Co、氟化物、氯化物 (以 Cl ⁻ 计)、硫酸盐(以 SO ₄ ² ·计)、Cu、汞、砷、六价 铬、铅、镉	1次/半年	境监测技术 规范》 (HJ164- 2020)

(3) 土壤环境

土壤跟踪监测计划见表 8.2-3 及图 8.2-1。

表 8.2-3 土壤监测点布设一览表

监测点编号	监测点名称	监测因子	监测频率
TI	蔡溪村		
T2	富集车间附近	pH、镍、铜、锰、钴、汞、砷、 铬(或六价铬)、镉、二噁英	1 次/a
Т3	铑铱精炼车间附近		
T4	污水处理站附近		

(4) 声环境

声环境监测计划见表 8.2-3 及图 8.2-1。

表 8.2-4 声环境监测点布设一览表

监测点编号	监测点名称	监测因子	监测频率
N1	陆家湾	等效 A 声级 LAeq (昼间 Ld、夜间 Ln)	1 次/季

8.2.3 生产中的污染源监测计划

依据《排污单位自行监测技术指南 总则》(HJ819-2017)、《排污单位自行监测技术指南 工业固体废物和危险废物治理》(HJ1250-2022)、《排污单位自行监测技术指南 无机化学》(HJ 1138-2020)、《排污许可证申请与核发技术规范 工业噪声》(HJ1301-2023)制定本项目污染源监测计划见表 8.2-5 及图 8.2-2。

表 8.2-5 营运期污染源监测计划表

监测要 素	监测点位置	排气筒 编号	监测方 式	点位	监测项目	监测频率	备注
废气	富集车间综合废气排 放口	DA001	手工	1	颗粒物、NOx SO ₂ 、五氧化二磷、 As、Ni、Co、Cu、 Mn、Pb、Sb、Sn、 Cd、Cr、HF、HCl	1次/季度	
					硫酸雾	1次/半年	

稀贵金属资源循环利用项目环境影响报告书

监测要 素	监测点位置	排气筒 编号	监测方 式	点位	监测项目	监测频率	备注
	富集车间酸性废气排 放口	DA002	手工	i	颗粒物、硫酸雾、 H2S	1次/季度	
	废催化剂处理区域综 合废气	DA003	手工	1	非甲烷总烃、颗粒物	1次/半年	
	废催化剂热解焚烧废				颗粒物、NOx、 SO ₂ 、CO、HCl	自动监测	
	气排放口	DA004	手工	1.	非甲烷总烃、五氧化 二磷、HF、Cr、Pb	1次/季度	
					二噁英	1次/年	
	回转窑炉内燃烧废气 排放口	DA005	手工	1	颗粒物、NOx、SO ₂	1 次/半年	
	精炼生产线含氯及含 氢酸性废气排放口	DA006	手工	i	硫酸雾、HCI、非甲 烷总烃、硫化氢、甲 醛	1次/季度	
	精炼生产线含有机组 分废气排放口	DA007	手工	1	甲醛、HCI、氯气、 非甲烷总烃、硫化氢	1次/季度	
	精炼生产线贵金属干 燥铸锭废气排放口	DA008	手工	1	颗粒物	1次/半年	
	精炼生产线含氮氧化 物酸性废气排放口	DA009	手工	1	HCl. NOx. Cl2	1 次/季度	
	精炼生产线含氨废气 排放口	DA010	手工	1	NH ₃	1次/季度	
	污水处理站废气排放 口	DA011	手工.	Ĺ	HCl、NH ₃	1次/季度	
	实验室废气排放口	DA011	手工	1	颗粒物、非甲烷总 烃、HCI、硫酸雾、 NH ₃ 、HF、Pb	1次/半年	
	危废暂存间排放口	DA013	手工	1	非甲烷总烃	1次/半年	
	无组织厂界	厂界四 周	手工	4	颗粒物、NOx SO ₂ 、五氧化二磷、 As、Ni、Co、Cu、 Mn、Pb、Sb、Sn、 Cd、Cr、HC、HF、 硫酸雾、非甲烷总烃	1 次/半年	
废水	污水处理站出口	DW001	手工	1	总砷、总镉、总铅、 六价铬、总铬、总 镍、总锰、总钡、总 钴、总锡、总锑、总 银	1次/季度	
噪声	厂界	厂界四 周	手工	4	等效声级、最大声级	1 次/季度	
雨水	雨水排放口	YS001	手工	1	pH、COD、NH ₃	1 次/月	若监测一年 无异常情 况,可放宽 至每季度开 展一次监测

8.2.4 事故监测计划

环保治理设施运行情况要严格监视,及时监测。当发现环保设施发生故障或运行 不正常时,应及时向环保部门报告,并立即采样监测,对事故发生的原因、事故造成 的后果和损失进行调查统计。

上述监测内容均按国家规定的数据采集、处理、采样和分析方法进行监测, 若企业不具备监测条件, 可委托有资质的检测单位进行监测, 监测结果以报告形式上报当地环保部门。

8.3 与排污许可证制度衔接的要求

根据《建设项目环境保护管理条例》、《排污许可管理条例》,本项目建成投产 前需由建设单位重新申请排污许可证。

8.3.1 信息公开方案

- (1) 公开建设项目开工前的信息建设项目开工建设前,建设单位应当向社会公 开建设项目开工日期、设计单位、施工单位和环境监理单位、工程基本情况、拟采取 的环境保护措施清单和实施计划、由地方政府或相关部门负责配套的环境保护措施清 单和实施计划等,并确保上述信息在整个施工期内均处于公开状态。
- (2) 公开建设项目施工过程中的信息项目建设过程中,建设单位应当在施工中期向社会公开建设项目环境保护措施进展情况、施工期的环境保护措施落实情况、施工期环境监理情况、施工期环境监测结果等。
- (3) 公开建设项目建成后的信息建设项目建成后,建设单位应当向社会公开建设项目环评提出的各项环境保护设施和措施执行情况、竣工环境保护验收监测和调查结果。对主要因排放污染物对环境产生影响的建设项目,投入生产或使用后,应当定期向社会特别是周边社区公开主要污染物排放情况。

8.3.2 与排污许可证制度衔接的要求

根据《关于做好环境影响评价制度与排污许可制度衔接相关工作的通知》(环办环评[2017]84号)提出:依据国家或地方污染物排放标准、环境质量标准和总量控制要求等管理固定,按照污染源源强核算技术指南、环境影响评价要素导则等技术文

件,严格核定排放口数量、位置以及每个排放口的污染物种类、允许排放浓度和允许排放量、排放方式、排放去向、自行监测计划等与污染物排放相关的主要内容。建设项目发生实际排污行为之前,排污单位应当按照国家环境保护相关法律法规以及排污许可证申请与核发技术规范要求申请排污许可证,不得无证排污或不按证排污。排污许可证执行报告、台账记录以及自行监测执行情况等应作为开展建设项目环境影响后评价的重要依据。

9 排污许可及总量控制

9.1 排污许可申报

根据《固定污染源排污许可分类管理名录(2019 年版)》,本项目生产线属于管理名录中的重点管理项目。本次评价根据《排污许可证申请与核发技术规范 危险废物焚烧》(HJ1038-2019)、《排污许可证申请与核发技术规范 工业固体废物和危险废物治理》(HJ1033-2019)、《排污许可证申请与核发技术规范 无机化学工业》(HJ1035-2019)、《排污许可证申请与核发技术规范 工业炉窑》(HJ1121-2020)、《排污许可证申请与核发技术规范 工业炉窑》(HJ1121-2020)、《排污许可证申请与核发技术规范 工业固体废物》(HJ1200-2021)、《排污许可证申请与核发技术规范 工业圆体废物》(HJ1200-2021)、《排污许可证申请与核发技术规范 工业噪声》(HJ1301-2023)在全国排污许可证管理信息平台进行填报。

表 9.1-1 项目各生产线与名录对应情况识别表

	生产线	《固定污染源排污许可分类管理名录》(2019年 版)中类别	管理类别
赤铁矿处理生产	火法富集	二十七,有色金属治炼和压延加工业 32—76.贵 金属治炼—金治炼 3221,银治炼 3222,其他贵金 属冶炼 3229	重点管理
2.%	湿法富集	二十一、化学原料和化学制品制造业 26—45.基 础化学原料制造—261 无机盐制造 2613	重点管理
	焚烧处置	四十五、生态保护和环境治理业 77—环境治理业 772—专业从事危险废物贮存、利用、处理、处置	重点管理
失效汽车尾气催 化剂生产线	火法富集	二十七、有色金属治炼和压延加工业 32—76.贵 金属冶炼—金冶炼 3221, 银冶炼 3222, 其他贵金 属冶炼 3229	重点管理
	湿法富集	二十一、化学原料和化学制品制造业 26—45.基 础化学原料制造—261 无机盐制造 2613	重点管理
	焚烧处置	四十五、生态保护和环境治理业 77—环境治理业 772—专业从事危险废物贮存、利用、处理、处置	重点管理
废铂/钯催化剂处 理生产线	火法富集	二十七、有色金属冶炼和压延加工业 32—76.贵 金属冶炼—金冶炼 3221,银冶炼 3222,其他贵金 属冶炼 3229	重点管理
	湿法富集	二十一, 化学原料和化学制品制造业 26—45.基 础化学原料制造—261 无机盐制造 2613	重点管理
废均相催化剂处	焚烧炉	四十五、生态保护和环境治理业 77—环境治理业 772—专业从事危险废物贮存、利用、处理、处置	重点管理
理生产线	湿法富集	二十一, 化学原料和化学制品制造业 26—45.基 础化学原料制造—261 无机盐制造 2613	重点管理
电人员转送化文	鐵钠盐产品、富钌渣产 品、工序中间产物工序	二十一, 化学原料和化学制品制造业 26—45.基 础化学原料制造—261 无机盐制造 2613	重点管理
贵金属精炼生产线	萃金、银回收、铂精炼、 钯精炼、铱精炼、铑精炼	二十七、有色金属冶炼和压延加工业 32—76.贵 金属冶炼 322—金冶炼 3221, 银冶炼 3222, 其他 贵金属冶炼 3229	重点管理

9.2 许可排放量

根据《排污许可证申请与核发技术规范 危险废物焚烧》(HJ1038-2019)、《排污许可证申请与核发技术规范 工业固体废物和危险废物治理》(HJ1033-2019)、《排污许可证申请与核发技术规范 无机化学工业》(HJ1035-2019)、《排污许可证申请与核发技术规范 工业炉窑》(HJ1121-2020),本项目主要排放口许可排放量为颗粒物 2.475t/a、二氧化硫 5.884t/a、氮氧化物 12.426t/a、砷及其化合物 10kg/a、铅及其化合物 52kg/a、铬及其化合物 1.65kg/a、镉及其化合物 0.002kg/a。

根据《排污许可证申请与核发技术规范 危险废物焚烧》(HJ1038-2019)、《排污许可证申请与核发技术规范 工业固体废物和危险废物治理》(HJ1033-2019)、《排污许可证申请与核发技术规范 无机化学工业》(HJ1035-2019),本项目废水排放口为一般排放口,不许可排放量。

10 环境影响评价结论

10.1项目概况

贵金属涵盖八个元素:铂、钯、铑、钌、铱、锇、金、银。其中前六种——铂、钯、铑、钌、铱、锇属于铂族金属。鉴于其非凡的独特属性与全球范围内的极度稀缺性,铂族金属在国际上获得了"战略储备金属"的地位,也因此获得"第一高技术金属"的称号。它们的关键应用覆盖了汽车催化转化器、石油精炼与化工催化剂、新能源装置、国防尖端材料、精密电子元器件以及环境污染控制技术等战略前沿领域。中国持续领跑全球铂族金属消费,推动贵金属二次资源回收产业前景向好。核心应用领域数据显示,汽车尾气催化剂以年耗逾120吨铂族金属,成为中国最大的实际消耗来源,故有"可循环铂矿"与"流动贵金属矿山"之称。另一重要领域——石油化工,其年度催化剂更换产生的铂族金属回收量也达到20余吨。

贵州新铂材料科技有限公司属于湖南中伟新铂材料科技有限公司全资子公司,湖南中伟新铂材料科技有限公司主要从事金属功能材料的研发、生产、销售与技术服务,公司拟利用高冰镍生产硫酸镍过程产生的赤铁矿渣和贵金属二次资源为原料生产贵金属,实现稀贵金属资源的综合利用,并进一步延申铂族金属化学材料、催化剂生产应用及回收一体化布局上下游产业链。因此,贵州新铂材料科技有限公司决定在贵州省铜仁市玉屏大龙开发区北部工业园区投资63600万元建设稀贵金属资源循环利用项目。

10.2符合性分析

(5) 产业政策符合性

本工程属于危险废物处置项目,对照《产业结构调整指导目录(2024年版)》,本项目属于第一类 鼓励类项目中"四十二、环境保护与资源节约综合利用 6、危险废弃物处置-危险废物(含医疗废物)无害化处置和高效利用技术设备开发制造、利用处置中心建设和(或)运营"。项目使用设备无限制和淘汰生产工艺、设备,且已取得贵州大龙经济开发区经济发展局(科学技术局)备案(项目编码: 2505-522291-04-01-779012),因此,项目符合国家及地方产业政策。

(6) 与其他相关政策符合性分析

本项目为危险废物处置和贵金属冶炼项目,且处于长江重要支流舞阳河干流;项目位于贵州大龙经济开发区,项目所在厂区距离舞阳河约2.2km。本项目产生的一般固废外售综合利用,危险废物委托有资质的单位处置,不向外环境排放。因此,本项目与《中华人民共和国长江保护法》是相符的。

本项目位于合规化园区内,符合《贵州省推动长江经济带发展负面清单实施细则 (试行)》相关条款要求。

经对比《危险废物污染防治技术政策》《重点行业二噁英污染防治技术政策》 《固体废物再生利用污染防治技术导则》(HJ1091-2020)《强化危险废物监管和利 用处置能力改革实施方案》中的相关条款,本项目与前述技术政策和规范是相符的。

(7) 相关规划符合性分析

本项目属于废催化剂的危险废物处置设施,属于《贵州省"十四五"生态环境保护规划》中的短缺的危险废物利用处置设施,属于《铜仁市"十四五"生态环境保护规划》固体废物污染防治重点工程。因此,符合《贵州省"十四五"生态环境保护规划》、《铜仁市"十四五"生态环境保护规划》要求。

本项目位于贵州省铜仁市,项目为属于废催化剂的危险废物处置设施,且从中回收贵金属,本项目处置的含贵金属废催化剂不属于贵州省严重产能过剩的危险废物类别,不属于贵州省利用处置能力前十的危险废物,属于结构性短缺的危险废物利用处置设施。因此,符合《贵州省"十四五"危险废物集中处置设施建设规划》要求。

本项目主要是处理贵州中伟资源循环公司产出的赤铁矿(高冰镍浸出渣)、失效 汽车尾气催化剂、废铂/钯催化剂、废均相催化剂等,主要属危险废物处置及综合利用 项目和贵金属治炼,项目建设与贵州大龙经济开发区产业规划不冲突,同时本项目使 用贵州中伟资源循环公司产出的赤铁矿(高冰镍浸出渣),属于产业端的延伸,与园 区发展循环经济理念一致。所以,本项目符合《贵州大龙经济开发区总体规划(2016-2030年)》产业规划发展要求。

(8) "三线一单"符合性

本项目的建设落实了"生态保护红线、环境质量底线、资源利用上限和环境准入

负面清单"的约束要求,体现了从源头防范区域环境污染和加快推进改善环境质量为核心的环保管理要求。因此,本项目建设与《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评[2016]150号)要求保持一致。

本项目位于《省人民政府办公厅关于印发<贵州省生态环境分区管控方案>的通知》中贵州大龙经济开发区重点管控单元(编码为 ZH52062220002)。环评对生态环境分区管控进行查阅后,筛选出与本项目有关的条款,并结合本项目情况进行逐条分析,最终得出,本项目符合《省人民政府办公厅关于印发<贵州省生态环境分区管控方案>的通知》相关管控要求。

综上,本项目建设与"三线一单"是相符的。

10.3环境质量现状

10.3.1 环境空气质量现状

根据《2023年铜仁市生态环境状况公报》,2023年,铜仁市10个区(县)环境空气质量均达到《环境空气质量标准》(GB3095-2012)二级标准,全市环境空气质量平均优良天数比例为97.9%; 玉屏县环境空气质量综合指数为2.66,优良天数比例为97.0%,首要污染物为PM_{2.5}。项目所在区域环境空气质量可达到《环境空气质量标准》(GB 3095-2012)及其2018年修改单二级标准。因此,评价区域属于达标区域。

评价共设置了 3 个环境空气质量补充监测点,根据监测结果:各监测点 TSP、NOx、氟化物 1 小时平均浓度和 24 小时均值浓度监测结果满足《环境空气质量标准》(GB3095-2012)二级标准要求,硫酸雾、氯化氢、硫化氢、五氧化二磷、氯气、氨气、甲醇、甲醛的 1 小时平均浓度或 24 小时均值浓度监测结果均满足《环境影响评价技术导则-大气环境》(HJ2.2-2018)附录 D 标准限值,非甲烷总烃、镍及其化合物满足《大气污染物综合排放标准详解》中的标准值,二噁英满足日本环境厅环境标准年平均值 0.6Pg-TEQ/m³。

10.3.2 地表水环境质量现状

根据引用的地表水环境质量现状监测结果,后锁小溪、车坝河、舞阳河布设的6

个监测断面的各监测项目标准指数均小于 1, 水质均可达到《地表水环境质量标准》 (GB3838-2002)中III类标准要求,说明后锁小溪、车坝河、躌阳河水质状况良好。

10.3.3 地下水环境质量现状

项目评价区地下水流向自西北向东南径流,并最终在东南排入地表河流,该项目位于评价范围所在地下水系统单元的径流区。本次环评共引用丰水期监测点7个,枯水期监测点2个,枯水期补充监测5个。

根据监测数据统计结果可知丰水期监测的 10 个地下水监测所有水质指标均可达到《地下水质量标准》(GB/T14848-2017)中的III类标准要求。枯水期引用的 2 个地下水监测采样点 S6、S12 除总大肠杆菌群超标外,S6、S12 点位其余水质指标及其他点位全部水质指标均可达到《地下水质量标准》(GB/T14848-2017)中的III类标准要求,总大肠杆菌群超标率均为 100%。总大肠杆菌群超标原因主要是受当地农田施肥及部分居民生活污染源的无序排放以及人畜粪便的污染所引起的。丰水期引用厂区地下水监测井所有水质指标均可达到《地下水质量标准》(GB/T14848-2017)中的III类标准要求。本次评价采用的枯水期 7 个地下水样和丰水期 10 个地下水样中其他监测因子,所有检测指标均未超标,符合《地下水质量标准》(GB/T14848-2017)III 类标准,未见特征因子和重金属指标超标,水质总体表现较好。

10.3.4 声环境质量现状

由于本项目类似于厂中厂,本次评价在项目厂界四周、中伟资源循环公司厂界四周和陆家湾居民点共设置了8个噪声监测点,根据现状监测结果:本项目厂区各方位昼间、夜间厂界噪声值满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准要求,本项目所在的贵州中伟资源循环有限公司厂界各方位昼间、夜间厂界噪声值满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准要求。厂界周边居民点环境噪声昼间、夜间噪声值均能满足《声环境质量标准》(GB3096-2008)2类标准要求,说明厂界四周声环境质量较好。

10.3.5 土壤环境质量现状

本次评价共设置了 11 个土壤监测点,其中,厂区内设置了 2 个表层样和 5 个柱状样,评价范围内厂区外布置了 4 个表层样。根据现状监测结果: T3~T11 各监测点各项指标均能达到《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 1 中第二类用地的风险筛选值标准,说明评价区域建设用地土壤污染风险低。T10 点位表层样镍检测值较高,该点位取样位置处于铑铱精炼车间胖绿化带,原贵州中伟资源循环公司 20#镍净化车间,采用镍豆加硫酸溶解生产硫酸镍,该点位表层镍检测值偏高,可能为产品洒漏导致。T1~T2 监测点各项监测指标均可以满足《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB15618-2018)中风险筛选值标准要求,说明评价区域农用地土壤污染风险低。

10.4污染防治措施

10.4.1 营运期大气污染防治措施

本项目电炉料仓废气、微波干燥废气、环境集烟尾气等经 1#布袋除尘器处理后引入 1#碱液吸收系统(两级碱液吸收),球磨及破碎放废气、矿热电炉烟气、中频炉烟气经 2#布袋除尘器处理后引入 1#碱液吸收系统(两级碱液吸收),渣水淬废气、蒸硒回转窑废气、氧压浸出及压滤废气等直接引入 1#碱液吸收系统(两级碱液吸收), 以上废气经废气处理系统处理后 1 根 32m 高的排气筒(DA001)排放;赤铁矿处理生产线赤铁矿处理生产线高压水雾化废气、预浸出废气、常压浸出废气等经风机引入 2#碱液吸收系统(三级碱液吸收)处理后经 1 根 15m 高的排气筒(DA002)排放;废催化剂处理区域装料废气经风机引入 1#活性炭吸附装置(两级活性炭)处理,废催化剂处理区域卸料及冷却废气经风机引入 3#布袋除尘器处理,废催化剂处理生产线高压水雾化废气经风机引入 3#布袋除尘器处理,废催化剂处理生产线高压水雾化废气经风机引入 4#布袋除尘器处理,以上废气经 1 根 32m 高的排气筒(DA003)排放;回转窑炉内废气经风机引入"二燃烧+余热锅炉(SNCR 脱硝)+半干式急冷塔+半干式反应塔(喷消石灰、活性炭粉)+5#布袋除尘+板式换热器+3#碱液喷淋塔+1#水喷淋塔"处理后经 35m 高的排气筒(DA004)排放;废催化剂回转窑燃烧机燃烧废气直接经 1 根 32m 的排气筒(DA005)排放;精炼生产线铂钯炼精车间含氯

及含氢酸性废气经风机引入 4#碱液喷淋系统(两级碱液吸收)处理,铑铱炼精车间含 氯及含氢酸性废气经风机引入 4#碱液喷淋系统(两级碱液吸收)处理,以上废气经 1 根 25m 高的排气筒(DA006)排放;精炼生产线含有机组分废气经风机引入 1#酸洗喷淋塔+6#碱洗喷淋塔+1#干式过滤器+2#活性炭吸附装置处理后经 1 根 32m 高的排气筒(DA007)排放:精炼生产线金银干燥及铸锭废气经风机引入 6#布袋除尘器处理后经 1 根 32m 高的排气筒(DA008)排放;精炼生产线含氮氧化物酸性废气,其中高浓度含氮氧化物酸性废气先经 7#碱液喷淋系统(两级碱液吸收)处理后,再与低浓度含氮氧化物酸性废气进入 8#碱液喷淋系统(两级碱液吸收)处理后经 1 根 25m 高的排气筒(DA009)排放;精炼生产线含氨废气经风机引入 2#酸液喷淋塔+2#水喷淋塔处理后经 1 根 15m 高的排气筒(DA011)排放; 污水处理站废水经 3#酸液喷淋塔+3#水喷淋塔处理后经 1 根 15m 高的排气筒(DA011)排放; 化验室废气经 7#布袋除尘器 +9#碱液喷淋+4#水喷淋塔处理后经 1 根 15m 高的排气筒(DA011)排放; 化验室废气经 7#布袋除尘器 +9#碱液喷淋+4#水喷淋塔处理后经 1 根 15m 高的排气筒(DA011)排放; 甲类仓库危废暂存间废气经活 3#性炭吸附装置(两级活性炭)处理后经 1 根 15m 高的排气筒(DA013)排放。

10.4.2 营运期废水污染防治措施

本项目生产废水主要为设备地面清洁废水、吸收塔废水、失效汽车尾气催化剂生产线一段硫酸浸出液、废铂催化剂处理生产线一段硫酸浸出液产生量为、废钯催化剂处理生产线一段硫酸浸出液、废均相催化剂处理生产线水洗液及水浸液、精炼生产线含氨废水、精炼生产线其他废水等均排入污水处理站除重、调值处理达到《无机化学工业污染物排放标准》(GB31573-2015)及其修改单表1年间排放口限值标准后经现有厂区管廊输送至中伟新材料股份有限公司生产废水处理设施处理。经污水处理站预处理后,项目生产废水污染物浓度可满足上述标准。因此,本项目生产废水排入中伟新材料股份有限公司生产废水处理设施,车间排放口排放浓度满足国家有关的水污染物排放浓度管理要求。。

项目生活污水排水为独立排水系统,管道单独设置,生活污水不与生产废水混合。生活污水收集均采用地埋式管道进行收集,收集后汇入现有厂区生活污水主干管 后经废水总排放口排入市政污水管网。

10.4.3 营运期地下水污染防治措施

厂区进行防渗分区布局和"可视化"处理:产污装置产生的污水提高处理及循环回用率;生产废水采用管廊收集及输送,其余管线尽可能地上敷设,减少埋地管道。项目以水平防渗为主,分区防渗设计严格按照《环境影响评价技术导则 地下水环境》(HJ601-2016)要求执行。在满足地下水导则的要求以及全方位监控厂区地下水环境的基础上,布设3个跟踪监测点;认真落实日常管理和信息公开计划,制定详细的地下水污染应急响应预案。

10.4.4 营运期噪声污染防治措施

- (1) 采用工艺先进、噪声小的机械设备,设备采购合同中提出设备噪声的限制要求,从噪声源头控制。
- (2) 风机、压滤机、泵类等均考虑安装减振机座,同时放置于车间内部,采用 实体墙结构隔音。
- (3) 提高自动控制水平,风机、水泵等高噪声设备的参数检测和自控运行做到 无需要人员在现场工作。检修时应对有关人员的工作时间作出相应规定以减少人员受 噪声危害。
- (4) 水泵与进出口管道间安装软橡胶接头,同时,泵体基础设橡胶垫或弹簧减振动器,降低管道和基础产生的固体传声。

10.4.5 营运期固体废物污染防治措施

废石墨电极、失效汽车尾气催化剂外壳、赤铁矿废破损吨袋、未沾染毒性的化学品包装物等属于一般工业固废,暂存在一般固废暂存间后定期外售综合利用。赤铁矿处理生产线水淬渣主要含铁,外售铁回收冶炼企业。废催化剂处理二段盐酸浸出渣、精炼生产线产生的过滤渣、置换渣、不溶渣等送入返回生产线。

回转窑耐火材料、铜镍渣、含油废活性炭、压滤渣、废滤布、废滤料、废布袋、 废活性炭、废催化剂废吨袋、沾染毒性的化学品包装物、废矿物油、废机油桶、化验 室废物。对于有价值回收的铜镍渣,属于项目火法富集工段需投加的辅料,送至矿热 电炉作为辅料;对于本项目焚烧炉可自行处置的,如废滤布、废滤料、废布袋、废催 化剂废吨袋等可热解焚烧的,投入热解焚烧炉处置;对于本项目无利用价值且焚烧炉 不能处置的,暂存于危废暂存间后交由环境主管部门许可具有危废处置资质单位处 置。

矿热电炉废耐火材料,失效汽车尾气催化剂处理生产线、废铂催化剂处理生产线、废钯催化剂处理生产线水淬渣、精炼生产线银回收浸银渣等固废待项目正式投产后,根据《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)开展危险废物鉴别后,开展鉴别结果采用相应的处置措施。在未鉴别确定固废性质前,堆存于生产综合配套车间内的渣库内,渣库按照《危险废物贮存污染控制标准》(GB18597-2023)进行建设。

10.4.6 营运期土壤环境污染防治措施

厂区做好雨污分流,杜绝厂区地面漫流进入周边环境,厂区修建截排水沟,在厂区最低处建好初期雨水收集池;设计有毒有害物质的生产装置、储罐和管道,或污水处理池、应急池等存在土壤污染风险的设施,应当按照国家有关标准和规范要求,设计、建设和安装有关的防腐蚀、防泄/渗漏等设施和泄/渗漏监测装置,防止有毒有害物质污染土壤和地下水;建立土壤和地下水污染隐患排查治理制度,定期对重点区域、重点设施开展隐患排查。发现有污染隐患的,应当制定整改方案,即使采取技术、管理措施予以消除,并将隐患排查、治理情况如实记录并建立档案。企业编制突发环境事件应急预案时应当包括防治土壤和地下水污染的相关内容。

10.5环境影响预测与评价结论

10.5.1 环境空气影响预测评价结论

本次评价采用 AERMOD 模型,对项目废气正常排放和非正常排放对环境空气的影响进行了预测,预测的污染因子主要为 SO₂、NO₂、PM₁₀、PM_{2.5}、CO、五氧化二磷、氨气、氯气、硫化氢、甲醛、氟化物、HCI、硫酸雾、非甲烷总烃、锰及其化合物、镍及其化合物、铅及其化合物、砷及其化合物、镉及其化合物。

根据预测:本项目所在区域属于达标区域,正常排放情况下,项目排放的 SO2、

NO₂、PM₁₀、PM_{2.5}、CO、五氧化二磷、氨气、氯气、硫化氢、甲醛、氟化物、HCI、硫酸雾、非甲烷总烃、锰及其化合物、镍及其化合物的短期浓度贡献值的最大浓度占标率小于 100%。SO₂、NO₂、PM_{2.5}、PM₁₀、Pb、As、Cd、二噁英的长期浓度贡献值的最大浓度占标率小于 30%。本项目排放的 SO₂、NO₂、PM₁₀、PM_{2.5}、CO 的叠加周边拟建在建污染源及环境质量现状后的保证率日平均浓度及年平均浓度的最大浓度均能满足《环境空气质量标准》(GB3095-2012)二级标准限值要求,氟化物叠加周边拟建在建污染源及环境质量现状后的短期平均浓度的最大浓度能满足《环境空气质量标准》(GB3095-2012)二级标准限值要求,五氧化二磷、氨气、氯气、硫化氢、甲醛、HCI、硫酸雾、锰及其化合物叠加周边拟建在建污染源及环境质量现状后满足《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 标准限值要求,镍及其化合物、NMHC 叠加周边拟建在建污染源及环境质量现状后满足《大气污染物综合排放标准详解》非甲烷总烃一次值 2.0mg/m³。

项目完全投产后,出现非正常排放情况时,SO₂、NO₂、五氧化二磷、氨气、甲醛、非甲烷总烃、二噁英贡献浓度最大值和各环境敏感点贡献值范围均未出现超标; PM₁₀、氟化物、硫酸雾、氯气、H₂S、氯化氢贡献浓度最大值均出现超标,最大超标倍数分别为 2.04 倍、0.43 倍、0.13 倍、2.01 倍、1.93 倍、19.56 倍; PM₁₀、氟化物、硫酸雾、H₂S 在敏感点处贡献值浓度未超标; 氯化氢贡献值浓度在彭家、猫猫冲、榴树井、杉木林、胜利村、张家、荒田、堰塘塆、白猫冲、白家庄、陆家塆、蔡溪屯、洞脑上、井塆均超标; 氯气贡献值浓度在张家出现超标。总体来说,非正常工况状况下,非正常排放对保护目标处的影响较大,为进一步减小对周边环境空气的影响,应避免非常排放情况出现,必须采取定期检查生产设施及废气处理设施,保证环保设施的正常运行。

本评价采用《环境影响评价技术导则大气环境》(HJ2.2-2018)中推荐的大气环境防护距离模式计算大气环境防护距离,预测范围为 2000m×2000m 的矩形范围,预测范围内的网格点精度为 50m,经计算结果显示,评价区没有超标点,无大气环境防护区域。

10.5.2 地表水环境影响分析评价结论

本项目生活污水水质简单, 无有毒有害的特征污染物, 经预处理后经园区污水管 网排入大龙经济开发区工业污水处理厂处理后达标排放, 故本项目不直接向地表水环境排水, 不会对区域地表水产生直接影响。

本项目生产废水主要为设备地面清洁废水、吸收塔废水、赤铁矿处理生产线压滤置换液、失效汽车尾气催化剂生产线一段硫酸浸出液、废铂催化剂处理生产线一段硫酸浸出液、废均相催化剂处理生产线一段硫酸浸出液、废均相催化剂处理生产线水洗液、精炼生产线含氨废水、精炼生产线其他废水等均排入污水处理站除重、调值处理达到《无机化学工业污染物排放标准》(GB31573-2015)及其修改单表1车间排放口限值标准后经现有厂区管廊输送至中伟新材料股份有限公司生产废水处理设施处理。根据本项目生产废水污染物浓度,可满足上述标准。因此,本项目生产废水排入中伟新材料股份有限公司生产废水处理设施,车间排放口排放浓度满足国家有关的水污染物排放浓度管理要求。

因此, 本项目采取的水污染控制和水环境影响减缓措施是可行的。

10.5.3 地下水环境影响预测评价结论

在正常防渗措施正常的状况下,项目运营不会对地下水环境造成污染影响。

选取污染特征因子镍、硒、砷、硫酸盐、氨氮作为非正常状况情景下泄漏污染物进行溶质运移模拟。模拟结果显示,正常状况下,按地下水环境导则要求采取防渗措施后,污染物不会对地下水造成污染;非正常状况下,超标污染晕的污染面积及迁移距离持续增大,不同污染物最终会迁移到下游的并迁移出东南侧厂界,但均未迁移到下游的分散式饮用水敏感点(S3、S4、ZK7、ZK8、ZK40)。事故情景下,污染物短暂泄漏,超标污染晕的污染面积及迁移距离呈先增大后减小的趋势,最后全部衰减到《地下水质量标准》(GBT-14848-2017)Ⅲ类标准值以下。由于污染物浓度较大,不同污染物污染晕均会迁移出东南侧厂界。事故情景污染物均未迁移到下游的分散式饮用水点(S3、S4、ZK7、ZK8、ZK40)。

建议在污染装置下布设防渗措施,并按相关要求布设监测井和应急抽排水井,防

止地下水污染物对场区外地下水环境造成影响。

10.5.4 声环境影响预测评价结论

项目建成运营后,在采取降噪措施减低项目的噪声排放后,经预测,厂界四周均能够达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准,厂界周边声环境保护目标均可以满足《声环境质量标准》(GB3096-2008)2类标准,噪声对周边居民影响较小。

10.5.5 固体废物影响分析结论

生产过程所产生的固体废物,均可妥善处理,对周围环境不会产生较大影响。危险废物按照《危险废物贮存污染控制标准》(GB18597-2023)、《危险废物收集贮存运输技术规范》(HJ2025-2012)、《危险废物识别标志设置技术规范》(HJ1276-2022)、《危险废物管理计划和管理台账制定技术导则》(HJ1259-2022)等管理要求设置危废暂存间暂存后,并交由有危废处置资质的单位处置,不向外环境排放。因此,本项目产生的固废不会对外环境产生影响。

10.5.6 土壤环境影响预测评价结论

本项目对土壤的影响途径为垂直入渗和大气沉降。污水调节池发生渗漏时,镍、 砷、硒进入包气带之后,将会对下层土壤环境造成一定的影响。因此时监控并发现污染物的泄漏情况并及时修复,可保证污染物对厂区内土壤环境的影响可控。

10.6环境风险评价结论

针对本项目运营期的风险特点,加强监控和管理,依托贵州中伟资源循环公司现有容积为800m³的1座事故应急池。及时发现和处理问题,避免一旦发生风险事故应立即上报,防止环境风险事故扩大。此外,企业内部制定了风险事故应急预案,一旦发生事故立即采取措施,力争将损失降到最低。

10.7环境影响经济效益分析

本项目环保投资在 3732 万元, 占总投资 63600 万元的 5.87%。通过指标计算法

对环境经济损益进行分析表明,在严格按照本报告提出的环境污染治理措施进行环境 投入和严格环境管理的前提下,环境年净效益与环保年运行费用比为1.81,大于1, 说明本项目建设在环境经济上是基本可行的。

10.8环境管理与环境监测计划

拟建项目在施工和运营期将不可避免会对周围环境产生一定的影响,建设单位应加强环境管理,同时定期进行环境监测,以便及时了解工程在不同时期的环境影响,采取相应措施,消除不利因素,减轻环境污染,以实现预定的各项环保目标,从而提高企业的管理水平和改善区域环境质量,使企业得以健康持续发展。

10.9排污许可

根据《固定污染源排污许可分类管理名录(2019 年版)》,本项目生产线属于管理名录中的重点管理项目。本次评价根据《排污许可证申请与核发技术规范 危险废物焚烧》(HJ1038-2019)、《排污许可证申请与核发技术规范 工业固体废物和危险废物治理》(HJ1033-2019)、《排污许可证申请与核发技术规范 无机化学工业》(HJ1035-2019)、《排污许可证申请与核发技术规范 工业炉窑》(HJ1121-2020)、《排污许可证申请与核发技术规范 工业固体废物》(HJ1200-2021)、《排污许可证申请与核发技术规范 工业固体废物》(HJ1200-2021)、《排污许可证申请与核发技术规范 工业赋产》(HJ1301-2023)在全国排污许可证管理信息平台进行填报。根据《排污许可证申请与核发技术规范 工业固体废物和危险废物焚烧》(HJ1038-2019)、《排污许可证申请与核发技术规范 工业固体废物和危险废物治理》(HJ1033-2019)、《排污许可证申请与核发技术规范 工业固体废物和危险废物治理》(HJ1033-2019)、《排污许可证申请与核发技术规范 工业炉窑》(HJ1121-2020),本项目主要排放口许可排放量为颗粒物 2.475t/a、二氧化硫 5.884t/a、氮氧化物 12.426t/a、砷及其化合物 10kg/a、铅及其化合物 52kg/a、铬及其化合物 1.65kg/a、镉及其化合物 0.002kg/a。废水排放口为一般排放口,不许可排放量。

10.10 公众参与结论

建设单位根据本项目的环境影响特点,确定本项目附近居民、村委会作为主要公

众参与对象。本次公众参与通过网上公示、张贴公告、登报纸等形式,充分收集公众意见。

本项目首次环境影响评价信息公开方式网上公示,于 2025 年 6 月 20 日在贵州大 龙经开区管委会官方网站首次公开环境影响评价信息情况。首次公开环境影响评价信 息至今,建设单位和环评单位均没有收到公众反馈的意见。

在报告书征求意见稿完成以后,建设单位在贵州大龙经开区管委会上进行公示,网络公示时间为 2025 年 8 月 18 日~2025 年 9 月 1 日,共 10 个工作日。并同步在周边的村庄进行了张贴公示。同时为方便当地村民了解项目信息,建设单位选取铜仁日报进行公示,公示日期分别为 2025 年 8 月 26 日及 8 月 27 日。环境影响报告书(征求意见稿)纸质版查阅地点设置在贵州新铂材料科技有限公司厂区内。目前暂无查阅。环境影响报告书(征求意见稿)公示至今,建设单位和环评单位均没有收到公众反对的意见。

10.11 综合结论

本工程建设符合国家产业政策及相关规范性文件要求,生产过程有完善的污染防治措施,其在正常工况下外排污染物能够达到国家规定的排放标准。对评价区的大气环境、水环境、声环境、土壤环境及生态环境质量的影响可以接受。公众均支持本项目的建设。本工程在建设和运行过程中,在严格执行"三同时"制度、"环境影响评价"制度、落实报告书中提出的各项污染防治措施及风险防控措施,从环境影响角度分析,本工程建设是可行的。

10.12 建议

- (1) 注重污染处理设施设备的维护与保养,使其保持最佳的工作状态和处理效率,防止非正常排放事故的发生。制定好工程不稳定生产状况时和主要污染治理设施故障时的应急方案与措施,以便一旦发生时能及时有效地控制污染物产出与排放,确保将对环境的不利影响控制到最小程度。
- (2) 项目应加强环保机构建设,配置必要的监测仪器设备,监督环保设施正常运行。以确保各类污染物达标,并掌握厂区周围环境质量水平和污染变化趋势,全面

提高环境管理水平,以控制各污染物达标排放,最大限度的杜绝事故尤其是风险事故的发生。

- (3) 加强管理,严格按操作规程,定期或不定期对生产设备和除尘设备进行清扫和维护,提高各种设备的运转率,使之尽可能达到设计性能。
 - (4) 为使本项目建设工程得以可持续发展,建议加强厂区绿化建设。

环评委托书

贵州汇景森环保工程有限公司:

根据《中华人民共和国环境影响评价法》、《建设项目环境保护管理条例》(国 务院第 682 号令)和环境保护部公布的《建设项目环境影响评价分类管理名录》 有关规定,我单位<u>稀贵金属资源循环利用项目</u>,需要编写环境影响<u>报告书</u>, 现委托贵单位进行环境影响评价工作。

特此委托!

委托单位: 贵州新铂材料科技有限公司

2025年6月17日

贵州省企业投资项目备案证明

项目编码: 2505-522291-04-01-779012

项目名称:稀贵金属资源循环利用项目

项目单位:贵州新铂材料科技有限公司

社会统一信用代码: 91520690MAE7L4DL9M

建设地址: 大龙经济开发区北部工业园

建设性质: 新建

建设工期: 24个月

建设规模及内容·主要建设熔炼厂房、富集厂房等生产配套设施,年利用5000吨赤铁矿及3000吨失活催化剂

,年产金及铂族金属(铂、钯、铑、铱、钌、锇等)9.7吨,银粉6吨。

有效期至: 2027 年 5 月 23 日

时四和关·贵州大龙经济开发区经济发展局(科

学技术局

项目总投资: 63600万元

2025年5月23日

提示:备案证明有效期为两年。项目两年内未开工建设且未办理延期的,备案证明自动失效。项目在备案证明有效期内开工建设的,备案证明长期有效

贵州新铂材料科技有限公司稀贵金属资源循环利用项目 与贵州省生态环境分区管控的关系说明

生态环境分区管控包括生态保护红线、环境质量底线、资源利用上线和生态环境准入清单,是推进生态环境保护精细化管理、强化国土空间环境管控、推进绿色发展高质量发展的一项重要工作,贵州省人民政府在2024年印发了《关于印发贵州省生态环境分区管控方案的通知》(黔府办函〔2024〕67号)。

以下是对贵州新铂材料科技有限公司稀贵金属资源循环利用项目与生态环境分区管控的符合性进行分析。

- 一、本项目涉及1个重点管控单元,见图1,管控要求见附表。
- 二、本项目不涉及生态保护红线,见图 2。
- 三、本项目不涉及一般生态空间,见图3。
- 四、本项目不涉及饮用水源保护区。

图 1 项目与环境管控单元关系

图 2 项目与三区三线-生态保护红线关系

图 3 项目与一般生态空间关系

附表 环境管控单元及管控要求表

	T	1		77 170 170 170 170 170 170 170 170 170 1
环境管控 单元编码	环境管控 单元名称	管控单 元分类		环境管控要求
ZH52062220002	贵州大龙 经系开发 区重点管 控单元	重点管控单元	空间布局约束	1.执行贵州省及铜仁市水要素普适性要求。 2.大气环境高排放重点管控区执行省、市普适性总体管控要求。 3.禁止在现有企业环境防护距离内再规划建设集中居民区、学校、医院等环境敏感目标。 4.舞阳河及其支流车坝河等地表水源及其两侧控制区为禁止建设区。 5.居住用地与工业用地间应设置生态隔离带。邻近居住用地的地块不宜布置有机废气排放易扰民的项目。 6.禁止在饮用水水源一级保护区内新建(改建、扩建)与供水设施和保护水源无关的建设项目;禁止在饮用水源二级保护区内新建(改建、扩建) 排放污染物的工业企业建设项目。 7.在开发区主城区禁止新建燃煤发电项目和新建、扩建铁合金建设项目。 ⑧加大企业环评审批力度,凡涉锰涉汞企业落户铜仁必须报经市委、市政府研究同意,各区(县)不得新增涉汞涉锰矿山开采企业,已获得开采权的,到期后一律不得延期,各地要严格执行铜仁市汞锰行业高质量发展规划,严格落实环保要求,倒逼企业转型升级。以大龙开发区为重点,从源头上控制和规范有色矿产资源开发和冶炼。鼓励和引导汞锰企业进行升级改造或对企业重组,对不符合产业政策、污染严重的落后生产工艺、技术和设备要按期坚决予以淘汰。优先发展低耗能、低水耗、低污染、高效益的产业,鼓励和支持新材料、新能源等产业集群发展。
			污染物排放管控	1.执行贵州省及铜仁市水要素普适性要求。 2.对新建排放气态汞的企业应进行定期监测,确保废气达标排放。 3.对涉汞企业加强污染源监控,减少企业废气中汞等重金属的排放量。 4.在开发区具备锰渣处置能力前或处置方案不可行,禁止新(扩建)排放锰渣建设项目;在缺乏危险废物安全处置设施或未落实有资质的危险废物处置接收单位前,禁止新建、扩建和改建(新增危险废物)排放危险废物的建设项目。

	5. 大龙污水处理厂实施提标改造,出水水质达到《城镇污水处理厂污染物排放标准》
	(GB18918-2002) 中表 1 一级 A 标准要求。
	6. 加快推进建设开发区工业固体废物公共渣场;解决贵州重力科技有限公司含汞冶炼
	渣处置问题。
	7.工业生产废水必须经处理达到要求后方能进入工业废水集中处厂理进行处理。对水
	质、水量能满足工业废水处理厂正常运行的,采取完善管网,做到全收集,确保稳定运行,达
	标排放。对水质、水量不能满足工业废水处理厂正常运行的,采取修建分散式污水处理设
	施,确保设施正常运行,达标排放。
	1.执行贵州省及铜仁市土壤普适性管控要求。建立城市重污染天气预警制度。
	2.强化大龙经济开发区规划跟踪评价和建设项目后评价,对长期性、累积性和不确定
	性环境影响突出,规划有重大变化,有重大环境风险或者穿越重要生态环境敏感区的重大
	项目,应积极开展环境影响跟踪评价和后评价,并据此强化后续环境管理。
	完善环境风险防控体系。
	3.全面落实园区、企业环境风险应急预案各项要求,增强突发环境事件处置能力。开
	│ │展涉危涉重涉化企业、有风险隐患的渣场等风险排查和整改工作,及时消除隐患,按要求
环境风险防控	建设园区隔离带、绿化防护带和风险事故水池等设施,园区与企业之间要强化应急联动,
	形成多级环境风险管控体系。
	4.落实舞阳河流域水环境应急风险防范措施: (1)切断源头。(2)采取拦截吸附等
	措施。(3)将舞阳河干流的罗家寨电站进行落闸,若污染团已进入舞阳河干流,则直接
	使用坝式水电站将污染团拦截至坝中,防止发生跨界污染。(4)做好突发环境事件应急
	监测工作。(5)做好舆情控制监控工作,及时公布突发环境事件及应急处置情况。完善
	流域环境监管制度,构建环保、司法部门联动机制。落实舞阳河环境应急"一河一策一
	图",落实环境应急措施,储备应急物资,有效提升应急处置能力。
资源开发效率要求	执行铜仁市资源开发利用效率普适性要求,万元国内生产总值能耗下降比例 13%。

贵州省环境保护厅

黔环函[2011]210号

关于贵州大龙经济开发区总体规划(2011-2030) 环境影响报告书的审查意见

大龙经济开发区管委会:

2011年6月14日,我厅在贵阳市主持召开了《贵州大龙经济开发区总体规划(2011-2030)环境影响报告书》(以下简称《报告书》)审查会。由有关部门代表和特邀专家共16人(名单附后)组成的审查小组对《报告书》进行了审查。根据审查小组审查结论,现提出如下审查意见:

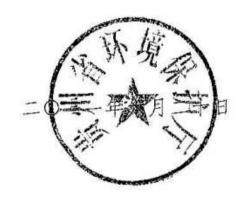
一、贵州大龙经济开发区位于铜仁地区玉屏县大龙镇 北面,是贵州省 17 个循环经济实验区之一,成立于 1999 年,规划面积 106.63km²,规划范围包括大龙工业集聚区和大 龙镇镇域及田坪镇部分用地。该开发区目前已形成能源、 冶炼、化工、建材四大支柱产业,成为铜仁地区新兴的经 济开发区、出口创汇基地、火电能源中心、循环经济生态 经济开发区和黔东物流中心。该开发区的功能定位为: 黔 东地区宜居宜业示范新城、黔湘渝地区资源深加工及能源 基地、玉铜松循环经济带上产业引擎、黔湘渝地区现代物 流中心、黔东区域综合性门户地区。工业集聚区重点发展 产业主要包括新型材料、化工、冶金、劳动密集型产业等。规划时限:近期 2011-2015 年,中期 2016-2020年,远期 2021-2030年。

二、《报告书》在环境现状调查与评价的基础上,对规划实施的主要环境影响和资源环境制约因素进行了识别;预测和评价了规划实施可能对区域生态、地下水、地表水、大气及其重要环境保护目标等的影响;开展了资源环境承载能力和环境容量分析、规划的环境合理性分析、困难和不确定性分析等;进行了环境风险评价以及公众参与等工作;提出了环境管理、监测与跟踪评价的相关要求;提出了规划的优化调整建议以及预防或减缓不良环境影响的对策与措施。《报告书》内容较全面,评价方法较适当,环境影响预测结果基本准确,提出的不良环境影响预防或减缓对策措施基本可行,评价结论总体可信。

三、从总体上看,该规划符合贵州省"十二五"经济和社会发展规划,符合贵州省"十二五"产业园区发展规划,符合铜仁地区和大龙经济开发区等地方经济和社会发展、环境保护等相关规划。在依据《报告书》结论和审查小组意见进一步优化规划方案,并全面落实各项环境保护对策与措施的基础上,可有效预防和减轻规划实施可能带来的不良环境影响。

四、规划在优化调整和实施过程中应重点做好以下工作:

(一)严格环境准入,推行清洁生产,实行总量控制。入区项目应优先符合产业政策和环境保护的要求,应立足区域资源优势和环境容量现状,立足加速发展、加快转型、推动跨越的要求,立足循环经济、扶优劣汰和节能减排的理念,进一步优化规划的产业定位、布局和产业链


设计,最大限度的充分利用资源和减少负面效益,实行淘汰落后和区域削减计划,着重发展高产值、高附加值、低能耗、低污染的项目,着力打造高标准、高准入的循环经济产业园区。

- (二)应高度重视与湖南省际交界的敏感性,加快开发区污水处理厂及管网等环境基础设施的设计和建设,加强对现有企业的污染治理和环境监管,建立并落实开发区环境风险三级防控体系,并进一步明确废水回用及固体废物的综合利用方案。
- (三)应充分考虑开发区与玉屏县、大龙镇城镇发展规划的协调,合理确定功能分区,结合当地新农村建设相关规划,进一步优化城镇的发展和布局,受影响的文物保护单位等敏感目标应积极采取避让措施予以保护,居民等敏感目标应随开发建设进度及时进行搬迁安置,同时妥善解决好失地农民再就业问题。
- (四)合理规划入区项目的占地及平面布置,提高开发区的土地利用效率,合理利用土地资源。
- (五)规划取水方案应与舞阳河水资源配置方案相协调。
- (六)加强对地下水的跟踪监测,确保规划实施后不对地下水造成影响。
- (七)应高度重视现状监测中汞超标的问题,积极采取有效措施,避免可能引发的土壤和食品安全问题。
- (八)规划实施后,每隔五年左右进行一次环境影响 跟踪评价,在规划修编时应重新编制环境影响报告书。

五、规划中所包含的近期建设项目,在开展环境影响评价时,需重点论证项目实施对大气环境、水环境、生态环境及其环境敏感目标的影响,论证可能产生的重金属、氟化物等特征污染影响等,并对其影响的方式、范围和程

度作出深入评价,充分论证方案的环境合理性,强化环境 保护措施的研究与落实。

附件:《贵州大龙经济开发区总体规划环境影响报告 书审查小组人员名单》

主题词: 环保 规划 环评 审查意见

抄报: 省发展和改革委员会、省经济和信息化委员会、省国土资源厅、省住房和城乡建设厅、省水利厅,铜仁地区环保局,大龙经济开发区环保局,省环科院

贵州省环境保护厅办公室

2011年6月20日印发

共印 25 份

贵州省环境保护厅

黔环函〔2018〕230号

贵州省环境保护厅关于贵州大龙经济开发区总体规划(2011-2030)环境影响跟踪评价报告书建议的函

贵州大龙经济开发区环境保护局:

你局在《贵州大龙经济开发区总体规划(2011-2030)》 (以下简称《规划》)实施过程中,依据规划环评法律法规以及我厅对《贵州大龙经济开发区总体规划(2011-2030)环境影响评价报告书》的审查意见(黔环函〔2011〕210号)要求,积极开展规划环境影响跟踪评价工作,组织编制了《贵州大龙经济开发区总体规划(2011-2030)环境影响跟踪评价报告书》(以下简称《跟踪评价报告》),并于2018年4月18日通过我厅组织的专家论证。根据专家论证意见(见附件)。现就规划实施中的环境保护工作提出如下意见和建议:

一、基本情况

贵州大龙经济开发区(以下简称"开发区")于1999年经贵 州省人民政府批准设立,2005年省发展改革委确认为省级循环 经济工业基地,2014年被国家发展与改革委员会和财政部确定 为国家级循环化改造试点园区。2011年5月大龙经济开发区管 理委员会编制了《贵州大龙经济开发区总体规划(2011-2030)》; 2011年5月贵州省环境科学研究设计院编制了《贵 州大龙经济开发区总体规(2011-2030)环境影响跟踪评价报告 书》: 2011年6月我厅以《关于贵州大龙经济开发区总体规划 (2011-2030) 环境影响报告书的审查意见》 (黔环函 [2011] 210号)对规划环评出具了审查意见。根据开发区规划及规划 环评审查意见,开发区规划范围总面积 106.63km2,涉及大龙镇 和田坪镇, 其中循环经济工业集聚区规划面积 53km², 开发区 规划主导产业主要为新型材料、冶金、化工、劳动密集型产业 等。原规划将工业集聚区划分为8个产业园,承担不同的产业 分工。其中循环经济产业园布置在开发区西部,以锰、钡产业 为主导,大力发展矿产资源深加工,延伸产业链条,消化、吸 收主导产业的副产品、废弃物;能源产业园依托贵州华电大龙 发电有限公司,在濒阳河南侧形成发电能源基地;新材料产业

因紧邻循环经济产业园,以锰、钡为原料的新型材料工业;高新产业孵化园位于规划区的西北部,以科技为主题,搭建专业化研发平台、规模化投融资平台、高端型人力资源平台;轻工产业园位于开发区北部,重点发展机械制造、汽摩配件、小型五金、服装加工、制鞋、农产品深加工、畜牧产品深加工等;区域联动物流产业园位于大龙火车站和铜大高速公路北出口附近;综合配套产业园位于开发区中部,主要为整个园区的产业的发展提供综合配套支撑与服务;综合战略产业园位于开发区的南部,主要布置综合战略性产业。

2011年以来,大龙经济开发区管委会对开发区进行三次规划,在发展目标总体确定为为宜居宜业的黔东工业集聚区,在功能定位上基本保持新能源、新材料、化工及装备制造的资源深加工产业基地及黔东现代物流中心;产业定位有所变化。主要是以煤电一体化为核心,重点发展煤电一体化项目。在冶金产业等基础上发展能源产业集群,化工产业则升级至精细化工、产业发展呈现集群化、精细化态势,开发区企业分布由检散往紧凑型发展。新入驻企业向北部工业园区安置,工业企业与居住功能区分离,大龙镇区呈提升居住功能、工业去化态势,有利于降低工业企业对人群居住环境造成影响的程度。目

前开发区主导产业以精细化工,新能源、新材料为主。

二、论证意见

《羅蘇评价报告》对大气、水、声环境、土壤环境现状监测均符合跟踪评价要求,环境质量跟踪评价表明,《规划》实施以来区域环境质量总体可以消足功能区划要求。但在局部存在污染问题有待解决。《跟踪评价报告》在梳理《规划》实施进展、调查分析区域环境质量变化及成因的基础上。对《规划》环保对策措施的有效性进行了分析。从加强空间管制、总量管控和环境准入等方面提出了《规划》实施的优化调整建设、"三线一单"及整改要求。《跟踪评价报告》符合《规划环境影响评价条例》对跟踪评价的要求,跟踪评价工作将为进一步优化《规划》实施,加强环境保护管理、推进资源开发与生态环境保护协调发展发挥积极作用。

三、意见和建议

(一)产格保护生态空间,引导优化规划布局,开发区根 据发展的实际情况,对产业定位及布局进行了优化,2011年以 来产业布局的调整,一方面缩减了用地范围,另一方面污染型 产业从车坝河、海阳河等环境敏感区域退出,在产业布局上, 当前大龙镇区的冶金产业将实施搬迁升级改造,大龙镇区保留 以大龙华电集团为核心的发展热能回收综合利用、热蒸汽集中供应为主导的热电联产新能源产业集聚区,以及区域仓储物流服务中心,大龙镇区呈提升居住功能、工业去化态势,规划将新材料、化工等工业向海阳河左岸集聚,开发区产业布局持续优化,总体上有利于开发区环境保护工作的开展。但规划区未来发展中,需要进一步优化能源产业的布局。以大龙华电集团为核心构建的电力直供与煤炭、冶金、化工、建材等行业联营的电气一体化能源产业,规划输热半径过大存在较大热损失,对煤电锰、煤电铝、煤电纺一体化产业集聚区发展产生不利影响,此外,煤电化一体化循环经济项目位于大龙镇区上风向,项目运行后影响范围较广,对大龙镇区的环境空气质量造成一定的影响。

开发区应按照"布局优化、企业集群、产业成链、物质循环、集约发展"的要求,以"煤电锰、煤电铝、煤电纺、电气化"四个重点一体化项目为依托,推进新建、搬迁企业和项目园区化、集聚化发展,将开发区分布散乱的铁合金等冶金企业、纳入煤电一体化框架,通过循环经济改造,加强各企业内部及企业之间物质联系,延长、延伸产业链,提高资源利用效率,在开发区已取得的成果基础上,进一步促进产业集群发展。同

时,结合四个重点一体化项目的产业特点,大力发展新能源电池、清洁煤电、新能源材料回收再利用等产业体系,可以构筑社会化、多元化、市场化的新能产业发展模式。

(二)树立生态发展的规划理念,严控开发区的开发建设范围。严禁占用生态保护红线范围内的土地。其他生态空间以保护和恢复植被为重点,防范区域生态风险。根据合理发展需求,进一步调控生产、生活空间范围,坚持集约发展。在舞阳河岸边带、沟渠与水体连接处,修建大型区域性湿地,采取生态护岸、生态雨水沟、生态湿地等措施,在企业污染源与受纳水体之间增加一道水环境保护缓冲区域。

(三)强化区域相关行业污染物治理,降低环境影响范围和程度。开发区规划建设污水处理厂3座,目前开发区建成1座污水处理厂,污水收集管网不完善,连通系统不健全,污水处理厂未能实现长期稳定运行。开发区企业对生产废水及生活污水分散治理,处理出水水质普遍不能满足综合排放标准要求,特别是涉重金属建设项目在环评阶段,大多采用生产废水"零排放"方案,批复项目生产废水"零排放"因成本太高而难以落实;对部分涉重治理项目,如蔡溪渣场渗滤液治理工程,因多种制约因素导致建设进度滞后。开发区内主要河流躌阳河以

及其他支流车坝河、高桥河、廖溪河、大坝河、车坝河水环境质量尚能满足水功能区划要求。但支流蔡溪污染严重、COD、 氨氮等因子超标,开发区须根据此次环境影响跟踪评价报告书制定的水污染物减排实施方案,强化落实,改善和提高区域水环境质量。

火力发电和铁合金企业等标排放负荷比约占开发区总排款量的 90%。贵州华电大龙发电有限公司废气 2014 年至 2017 年废气主要污染物频繁超标,有关大气污染环保投诉较多; 大龙银星汞业及重力科技废气中含汞化合物均存在超标现象。 华电大龙电厂位于大龙镇区,受影响居住区较大,加强区域废气污染治理的任务十分紧迫。开发区应加快大龙镇区铁合金企业升级改造工作,同时结合华电大龙电厂超低排放改造,进一步强化区域大气环境管控。并根据开发区的气象条件和环境质量变化情况,优化布局方案,避免高架排放源布局在大龙镇区上风向,以改善大龙镇区空气环境质量。

2011 规划环评期间及本次跟踪评价期间开展的土壤质量监测结果表明,开发区土壤镉、镍、汞等重金属含量未达到《土壤环境质量标准》(GB15618—1995)二级标准要求、尤其录含量超标严重,2011年超标倍数在1.6—3.4之间,2016年超标

倍数在 0.6—9.0 倍之间,与原规划环评相比,土壤中汞含量有 所避知开发区应开展源头治理,降低含汞化合物排放,同时, 建议开发区对区域土壤环境质量做进一步详查,研究不同区域 土壤利用功能、并开展相应的土壤环境修复。

根据《贵州省第一批一般工业废物公共贮存、处置场选址 规划报告》大龙经济开发区工业固体废物公共造场场址位于开 发区湾里场址、目前,开发区尚未完全解决危险废物处置问 题,考虑未来发展趋势,开发区危险废物处置需求将逐步增 大、建议以开发区自建危险废物安全处置设施为主要的解决方 案,在自建设施投运之前,建设规范危险废物贮存设施,并与 有资质单位签订协议,及时清运危险废物。

(四)严格项目环境和行业准入要求。按照产业政策和环境准入负面清单引进企业,对不符合准入条件的企业不得入驻开发区;严格按照环境容量制定引进计划,提高外排污染物排放标准,限期完成强制性清洁生产审核促进企业经济效益与环境协调发展。同时,优化能源结构,积极采用清洁能源。生产能源应优先使用电能、天然气;在保证污染物的达标排放的基础上、降低能耗、物耗,提高物料制用率,进行中水迥用,积极开展废弃物资源化利用,全面提高区域企业清洁生产水平。

(五)和快建设开发区环境监测体系。建立和完善环境空气、地表水、地下水、声、生态、土壤等环境质量长期监测监控体系、明确工作任务、责任主体、实施时限等。针对可能出现的大气环境影响、地表水环境影响、地下水环境影响、植被送化等建立预警机制。

(六)落实规划环评及跟踪评价提出的环保要求,提高环保对策措施的有效性。开发区须加快环保基础设施的建设,按照到排工期、倒排时间的方式,尽快完成开发区配套污水管网的建设;同时,加强生产废气的污染防治措施的落实,从源头上降低污染物的排放;强化对重点污染源及特征污染物排放量较大的企业的监督与管理,各企业应加强污染物控制力度。重点加强水环境、大气环境和土壤环境污染防治、生态保护与修复、环境风险控制能力和应急响应能力的建设等工作。

四、环境责任

在规划发展决策中,进一步提高认识,自觉履行环境保护 责任、动态跟踪《规划》环境影响和区域环境质量变化趋势, 实施最严格的环境保护制度,以环境质量改善为前提推进绿色

抄送: 省发展改革委、省经济和信息化委、省国土资源厅、省住房城乡 建设厅、省水利厅、省商务厅、铜仁市人民政府、铜仁市环境保 护局,贵州大龙经济开发区管委会,中国电建集团贵阳勘测设计 研究院有限公司。

贵州省环境保护厅办公室

2018年6月28日印发

共印 15 份

建设项目环境影响报告书审批基础信息表

填表单位(盖章):

患州新铂材料科技有限公司

填表人(签字):

项目经办人(签字), 如 李 并

							2	5MI-			7 .	PH	
	Victoria de la composición della composición del	项目名称		稀贵金属资	资源循环利用项目	. //						0 - 1	
		项目代码		2505-522	291-04-01-779012	11	建设	内容	对购置用地上的5栋	F厂房进行改建,分别	改建为富集车间1栋、铂钯精划 栋,并在车间内配套建设相应的	族车间1栋、铑铱精炼车间1栋、生产组 4公益设施及环保工程设施	综合配套车间1栋、甲类仓
	¥	F评信用平台项目编号		SH	9qps9q						16,7F1工十四F9配备建议10应证	7公神仪尼及平床工柱仪尼	
		建设地点		贵州省大龙经	齐开发区北部工业园		建设规模		年利用赤铁矿(高冰镍浸出渣)5000t/a(干基)、废催化剂3000t/a(干基)				
	1	项目建设周期 (月)			9.0		计划开工时间		2025年12月				
	Ŧ	F境影响评价行业类别	四十七、生	态保护和环境治理业 10	1.危险废物(不含医疗废物) 利用及处置	预计投	产时间	2026年8月				
建设		建设性质		新廷	! (迁建)		国民经济行业	上类型及代码	【N7724危险废物治理业】				
项目		操排污许可证或排污登记表编 号(改、扩建项目)			现有工程排污许可管理类 别(改、扩建项目)		项目申	请类别			新申报項	5月	
		规划环评开展情况			有		规划环记	平文件名		《贵州之	大龙经济开发区总体规划(2011-2030)环境影响报告书》		
		规划环评审查机关		贵州省	环境保护厅		规划环评审	遊 意见文号	1110		黔环函 [201]	1]210号	
		建设地点中心坐标 (非线性工程)	经度	109.007936	纬度	27.341262	占地面积(平方米)	63280	环评文件类别			环境影响报告书	
	建设	ł 地点坐标(线性工程)	起点经度		起点纬度		终点经度		线点纬度		工程长度(千米)		
		总投资 (万元)		6.	3600.00		环保投资	(万元)	373	2.00	所占比例(%)	5.87	
950					法定代表人	朱建刚		单位名称	贵州汇景森环	保工程有限公司	统一社会信用代码	91520198MA6GI	R5YJ55
		单位名称	#P.WACKA++	料科技有限公司					姓名	邢伟			
建设单位		单位 養粉	页州新田村	科科技有限公司	主要负责人	郑章进	环评 编制	编制主持人	信用编号	BH071682	联系电话	187 7	
击 JT		统一社会信用代码 (组织机构代码)	915206901	MA6DN9UL21	联系电话	187 9	单位		职业资格证书 管理号	035202405520000 0002	00		
		通讯地址	步	贵州省铜仁市大龙经济开	发区2号干道与1号干道交汇	处		選讯地址	贵州名	省贵阳市贵阳国家高	高新技术产业开发区长岭街i	道黔灵山路357号德福中心A5栋2单	单元4层5号房
		污染物	现有工程 本工程 (已建+在建) (拟建或调整变更)						总体工程 (巴建+在建+拟建筑;	网络变更)			区域削減量来源(日
		179640	①排放量 (肫/年)	②许可排放量 (吨/年)	③預測排放量 (吨/年)	④"以新带老	!"削減量(吨/年)	⑤区域平衡替代本	工程削減量(吨/年)		測排放总量 (吨/年)	⑦排放增減量 (吨/年)	省级审批项目)
		废水量(万吨/年)	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
		COD	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
		製策	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
		总确	0.000	0.000	0.000		0.000		0.000		0.000		
		農飯	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
	废水	報	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
		聚	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
污		辆	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
染物		路	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
物		类金胤砷	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
排放		其他特征污染物	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
量		废气量 (万标立方米/年)	0.000	0.000	0.000		0.000		0.000		0.000	0.000	
		二氯化硫	0.000	0.000	5.953		0.000		0.000		5.953	5.953	
		氨氯化物	0.000	0.000	13.313		0.000		0.000		13.313	13.313	
		顆粒物	0.000	0.000	6.050		0.000		0.000		6.050	6.050	
	NOX ANY	揮发性有机物	0.000	0.000	1.501		0.000		0.000		1.501	1.501	
	废气	铅	0.000	0.000	0.053		0.000		0.000		0.053	0.053	

CO STO	181528	2016/2	汞	0.000	0.000	0.000		0.000		0.000		0.000		0.000			
			福	0.000	0.000	0.000		0.000		0.000		0.000		0.000			
			铬	0.000	0.000	0.000		0.000		0.000		0.000		0.000			
			类金胤碑	0.000	0.000	0.010		0.000		0.000		0.010		0.010			
		其作	地特征污染物	0.000	0.000	0.000		0.000		0.000	L m Tro	0.000		0.000			
			一影响及主要措施	生态保护		S称	级别	主要保护对象(目标)	工程影响情况	是否占用	占用面积 (公顷)		生态防护	P.措施			
			日标 生态保护红		(P	'增行)		S. Fred. V.D.V.				□避让 □缓 补□	重建了(多选)				
			自然保护区		(増行)		1	核心区、缓冲区、实验区			口避让 只缓 补口	】 重建(多选)				
页目涉及为 见规定的(保护区		饮用水水源保护区	(地表)	(<u>n</u>	増行)		Ī	一级保护区、二级保 护区、准保护区			口避让 口线级 补口	重建 (多选)	重建(多选)			
情况	t		饮用水水源保护区	(地下)	(P	(増行)		1	一级保护区、二级保护区、准保护区	4:		口避让 口线缓补口	重建 (多选)				
			风景名胜[2		(7	(增行)		1	核心景区、一般景区			一避让 一或级 补门	重建"(多选)				
			其他			-4177						一避让 一成缓补门	重过(多选)				
			24/10			主要原*	4						主要燃料				
		序号	名	称	年最	大使用量	il s	单位	有毒有害物质2	及含量 (%)	序号	名称	灰分(%)	磁分(%)	年最大使用	计量单位	
	100	1	赤铊	ŧ at⁺	. 60	97.56		t/a			1	天然气			138.21772	万m3/a	
主要原料	及鐵料	2	失效汽车屏			1000		t/a									
信息		3	含铑均标	Contract to Contract to		100		t/a									
		4	废铂系催化剂			1000		t/a									
		5	废钯系催化剂	The Mary Control of the Control of t		600		t/a									
		6	皮铂钯催化			300		t/a									
		0 及年	1及 知此 1座 10 //	W MAINTAIN VI	NO CT 4E7		污染防治设施工艺			*设施			污 者	2物排放			
		序号(编	排放口名称	排气簡高度		73ж974 Сль 1					All-AA-Series / Strains	排放速率		T			
		号)	NAME AND	(米)	序号(编号)	名称	污染防治设施处理 效率	序号 (编号)	名称	污染物种类	排放浓度(毫克/	(千克/小时)	排放量(吨/年)		排放标准名称		
							99%			颗粒物	120	0.349	1. 944				
							20%		1	氮氧化物	240	1. 461	7. 11	《大气污》	&物综合排放标 16297-1996)	示准》(GB	
							90%			二氧化硫	550	0. 757	3. 739	4	10297-19907		
							99%			五氧化二磷	15	0.00016	0.001				
							80%			氟化氢	6	0.021	0. 02	《工业炉窑	大气污染物排) 9078-1996)	放标准》((
							99%			砷	1	0.002	0.01		/		
							99%	MF0005	矿热电炉	镍	4. 3	0. 00007	0.0004	《大气污	染物综合排放 16297-1996)	标准》(GB	
		1	DA001	32		表冷+布袋除尘器+破液吸	99%		1	钴	1	0.00001	0. 00007		1		
		1	DAGGI	32		收系统 (两级破液吸收)	99%			铜	1	0.0005	0. 0026				
	有组织						99%			锰	5	0. 00025	0.0004	《大气污	染物综合排放		
	排放			-			99%			铅	0.7	0.011	0.052		16297-1996)		
	(主要						99%			锑	1	0. 0007	0.003	_		23.000	
	排放口)						99%			锡	8, 5	0.0007	0, 0034	- 《大气污	染物综合排放		
	11/						99%			镉	0.85	0.0000004	0.000002		16297-1996)		
			1]	99%			铬	1	0.00006	0.00016	U DANSIO IVIIIV	/		
							98	MF0010	浸出槽	硫酸雾	20	0.034	0. 165		学工业污染物 GB 31573-201		
	155						90%			氯化氢	10	0, 022	0.031	-	GD 31313-201		
	0.5						99%			颗粒物	20	0, 114	0. 531 5. 316	-			
							40%			氦氧化物	250	1. 136		\dashv			
	1					-	80%			二氧化硫	80	0.775	2. 145 1. 312	-			
	1 3 3		1			一种中 本井村村 (CN/CD	1]		一氧化碳	80	0. 342	1. 312				

	类	AND DESCRIPTION OF THE PERSON NAMED IN		N. Carlotte Co.	ROLL OF THE ROLL O				产生量			自行利用	自行处置 是否外委			
接排 放)	非一															
	。三	(編号)	排放口名称		污染防治设施工艺	污染防治设施处	上理水量(吨/小时)	名称	功能类别	污染物种类	排放浓度(毫克/升)	排放量(吨/年)	排放标准名称			
总排法	14	序号(编				100 05 05 VI 10 05 V		受纳;	水体			污染物排放				
										Zn	1					
									1000000 10 A ST TO TO ST	Cu	0.5		1			
"		1 WUU1	污水处理均排放口		WITELT REDUCTOR SERVICE	2040	司污水处理站		31573-2015	As	0.3		31573-2015			
口)放)	School Services	TWOOL	污水处理站排放口		调值+混凝沉淀+絮凝沉淀	2040	中伟新材料股份有限公	,	无机化学工业污染 物排放标准GB	Co Pb	0.5		无机化学工业污染物排放标准G			
											1		-			
与排放 总排] 息(主 口(放向				3					Ni	0.5					
污染治		(編号)	排放口名称		污染防治设施工艺	水量(純/小时)	名称	编号	放标准名称	污染物种类	排放浓度 (毫克/升)	排放量(吨/年)	排放标准名称			
		序号							运热防治心体外理	受纳污水	处理厂		污染物排放			
生产		(编号)	排放口名称		废水类别	序号(编号)	名称	污染治理设施处理水	推放去向	污染物种类	排放浓度 (業克/升)	排放量(吨/年)	排放标准名称			
		欧是					污染防治设施工艺					污染物排放				
	2				罐区				1		《无机化学工业	z污染物排放标准》(G	B 31573-2015)			
									12		-		示准》(GB 31573-2015) 排放			
						B 31573-2015)										
			1 富集车间 報													
			1						0.04							
									0.24							
									0.006							
13F/D	DX.															
			1		實集车间					ľ	《大气污染物综合排放标准》(GB 16297-1996)					
			I													
			1													
									A 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10							
			1													
								颗粒物	1							
			7.9		And and the Andrew H	70		污染物种类	(確克/立方米)			排放标准名称				
			序号		无组织排放源名	4 /a			排放浓度	污染物排放						
						99%			五氧化二磷	15	0.01	0. 012				
						95%			氟化氢	2	0.002	0.004				
						80%			二噁英	0. 5ngTEQ/Nm ³	1. 907E-09	9. 782E-09				
					ツ か	99%			铅	0.5	0.00008	0.000004				
性息					式换热器+破液喷淋塔 	+水 99%			铬	0.5	0.000001	0. 000005	(0518484-2020)			
理与排		2	DA02	35	干式反应塔+布袋除尘	+板 98%	MF0006		非甲烷总烃	120	0, 006	0.013	《危险废物焚烧污染控制标准》 (GB18484-2020)			
气污染		2	^ 1		脱硝)+半干式急冷塔	+半 90%			氯化氢	50	0. 237	0. 424	# 45 MA 145 MA 15 15 15 15 15 15 15 15 15 15 15 15 15			

		1	赤铁矿废破损吨	原辅料包装	1	900-099-859	2.3	一般固废暂存间	/	/	/	是
		2	辅料废吨袋	原辅料包装	1	900-099-859	16.71	一般固废暂存间	/	/	/	是
		3	其他包装物	原辅料包装	1	900-099-S59	599a5505个/a	一般固废暂存间	7	/	/	是
		4	浸出渣	盐酸浸出	1	261-013-S16	0.86	一般固废暂存间	1	送至矿热电炉	/	否
		5	失效汽车尾气催 化剂外壳	预处理	1	900-099-S17	167	一般固废暂存间	7	/	7	是
		6	水淬渣	火法富集	1	900-099-S01	11725.77	一般固废暂存间	1	/	1	是
	一般工	7	废石墨电极	火法富集	1	900-099-S59	14	一般固废暂存间	1	1	1	是
	业固体	8	不溶渣	铂钯预处理工序	1	900-099-859	2	一般固废暂存间	1	进铑铱预处理工序	1	否
	废物	9	不溶渣	铂精炼工序	1	900-099-859	0.5	一般固废暂存间	1	送至矿热电炉	1	否
		10	置换渣	铂精炼工序	1	900-099-859	1	一般固废智存间	1	送至矿热电炉	1	否
		11	置换渣	铂精炼工序	1	900-099-859	1	一般固废暂存间	1	进铑铱预处理工序	1	否
		12	不溶渣	铂精炼工序	1	900-099-859	0.1	一般固废暂存间	1	进铑铱预处理工序	1	否
固体废物		13	不溶渣	铑铱分离工序	1	900-099-859	17.81	一般固废暂存间	1	进铑铱预处理工序	1	否
信息		14	置换渣	铑铱分离工序	1	900-099-859	0.32	一般固废暂存间	1	送至矿热电炉	1	否
		15	过滤渣	铑铱预处理工序	1	900-099-859	3	一般固废暂存间	1	送矿热电炉	1	否
		16	过滤渣	铱精炼工序	1	900-099-859	0.1	一般固废暂存间	1	送至矿热电炉	/	否
		17	置换渣	铱精炼工序	1	900-099-859	0.3	一般固废暂存间	1	送至矿热电炉	1	否
		18	过滤渣	铑精炼工序	1	900-099-859	1.5	一般固废暂存间	1	送至矿热电炉	1	否
		. 1	废耐火材料	回转窑	T	722-003-18	0.15			/	1	是
		2	铜镍渣	铂钯预处理、铑铱预处理	Т	261-087-46	17.5]		送矿热电炉	. /	否
		3	压滤渣	除重、絮凝沉淀	T/In	772-006-49	763	1		送矿热电炉	. 1	否
		4	废滤布	板框压滤机	T/In	900-041-49	0.5	1		送热解焚烧炉处置	/	否
		5	废滤料	干式过滤器	T/In	900-041-49	2.5	1 1		送热解焚烧炉处置	1	否
	危险废	6	废布袋	布袋除尘器	T/In	900-041-49	0.14	1		送热解焚烧炉处置	/	否
	地物	7	废活性炭	活性炭吸附装置	Т	900-039-49	1.5	危废暂存间	160	送热解焚烧炉处置	1	否
	-120	8	废催化剂废吨袋	原料包裝	T/ln	900-041-49	6.67	1		送热解焚烧炉处置	1	否
		9	沾染毒性的化学 品包装物	辅料包裝	T/ln	900-041-49	2617个/a]		送焚烧炉处置	1	否
		10	废矿物油	设备维修	т, 1	900-214-08	1.5]		1	1	是
		11	废机油桶	设备维修	Т. І	900-249-08	0.3	1 .		1	1	是
		12	化验室废物	实验室检测	T/C/I/R	900-047-49	0.8	1 1		1	1	是

附表 2 环境保护措施一览表

阶段		工程名称	污染物	环保措施	预期效果	
		干燥、破碎、料仓、配 料等	颗粒物 颗粒物、NOx、SO ₂ 、		氟化物达到《工业炉窑大气污染物排放标准》(GB 9078-1996),锰及其化合物达到	
		矿热电炉、中频炉、水	Ni, Co, Cu, As, Pb,	干燥、破碎、料仓、配料等经 1#布袋除尘器处理, 矿热电炉、中频炉废气引入 2#布	《贵州省环境污染物排放标	
		淬	Sb. Sn. Cr. Mn. Cd.	袋除尘器处理,以上经布袋除尘器处理后的废气与水淬废气、氧压浸出及压滤废气、	准》(DB52/864-2022),硫酸雾	
		氧压浸出及压滤、硫酸 浆化、焙烧蒸硒等	氟化物、五氧化二磷 硫酸雾、SO ₂	硫酸浆化废气、焙烧蒸硒废气、镍硫高压水雾化废气一同引入 2#碱液喷淋系统 (两级碱液喷淋) 处理后经 1 根 32m 高的排气筒 (DA001) 排放	达到《无机化学工业污染物排放标准》(GB 31573-2015)表 3, 其余污染物达到《大气污染物	
		镍硫高压水雾化	颗粒物		综合排放标准》 (GB16297-1996)二级标准	
		常压浸出及压滤	硫酸雾、H ₂ S		达到《无机化学工业污染物排	
		镍硫高压水雾化	颗粒物	引入 2#碱液喷淋系统(三级碱液喷淋)处理后经 15m 高的 2#排气筒(DA002)排放	放标准》(GB 31573-2015)表 3	
		硫酸浸出	硫酸雾、H ₂ S	· · · · · · · · · · · · · · · · · · ·	70173 (124)	
		废催化剂处理区域装料、球墨、卸料	颗粒物、非甲烷总烃	废催化剂处理区域装料、球墨、卸料引入1#活性炭吸附装置处理,贵铁合金高压水雾化引入4#布袋除尘器处理,以上废气经处理后由1根32m高的排气筒(DA003)排	达到《大气污染物综合排放标	
		贵铁合金高压水雾化	颗粒物	放	准》(GB16297-1996) 二级标准	
		回转窑炉膛	颗粒物、NOx、SO ₂ 颗粒物、NOx、SO ₂ 、	经 1 根 15m 的排气筒 (DA005) 排放		
营运 期	废气处 理工程	回转窑、热解焚烧炉	_{秋極初、NOX、SO2、} CO、HCl、非甲烷总烃、 P ₂ O ₅ 、二噁英	引入二燃室+余热锅炉(SNCR 脱硝)+半干式急冷塔+半干式反应塔+5#布袋除尘+板式换热器+3#碱液喷淋塔+1#水喷淋塔经 1 根 35m 高的排气筒(DA004)排放	达到《危险废物焚烧污染控制 标准》(GB18484-2020)	
		贵铁合金盐酸浸出,精炼生产线蒸馏及提取银钉工序,金萃取锌粉置换及溶解,铂钯预处理工序,钯萃取及精炼工序酸化、酸溶、沉淀、水溶、锌粉置换、酸化、煅烧	颗粒物、硫酸雾、HCl、 氯气、硫化氢、非甲烷 总烃、NOx、四氧化钌、 二氧化氯、氟化氢	引入 4#碱液喷淋系统(两级碱液喷淋)处理后经 1 根 32m 高的排气筒(DA006)排放	非甲烷总烃达到《大气污染物综合排放标准》 (GB16297-1996)二级标准, 其余达到《无机化学工业污染物排放标准》(GB31573-2015) 表3	
		银回收工序银还原、过滤,金萃取工序萃取、 洗涤、反萃,钯萃取及 精炼工序萃取、反萃、 有机洗涤、有机再生, 铑铱分离工序萃取、反 萃,铑精炼工序萃取、 反萃、洗涤	非甲烷总烃、甲醛、 HCl、氨气、硫化氢	引入 1#酸洗喷淋塔+6#碱洗喷淋塔+1#干式过滤器+2#活性炭吸附装置处理后经 1 根 32m 高的排气筒(DA007)排放	非甲烷总烃达到《大气污染物综合排放标准》 (GB16297-1996)二级标准, 其余达到《无机化学工业污染物排放标准》(GB31573-2015) 表3	
		金、银干燥及铸锭	颗粒物	引入活性炭吸附装置处理后经 1 根 15m 高的排气筒(DA075)排放	达到《大气污染物综合排放标准》(GB16297-1996)二级标准	

	工程名称	污染物	环保措施	预期效果
	金萃取工序金煮洗,铂 精炼工序王水溶解、浓 缩赶硝,铑铱分离工序 王水解析,铱精炼工序 氧化沉铱,铑精炼工序 王水溶解、浓缩赶硝	HCl、NOx、氯气	引入 7#碱液喷淋系统(两级碱液吸收)+8#碱液喷淋系统(两级碱液吸收)处理后经 1 根 25m 高的排气筒(DA009)排放	达到《无机化学工业污染物排放标准》(GB 31573-2015)表 3
	钯萃取及精炼工序浓 缩、络合、还原	氨气	引入布袋除尘器+水幕除尘器处理后经 1 根 21m 高的排气筒(DA071)排放	达到《无机化学工业污染物排 放标准》(GB 31573-2015)表 3
	污水处理站	NH ₃ 、H ₂ S	引入 2#酸液喷淋塔+2#水喷淋塔处理后经 1 根 15m 高的 10#排气筒(DA010)排放	达到《无机化学工业污染物排 放标准》(GB 31573-2015)表 3
			颗粒物、铅(Pb)引入7#布袋除尘器处理后与分析检测废气一同进入9#碱液喷淋+4#水喷淋塔处理后经1根15m高的12#排气筒(DA012)排放	达到《大气污染物综合排放标准》(GB16297-1996)二级标准
	甲类仓库危废库房	非甲烷总烃	引入吸收塔(两级水喷淋)处理后经 1 根 25m 的排气筒(DA077)排放	达到《大气污染物综合排放标准》(GB16297-1996)二级标准
	生产线工艺废水、地面 清洁废水、废气处理系 统废水pH、COD、SO4²-、Cl-、 Ni、Co、Fe、Cu、Zn、 Mn、Te、As、Pb、Sb、Ag、Sn、Ba、Se、Cr、F		排入厂区自建的污水处理站采用化学沉淀法除重并调值后,经管廊输送至中伟新材料股份有限公司生产废水处理设施处理	《无机化学工业污染物排放标准》(GB 31573-2015)表1车间及生产设施排放口限值
废水处	初期雨水	SS	依托贵州中伟资源循环公司建设的 1 座 1250m³ 的初期雨水池	/
理工程	生活污水	COD、SS、NH ₃ -N、TP、 BOD ₅	依托贵州中伟资源循环公司废水总排放口排放	《污水综合排放标准》 (GB8978-1996)三级
	防渗工程 Mn、Co、Ni、Cu、Zn		重点防渗分区满足等效黏土防渗层 $Mb \ge 6.0 \text{m}$, $K \le 1 \times 10^{-7} \text{cm/s}$; 或参照 $GB18598$ 执行;一般防渗分区满足等效黏土防渗层 $Mb \ge 1.5 \text{m}$, $K \le 1 \times 10^{-7} \text{cm/s}$; 或参照 $GB16889$ 执行	/
	地下フ	水监控	新建2座地下水监测井,依托贵州中伟资源循环公司1座地下水监测井	/
	噪声控制措	施	选低噪声设备; 高噪设备采取减振措施; 厂房隔声措施; 在厂区加强绿化, 消减噪声 传播	厂界噪声达到《工业企业环境 噪声排放标准》3 类标准
	固废处置工	程	新建 1 栋危废暂存间 (952m²), 生产过程中产生的危险废物定期交由有资质单位进行处理 厂区设置生活垃圾箱进行分类收集,分类收集后由园区环卫部门定期清运	固废处置率 100%
	环境风险	应急事故池	依托依托贵州中伟资源循环公司应急事故池 1 座,容积为 800m3	保证事故废水、废液不外排
	グレナ兄ノハヤツ	应急响应	编制突发环境事件应急预案	

附表 3 环保投资一览表

污染源	环保设施名称	数量	环保投资 (万元)	备注
	表冷+2 台布袋除尘器+1 套碱液吸收系统(两级碱液吸收)+排气筒	1 套	155	新增
	碱液吸收系统(三级碱液吸收)+排气筒	1 套	105	新增
	碱液吸收系统 (两级碱液吸收) +排气筒	1 套	170	新增
	二燃烧+余热锅炉(SNCR 脱硝)+半干式急冷塔+ 半干式反应塔(喷消石灰、活性炭粉)+布袋除尘+ 板式换热器+碱液喷淋塔+水喷淋塔+排气筒	1套	483	新增
废气	布袋除尘器+排气筒	1 套	100	新增
	活性炭吸附装置+排气筒	2 套	70	新增
	酸洗喷淋塔+碱洗喷淋塔+#干式过滤器+活性炭吸附 装置+排气筒	1 套	207	新增
	酸液喷淋塔+水喷淋塔+排气筒	2 套	125	新增
	碱液喷淋系统(两级碱液吸收)+碱液喷淋系统(两级碱液吸收)+排气筒	1 套	150	新增
	布袋除尘器+碱液喷淋塔+水喷淋塔+排气筒	1 套	109	新增
	污水处理站	1座	1020	新增
	防渗施工改造工程	若干	760	拆除后 重建
废水	初期雨水池	1座	0	依托
	地下水跟踪监测井	3座	8	利用 1 座,新 建 2 座
环境风	事故池	1座	0	依托
小境/A 除	厂区监控	1 套	55	新增
1-77	应急物资库	1座	15	新增
固废	危废暂存间	2座	85	新增
	一般固废暂存间	1座	35	新增
噪声	设备降噪措施	/	80	新增
	合计		3732	

附表 4 建设项目环保设施竣工验收一览表

	污染源	污染物	污染治理设施名称	数量和规格	验收标准
	干燥、破碎、料仓、配料等	颗粒物	布袋除尘器		氟化物执行《工业炉窑大气污染物排放标准》(GB
	矿热电炉、中频炉、水淬	颗粒物、NOx、SO ₂ 、Ni、Co、 Cu、As、Pb、Sb、Sn、Cr、Mn、 Cd、氟化物、五氧化二磷	布袋除尘器+碱液喷淋系统(两级 碱液喷淋)+排气筒	1 套,1 根高 32m 排气筒	9078-1996),锰及其化合物执行《贵州省环境污染物排放标准》(DB52/864-2022),其余污染物执行《大气污染物综合排放标准》(GB16297-1996)二级标准
	氧压浸出及压滤、硫酸浆化、 焙烧蒸硒等	硫酸雾、SO ₂			硫酸雾执行《无机化学工业污染物排放标准》(GB 31573-2015)表3
	常压浸出及压滤	硫酸雾、H ₂ S	碱液喷淋系统(三级碱液喷淋)+		
	镍硫高压水雾化	颗粒物	排气筒	排气筒	31573-2015) 表 3
	废催化剂处理区域装料、球墨、 卸料	颗粒物、非甲烷总烃	活性炭吸附装置、布袋除尘器	1 套,1 根高 32m 排气筒	执行《大气污染物综合排放标准》(GB16297-1996) 二级标准
	贵铁合金高压水雾化	颗粒物		, .	****
	回转窑炉膛	颗粒物、NOx、SO ₂	/	1 根高 32m 排气 筒	执行《大气污染物综合排放标准》(GB16297-1996) 二级标准
	回转窑、热解焚烧炉	颗粒物、NOx、SO ₂ 、CO、HCl、 非甲烷总烃、P ₂ O ₅ 、二噁英	二燃室+余热锅炉(SNCR 脱硝) +半干式急冷塔+半干式反应塔+ 布袋除尘+板式换热器+碱液喷淋 塔+1#水喷淋塔	1 套,1 根高 35m 排气筒	执行《危险废物焚烧污染控制标准》 (GB18484-2020)
废气	贵铁合金盐酸浸出,精炼生产 线蒸馏及提取锇钌工序,金萃 取锌粉置换及溶解,铂钯预处 理工序,钯萃取及精炼工序酸 化、酸溶、沉淀、水溶、锌粉 置换、酸化、煅烧	秋松物、蝋酸务、HCI、乳气、 なん気 非田腔され NOv III	碱液吸收系统(两级碱液吸收)+ 排气筒	1 套,排气筒高 25m	非甲烷总烃执行《大气污染物综合排放标准》 (GB16297-1996)二级标准,其余执行《无机化 学工业污染物排放标准》(GB 31573-2015)表 3
	银回收工序银还原、过滤,金 萃取工序萃取、洗涤、反萃, 钯萃取及精炼工序萃取、反萃、 有机洗涤、有机再生,铑铱分 离工序萃取、反萃,铑精炼工 序萃取、反萃、洗涤		酸洗喷淋塔+碱洗喷淋塔+干式过 滤器+活性炭吸附装置+排气筒	1 套,排气筒高 32m	非甲烷总烃执行《大气污染物综合排放标准》 (GB16297-1996)二级标准,其余执行《无机化 学工业污染物排放标准》(GB 31573-2015)表 3
	金、银干燥及铸锭	颗粒物	布袋除尘器+排气筒	1 套,排气筒高 32m	执行《大气污染物综合排放标准》(GB16297-1996) 二级标准
	金萃取工序金煮洗,铂精炼工 序王水溶解、浓缩赶硝,铑铱 分离工序王水解析,铱精炼工 序氧化沉铱,铑精炼工序王水 溶解、浓缩赶硝		碱液喷淋系统(两级碱液吸收)+ 碱液喷淋系统(两级碱液吸收)+ 排气筒	1 套,排气筒高 25m	执行《无机化学工业污染物排放标准》(GB 31573-2015)表 3

		污染源	污染物	污染治理设施名称	数量和规格	验收标准
		钯萃取及精炼工序浓缩、络合、 还原	氨气	酸液喷淋塔+水喷淋塔+排气筒	1 套,排气筒高 15m	执行《无机化学工业污染物排放标准》(GB 31573-2015)表 3
		污水处理站	NH ₃ 、H ₂ S	酸液喷淋塔+水喷淋塔+排气筒	1 套,排气筒高 15m	执行《无机化学工业污染物排放标准》(GB 31573-2015)表 3
		实验室	颗粒物、铅(Pb)、硫酸雾、HCl、 HF、硝酸雾(NOx表征)、NH ₃	布袋除尘器+碱液喷塔+水喷淋塔 +排气筒	15m	执行《大气污染物综合排放标准》(GB16297-1996) 二级标准
		甲类仓库危废库房	非甲烷总烃	活性炭吸附装置+排气筒	1 套,排气筒高 15m	执行《大气污染物综合排放标准》(GB16297-1996) 二级标准
-	生产线工艺废	於水、地面清洁废水、废气处理 系统废水	pH、COD、SO ₄ ² · Cl· Ni、Co Fe、Cu、Zn、Mn、Te、As、Pb、 Sb、Ag、Sn、Ba、Se、Cr、F	污水处理站 1 座(设计处理规模 50m³/d,工艺采用化学沉淀法	1座	《无机化学工业污染物排放标准》(GB 31573-2015)表1车间及生产设施排放口限值
		废水收集输送系统	1	生产废水收集输送管道采用管廊 架设	依托现有管廊	生产废水全部采用管廊架设
		生活污水	COD、SS、NH ₃ -N、TP、BOD ₅	依托依托贵州中伟资源循环公司 废水总排放口排放	/	《无机化学工业污染物排放标准》(GB 31573-2015)表1间接排放标准
慶水		初期雨水	SS	依托依托贵州中伟资源循环公司 已建初期雨水池	1座,1250m³	/
) <u>Ø</u> , N		地下水	厂区防渗	重点防渗分区满足等效黏土防渗层 Mb≥6.0m,K≤1×10 ⁻⁷ cm/s; 或参照 GB18598 执行 一般防渗分区满足等效黏土防渗层 Mb≥1.5m,K≤1×10 ⁻⁷ cm/s; 或参照 GB16889 执行	若干	参照《危险废物贮存污染控制标准》 (GB18597-2023)、《环境影响评价技术导则 地下 水环境》(HJ610—2016)表7
			监测井	新建2座地下水监测井,依托贵州中伟资源循环公司1座地下水监测井	3 口监测井	满足《地下水环境监测技术规范》(HJ164-2020)
	声环境		风机、泵类	安装减震垫、厂房隔	扇声	《工业企业厂界环境噪声排放标准》 (GB12348-2008)3类
			生活垃圾	分类垃圾箱	若干	/
		固体废物	一般工业固废	依托现有厂区一般固废暂存间	/	满足《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)要求,固废销售协议
			危险废物	危险废物暂存间	1座,952m²	《危险废物贮存污染控制标准》(GB18597-2023), 签订危险废物处置协议
环境 风险		事故废水		依托依托贵州中伟资源循环公司 应急事故池	1座,容积为 800m³	/
쓰다쓰		应急响应		突发环境事件应急预案	1 本	备案回执

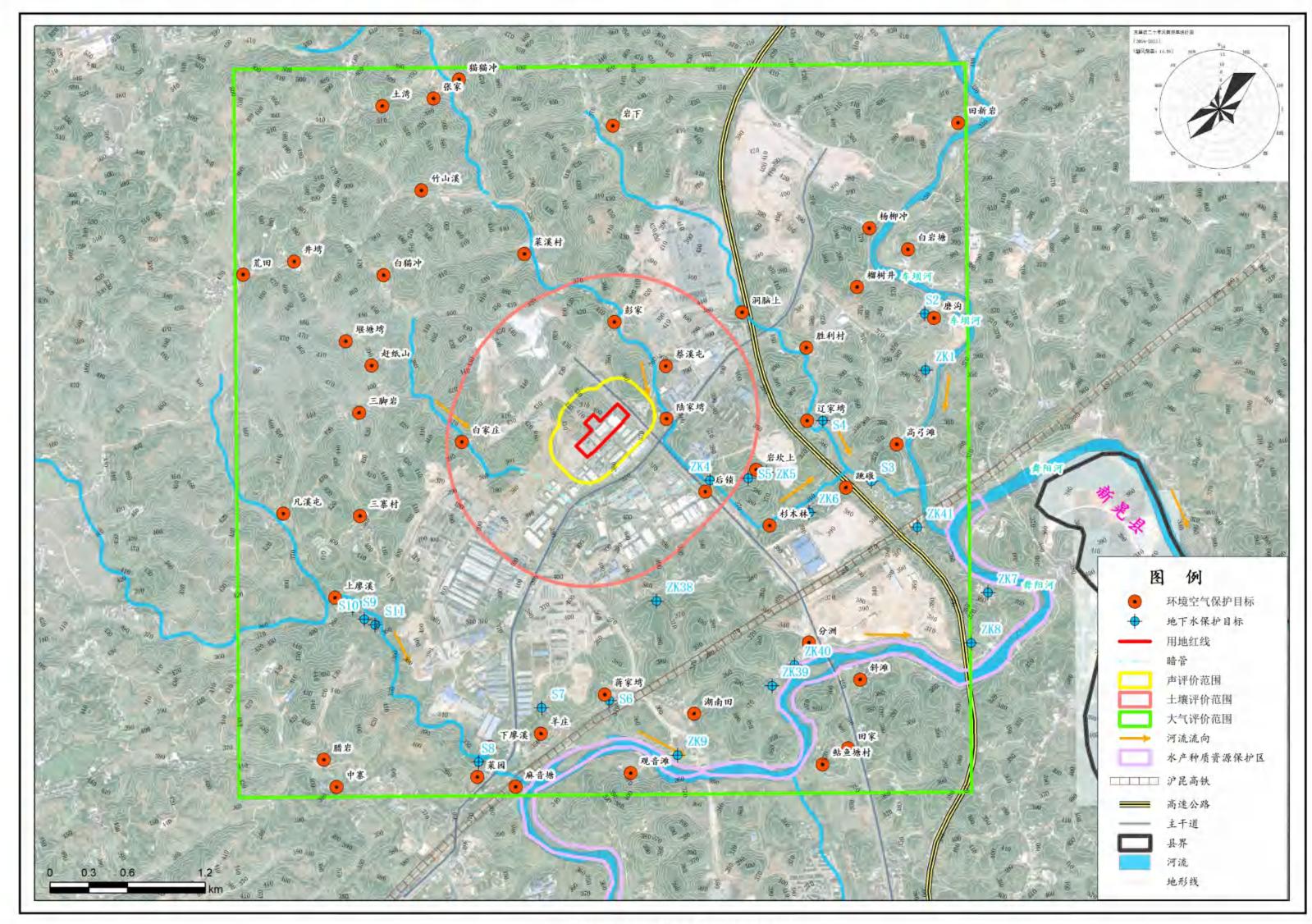


图1.7-1 环境保护目标图